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Spin and isospin stability of dense neutron and nuclear matter with hard core inter-
action of radius c is studied using expansion in powers of gaseousness parameter, x = kc,
and variational approach. Variational calculations are performed using Jastrow method,
including the contribution from three-body clusters. The correlation function has been
obtained from Euler’s equation resulting from constrained minimization of two-body
cluster contribution with subsidiary healing condition. The optimum value of healing integral
has been subsequently determined by minimizing the sum of the two- and three-body cluster
contributions. In the case of neutron matter, both methods lead to conclusion that in the
region of their validity the hard core model is spin stable. Numerical results obtained for
hard core model of nuclear matter suggest a spin and isospin instability at x & 1-1.3,
where, however, applicability of our methods is doubtful.

1. Introduction

In the present paper, we try to answer the question whether neutron matter, in its
ground state, has spin zero (i.e., is spin stable) or is spin polarized (i.e., spin unstable
or ferromagnetic), and the question whether nuclear matter, in its ground state, has
spin and isospin zero or is spin and isospin polarized. Obviously, most interesting is the
behaviour of both systems at high densities (neutron star matter, dense nuclear matter
which might be formed in high energy central collisions of heavy ions). Answer to the
question stated above is essential in the problem of a possible ferromagnetism of neutron
star matter, and is important in the problem of possible existence of pion condensate in
dense nuclear matter.
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In the present work, we make the following simplifying assumptions:

(i) We use the model of pure hard core (h.c.) two-body interaction (with radius ¢)
between nucleons.

(ii) We employ nonrelativistic quantum mechanics.

(iiif) We assume that the system is homogeneous i.e., it is in the liquid phase.

We shall discuss the applicability of our simplifying assumptions later. Now, we want
to stress that at sufficiently high densities, where the short range repulsion is the decisive
part of nuclear forces, our model of pure hard core interaction should approximately
describe real nuclear and neutron matter. Furthermore, the effect of two-body attraction
on spin and isospin stability is known: the attraction increases the stability.

Needless to say that our results are relevant to other fermion systems, e.g., electrons
in metals, and liquid 3He.

The paper is organized as follows. In the next Section, conditions for spin and isospin
instability are formulated. In Section 3, we apply to the instability conditions the expansion
in powers of the gaseousness parameter x = kpc (kg = Fermi momentum). In Section 4,
we apply the Jastrow method (with the Iwamoto-Yamada [1, 2] cluster expansion, and
with the healing condition imposed on the correlation function) to the instability conditions.
Discussion of our results is given in Section 5, which also contains a critical review of
earlier work on spin stability of hard core fermion systems. Expressions for three-body
terms in the cluster expansion for total energy and for the energy of an impurity are given
in Appendix A. In Appendix B the condition for spin instability is derived from the Landau
theory of Fermi liquids.

Some of our results, based on conditions (2.2), (2.10) were reported in [3-5]. Some
of the other results of the present paper were presented in [6].

2. Instability conditions

Throughout this paper, we use the short notation NM for nuclear matter, and NM
for neutron matter. We distinguish all guantities related to NM from those related to
NM by a tilda. For instane, E is the energy of NM, an E is the energy of NM.

(2) Neutron matter (NM)

We assume that we have N neutrons in the periodicity box of volume Q. Among
the N neutrons, there are N, neutrons with spin up and N, neutrons with spin down
(N = N,+N,). For a fixed density ¢ = N/Q the ground state energy E(N,, N)) depends
on the relative numbers of neutrons with spin up and spin down, i.e., on the spin excess
parameter a, = (N,—N)/N. This means, we have E(N,, N, = E(«,). For spin un-
polarized (i.e., normal) NM a, = 0, and for totally spin polarized NM o, = 1.

Let us denote the difference between the energy per neutron in totally polarized
and unpolarized NM by

4 = E(a, = 1)/N—E(z, = 0)/N. .1
If

4<0 2.2)
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then the spin unpolarized state of NM is unstable. Inequality (2.2) is our first condition
for the occurrence of spin instability (i.e., of ferromagnetism) of NM.

Instead of asking the question whether the totally spin polarized state has lower
energy than the normal state, condition (2.2), we may ask a slightly different question:
has the energy E(x,) a maximum at «, = 0? The answer is yes, if

£, = 1 [0*(E(@)IN}oa2],, -0 <O, @3

where ¢, is the spin symmetry energy of neutron matter. Inequality (2.3) is our second
condition for the occurrence of spin instability.

We may ask still another question: does the energy of NM reach a minimum when
NM becomes totally spin polarized ? The answer is yes, if the energy E(a,)/N is decreasing
when «, approaches 1, ie., if

D = 2[0{E(%,)/N}/0%,],.=; < O. 2.4)

Inequality (2.4) is our third condition for the occurrence of ferromagnetism. It may be put
into a different form. With the notation E(N,, N)), we have E(N, 0) for the energy of
the totally spin polarized state. If we change the spin direction of one neutron, we obtain
a state with the energy E(N—1, 1). If E(N, 0) is a minimum, the condition

E(N,0)—E(N-1,1)< 0 (2.5)

should be satisfied. This condition for the occurrence of complete ferromagnetism is,
of course, equivalent to condition (2.4). Indeed, we have E(V,0) == E(x, = 1),
E(N-1,1) = E(z, = 1—=2/N), and consequently

. N 2. ~
E(N,0)-E(N—-1,1) = N [0E(2,)/0%,),, =1 = D. (2.6)
Notice that we may write the left-hand side of the last equation in the form:
E(N,0)—E(N—1,0)—[E(N—1, )—E(N—-1, 0)]
= OE(N, 0)/oN—[E(N, 1) EW, 0)], 2.7

where terms ~ 1/N have been neglected. Consequently, we have

. QE(WN,0) . EWN,0) o E(N,0) .
D=-—""7"_¢g= — —e, 2.8
N fT TN TGN ¢ 28)
where
e = E(N, 1)—EN, 0) (2.9)

Consequently, if we know E(N, 0)/N (the energy per neutron in spin polarized neutron
matter as function of g) and —e (the binding energy of one spin down neutron in the
spin up polarized neutron matter) we may determine D from Eq. (2.8).

The mutual relation between the three conditions (2.2), (2.3), (2.4) depends on the
form of the interaction. We denote by o(4), o(g), o(D) these densities of NM at which
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respectively 4 = 0, E, = 0, D = 0. Several situations may occur. For instance, if there is
a range of densities for which D < 0 and 4 > 0, then within this range of densities, the
completely ferromagnetic state is a metastable state. We shall see, however, that with our
model of hard core interaction, we should expect two situations: either no spin instability

E (et )/N-E(O)/N

~

e(&)<¢< §(D)

9 >¢(D)

0 ; 1
Lo

Fig. 1. Expected dependence of neutron matter energy on spin excess at different densities for Serber hard
core interaction

occurs (for hard core acting in all states), or there is an instability (for hard core acting
in even states only, i.e., for Serber hard core interaction) with o) < o(4) < ¢(D). In
the last case, the system is normal for ¢ < o(¢) and is completely ferromagnetic for
0 > o(D). In the intermediate range of densities, p() < o < o(D) the ground state is partially
spin polarized (partial ferromagnetism), and o(4) belongs to this interval. This situation
is shown in Fig. 1.

(b) Nuclear matter (NM)

Among A nucleons there are N(N,) neutrons with spin up (down), and Z(Z)
protons with spin up (down), 4 = N,+N,+Z,+Z,, and the energy E = E(N,, N,, Z,, Z,).
Now, we have to consider three types of polarization: spin (¢) polarization, isospin ()
polarization, and spin-isospin (¢t) polarization.

In case of ¢ polarization, we have N, = Z, = 4,/2, N, =Z = A,/2. For a fixed
density o = A4/Q, the energy E(4,/2, A,/2, A,/2, A [2) = E,(4,, A) depends only on the
spin excess parameter a, = (4,—A4,)/4, E,(4,, A) = E(a,).

In NM with t polarization, i.e., NM with neutron excess, characterized by «,
= (N—-Z2)/A, we have Z, = Z, = Z[2, N, = N, = N/2. We use the notation: E(N/2, N/2,
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Z[2,Z|2) = E(N, Z) = E(x,). What is called here a completely t polarized NM, is ob-
viously NM.

In o7 polarized NM, we have an excess of spin up neutrons and spin down protons
compared to spin down neutrons and spin up protons. This excess is characterized by
#yp == (Ar—A-)/A, where A,/2=N,=2Z, and A2 = N,= Z,. For fixed density, the
energy E(A.[2, A_[2, A_[2, A,[2) = E, (A., A-) depends only on a,, E,(A4:, 4-)
= ar(‘xo’t)'

The discussion in (a) of the polarization of NM may be repeated for the three types
of polarization of NM. With the notation of x polarization, where k = ¢, 7, 6T we obtain
the following three conditions for the occurrence of «k instability of NM:

A, = E (2, = 1)JA—E (o, = 0)/4 < 0, (2.10)
e = 3 [0*{E(0)[A}00 s -0 < O, (2.11)
D, = 2{E ()] AYoer ], =1 < 0. 2.12)
An alternative expression for D, is:
D, = JE (A,0)]0A—e, = E(A4,0)/A +ga% ES’:;O) — e, (2.13)
where
e = 5 [Ed(4,2)—E (A4, 0)]. (2.14)

The slightly different definition of e, compared to e, Eq. (2.9), reflects the fact that, e.g.,
for ¢ polarization of NM, we consider the spin direction of two nucleons (neutron and
proton).

3. Expansion in powers of kgc

The expansion of the energy of an infinite system of fermions interacting with a hard
core potential, in powers of the gaseousness parameter x == krc (¢ = hard core radius,
kp = Fermi momentum in units of #) has been investigated since a long time [7-23].
In general, a single particle state of a given momentum & may be occupied by v particles,
where v is the number of spin and isospin degrees of freedom per particle (v =1 for
spin polarized NM; v = 2 for unpolarized NM, and for o, 7, or ot polarized NM; v = 4
for symmetric (N = Z) and spin unpolarized NM). Usually, the expansion of the energy
is presented for the case of a general value of v. Well established is the x3-approximation
of this general expansion (i e., including terms ~x3). It appears that beyond the x3-ap-
proximation, problems arise with logarithmic terms (~ x*In x) [14, 15, 18-20].

The x3-approximation for the ground state energy E, (A7) of a hard core fermion
system with a given v is (see, e. g., Efimov and Amusya [13]):

2
E(N)| AN = &, [%+(v—l){3~ x (11—=21n2)x?
T

vt 3512

1 1
+ <— +[0.0755+40.059(v — 3)]) xi} +(v+1) (— xf) :' ) 3.1)
157 s Sn P
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where 4 is the number of particles, x, = kg,c, and kg, is the Fermi momentum, connected
with the density p = A47/Q by
k3, = 6nov, 3.2)
and
&g, = h2ki [2M

is the Fermi energy.

In (3.1), and throughout this paper, the subscripts S and P denote terms which arise
from the interaction in the S and P state respectively.

Another quantity of interest for us is the removal energy of a different particle (impu-
rity) form a system of 4" hard core fermions with a given v:

€y = Ev('/‘/.+ ll)mE:v(‘A/‘)’ (33)

where E (A" +1;) is the ground state energy of the system of .4" hard core fermions plus
one impurity particle. The quantity e, was calculated by Bishop [21] in case when the
mass of the impurity particle is the same as the mass of the .#° fermions, and when the
interaction between the impurity and each of the .4 fermions is the same as the inter-
action between the 4~ fermions (i. e., hard core interaction with radius ¢). In this case,
we have in the x3-approximation:

4 2, [8 1
=gV {— x4 5 x4 | — — —
“v = 3n 12 3n°  9n

2 7 1
SR N Sl T S 1 IOV —x2) | 3.4
=03 (87: TR 307:3)] *“}S + (sn ’”“),,] 34)

Now, let us apply Eqs (3.1) and (3.4) in the analysis of the stability of NM and NM.

(a) Neutron matter (NM)

Expressions for the energy of NM are obtained from Eq. (3.1) by putting A" = N,
v=2and v=1:

E(0)/N = E,(N)/N = P A
(0)/N = E,(N)/N = g5, | 5+ In X3+ 3572
1 3
x(11—21n 2)x§} + ({—— +0.0165} + {ﬁl )x;};], (3.5)
S 1575 s ST[JP
E()/N = E,(N)IN = 2*%, [%+ {i} xi]. (3.6)
Snyp

where we have used the relation kg, = 23 kg, and x; = 23 x,.

The factor 2%/ in (3.6) represents the increase in kinetic energy when passing from
normal (x, = 0) to ferromagnetic {x, = 1) state. Terms that arise from the interaction in
the S state (terms linear and quadratic in x,, and part of the cubic term in Eq. (3.1)), do
not appear in E(1), due to the Pauli principle. This is in accordance with the usual argument
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in favour of ferromagpetism: aithough in the ferromagnetic transition the kinetic energy
of the system increases, at high density this is more than balanced by the disappearance
of the repulsive interaction. What has been overlooked in this argument, is the inter-
action in the P state, which contributes to the cubic term in x,. Now, by the same argument,
the P state interaction acts in the opposite direction and, in fact, makes the ferromagnetic
state less favourable.

From Eqs (3.5), (3.6), we get for 4, Eq. (2.1):

2 4
Fleey = (2P 1) 3~ {Z x,— —5 (11-21n2)x}
35n

n

s

+ (— {—1-— +o.0165} + {(28/34)1} )xi. 3.7
157Z s 57’: P

The function 4/eg,, calculated with the help of (3.7), is shown in Fig. 2. The curves
denoted as L, Q, and C have been obtained by keeping in (3.7) terms linear, quadratic,

/€,

_~

e 0.1 o \\ -]

H i Il

Fig. 2. The function Afeg, calculated in the linear (L), quadratic (Q), cubic (C) approximations in x;,
and according to the Jastrow method (J). Broken (dotted) parts of the curves lie outside of the region of
applicability of the x-expansion (Jastrow) method

and cubic in x,. The curve C(S) has been obtained by keeping in (3.7) all terms, except
for the contribution of P state interaction.

To calculate D, Eq. (2.8), we must know e, the removal energy of a spin down neutron
from the ground state of the system: spin polarized NM -+ one spin down neutron. Since
the hard core interaction does not affect neutron spins, we may look at the one spin down
neutron as at an impurity, i. e., a particle which is different from the spin up neutrons.
Consequently, we have

e= ey, (3.8)
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and may use (3.4) to determine e. Since E(N, 0) = E,(N) we may use Eq. (3.1) to calculate
the remaining terms in (2.8). In this way, we find (in the x3-approximation):

D/ PR (LA S (LI 3} Al (3.9
epp = 1= <— x4+ 5 x — — —]X — Xip . .
i 3t 3t o) s T s,

We may express the right-hand side of (3.9) in terms of x, = 2-'/3 x; and use the
relation &g, = 22/3 &, to obtain the function D/eg, shown in Fig. 3.

D/éF2

NN

N N
ORI

A ! 1 1

Fig. 3. The function Djsp, (notation as in Fig. 2)

The spin symmetry energy of NM, ¢,, was calculated in [17], however, in the x2-ap-
proximation only:

2 1
a,=%£m[1——n—xz—%%(2+ln2)Px§+ ] (3.10)

A calculation of the next, cubic terms in (3.10) would require very tedious compu-
tations. In this situation, it is important to get at least an approximate estimate of this
term. To get such an estimate, we proceed in the following way. We assume that we may
approximate E(x,)/N by the equation

E(x,)/N = EQO)/N +1 g,02+505, (3.11)

from which the approximate relation follows:
¢, = 44-1D. G.12)
By substituting in (3.12) expressions (3.7) and (3.9) for 4 and D, we get an estimate of

the cubic term in the expansion of g,. In this way, we obtain:

- 2 1
8, = Zep, [1— {; x;+318(2+1n2) = x§+0.106x3} +{0.624x§},] . (3.13)

s
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Let us mention that our approximate procedure, applied to the linear term, leads to
the exact coefficient —2/n and applied to the quadratic term leads to the coefficient
—0.285, whereas the exact result is —(16/1572) (2+In2) = —0.291.

Let us denote by x,(4), x,(D), and x,(g,) these values of x, for which 4 = 0, D = 0,
and &, = 0, respectively. These values, determined with the help of expressions (3.7),
(3.9) and (3.13) respectively, are collected in Table I.

TABLE 1

Minimal values of x, at which unpolarized NM and NM becomes unstable, calculated in the L, Q, C(S)
and C approximations and with the Jastrow method (J)

L Q C(S) C J
x2(24) 1.57 1.05 0.98 a
NM x2(A) 1.66 1.065 0.99 a a
x2(D) 1.87 1.12 1.03 a a
xa(ex) 1.57 1.38 0.74 0.6
NM xa(4,) 1.66 1.26 0.77 1.05 ~13
x4(Dy) 1.87 1.22 0.82 1.25 b

2 stability at all values of x,; P zero of D, outside the range of validity of J method.

If we restricted ourselves to terms quadratic (linear) in x, (the Q(L) approximation)
we would conclude that a transition to a partially ferromagnetic state would start at
x, == 1.05 (1.57), and a complete spin polarization would start at x, = 1.12 (1.87) (see
Fig. 1). This, however, would not be correct, because at all these values of x, one must
not neglect the P state interaction. When the P state interaction is taken into account,
as it is the case in the cubic (C) approximation, none of the instability conditions can be
satisfied, and NM turns out to be spin stable.

Whereas the L and C approximations are incorrect approximations (at x, ~ 1)
when applied to the hard core interaction model, the C(S) approximation has a physical
meaning, It is a cubic approximation for hard core interaction acting only in the S state,
or simply an approximation for a Serber exchange hard core interaction (acting only in
even angular momentum states). Since Serber interaction does not act at all in spin polar-
ized NM (because of Pauli principle), we certainly expect here a ferromagnetic transition
to occur. And indeed, as shown in Table I, we predict here a transition to a partially ferro-
magnetic state at x, = 0.98, and a complete spin polarization at x, = 1.03.

(b) Nuclear matter (NM)

The hard core interaction does not depend on spin and isospin, and the energy of
¢ polarized NM is the same as the energy of the 7 and o1 polarized NM. All the following
equations will be written for x polarization of NM, and all the conclusions will be the
same for each of the three types of polarization, k = ¢, 7, and o7.
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Expressions for the energy of NM are obtained from Eq. (3.1) by putting & = A4,
v=4and v=2:
2 12 5
E(0)/A = E,(A)JA = epg | T+ {— x4+ 352 (11-21n2)x3
T n

s

+ ({l +0.4035} + {l—} )xi], (3.14)
S5t s T yp

2 4
E (1)JA = E,(A)JA = 2*/%, [%JF {3 2“3x4+ (11 —21n2)2*%x 2}
S

{2 0033 ¢ )3 3.15
(s roosf, + {5, ) e

where we have used the relation kp, = 213 kg,, and x, = 2!3 x,
For 4,, Eq. (2.10), we get:

, 2 4(3—2*%)
Ayfeps = [(22’3"1)%" {37[ X4t A

x(ll—-21n2)xi} —({—1—(1—25/3/3)+0.3511} —{(6x22/3~5)/5n},.j xi]. (3.16)
s Sn s ¥

00

05 08, BN
X4 \\ \\ ~ . J -~ 20
A

-01 cs) N\ N .

Fig. 4. The function A./eps (notation as in Fig. 2)

The function 4,/er, is shown in Fig. 4.
To calculate D,, we apply Eq. (2.14), with E (4, 0) = E,(A), with

e,‘ = el,v=2, (3-17)
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and with the help of (3.4) we obtain:

4 4
D fers = 1~ {-— xot 5 [l=s (11=21n 2)]x3
3n n

14 64 6
—_— 2+4In2)-0.0440 [x3 ¥ +<{—} x3. .18
M [157: e 2t d) ]xz }s {sn},, ¥z 18

If we express the right-hand side of (3.18) in terms of x, = 2-1/3x, and use the relation
£, = 2%/3g., we obtained the function D,/eg, shown in Fig. 5.

T ¥ ¥ T

Fig. 5. The function Dyjeps (notation as in Fig. 2)

The symmetry energy of NM, ¢, was calculated in [16, 17] only in the x2-approxi-
mation:

2 1
& = %8,—4 [1— }—xd—% (2 in 2“1)7? Xi“f‘ :' . (319)

To get an estimate of the next cubic term, we proceed in the same way, as in case
of NM, and obtain the approximate relation

& = 4A, —1D,. (3.20)

Expressions (3.16) and (3.18) allow us to determine the cubic term in ¢, from Eq. (3.20).
In this way, we obtain:

2 1
€~ 2 eps [1- {—{ x+§(2In2-1) xi+0.5583x2} +{o.8187xi},,]. (3.21)
N

Let us mention, that relation (3.20), applied to the linear term, leads to the exact
coefficient —2/r, and applied to the quadratic term leads to the coefficient —0.047,
whereas the exact coefficient is —(8/5) (21In 2—-1)/z®> = —0.063.
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We denote by x.(4,), x4(D,), and x,(¢e,) these values of x, for which 4, = 0, D, = 0,
and g, = O 1espectively. These values, determined with the help of expressions (3.16),
(3.18), and (3.21), are collected in Table I. Notice that in the Q approximation x,(D,) <
< x4(d,) < x4(¢,), which corresponds to a situation which differs from that shown in
Fig. 1 in case of NM. We do not discuss this situation because the Q approximation is
certainly incorrect for big values of x,.

The x3-approximation, applied to NM, leads to the following conclusions. NM
with hard core interaction acting in all states is expected to become x-unstable at x, = 1
(partial x-polarization of NM groundstate), and to be completely x-polarized for x, = 1.24
(here, however, the x3-approximation is not expected to be reliable). In case of Serber
hard core, NM is expected to become x-unstable at x, & 0.7, and to be completely
k-polarized for x, = 0.8.

Now, we would like to answer the question for how big values of x is the x3-approxi-
mation reliable (in describing the liquid phase). We do not know the answer to this question,
and restrict ourselves to the following comments. In case of v =1, an expansion of E,
in the x%-approximation is known [16, 17]. The absolute value of the subsequent coef-
ficients of this expansion is only slowly decreasing. Some of the coefficients are positive,
and some of them negative. This means that for x, > 1, the magnitude of E, is dominated
by the last term, kept in the expansion of E; in powers of x,, and it does not make sense
to apply the expansion with a finite number of terms for x;, > 1. We expect a similar
situation for v = 2, 4, and conclude that the expansion of E, in powers of x, is not reliable
for x, > 1.

On the other hand, we expect that for x, < I, the x*-approximation should be
reasonable. This may be demonstrated for v = 1, by applying subsequent terms, calculated
in [16, 17]. In general, there is the following physical argument in favour of the x?-approxi-
mation for x, < 1. The maximum value of the relative momentum k in Fermi gas (with

a given v) is kg, and its average value is J0.3 kg,. By applying the classical argument
with the impact parameter, we expect that the P state interaction should become important
at kp,c = x, = 1. Furthermore, we expect that P wave should be most effective around

X, X 1/\/@ = 1.8. The same argument shows that the D state interaction would be of
no importance for x, < 2. Now, the xJ-approximation contains alieady the leading
contribution of the P state interaction, and consequently should be reliable for values
of x, up to x, = 1.

Assuming the validity of the arguments presented above, we hope that in deriving
our expressions for 4, D, and g, in Section 3(a), we could rely on the x*-approximation
for E, for x, < 1 (and for E,, for x, < 1, which, however, is a weaker restriction). Since
x, = 213x,, the condition x, < 1 implies that x, < 0.8. Consequently, our expressions
for 4, D, and &, should be applicable only for x, < 0.8. Similarly, the expressions for
4., Dy, and ¢,, derived in Section 3(b), should be applicable only for x, < 0.8. For this
reason, only the solid part of the curves in Figs 2-5 is expected to be reliable. Also, among
our x>-approximation results collected in Table I (C, and C(S)), only those with x, < 0.8
and x, $ 0.8 seem to be reliable. This means, however, that the most interesting possi-
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bility of the x-instability of NM is predicted to occur at values of x which appear to lie
outside the region of validity of the x-expansion method.

In an attempt to clarify the situation, in the next section, we analyze the hard-core
fermion system with a completely different method which should work also for bigger
values of x.

4. The Jastrow method

(a) Cluster expansion of the energy

In the Jastrow method [24], we start with the following Ansatz for the ground state

wave function of 4" particles with spin-isospin degeneracy v:
Q.- A = Ll.f(ru)qx1 e A) (4.1)
i<y

where the arguments of the functions denoted by numbers indicate the full set of space,
and spin-isospin coordinates of the corresponding particles. The Slater determinant
function & is an antisymmetrized product of single particle wave functions (spin-isospin
functions times plane wave functions). Actually, we might use a more precise notation,
Y., @, f,, for the wave functions and correlation functions for different values of v.
However, we drop the subscript v in all our equations, whose meaning concerning the
value of v is obvious.

To calculate the expectation value of the hamiltonian, we apply the Iwamoto-Yamada
(IY) cluster expansion [1-2]:

CPHIPY(PIYY = & = L eV +EP+ED + ., (4.2)

Similarly, as in [2] and in the extensive work by Clark and his collaborators (see,
e. g., [25]), we shall restrict ourselves in expansion (4.2) to &2, and &, i. e., we shall
use the approximation
Elep, = 6 = 3N +EP+ED, 4.3)
where
EPY = g2V (4.4)
Notice that all the &’s are functionals of £, i. e., &% = 23 [f].
Explicit expressions for & and & were derived in [2]. Here, we shall restrict

ourselves to writing down final expressions for &® and & in case of pure hard core
interaction. In this case H in Eq. (4.2) reduces to pure kinetic energy.

hz
YIHY) = — M Z CHIAIYD, 4.5)

and the hard core repulsion enters as boundary condition imposed on the correlation
function, f=0 at r = c.
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For &?, we have

| h? df\?
Y% &P =1 fd’ i (E;_“) gro(ke,r), (4.6)

where the radial distribution function for noninteracting system

1 2
gn(y) = 1— — (), 4.7

where I(y) = 3j,(»)/y-
It is most convenient to use kgz,' as our unit of length, and to introduce the nota-

tion:
€ = kgyr. (4.8)
With the help of (3.2), we get from (4.6):

BOLAIN = j dE () gen(). 4.9
where /(&) = dA(®)/de.

In deriving the expression for £*, we may simply use Eq. (4.5). This basic prescrip-
tion (BP) for the kinetic energy has been used by Iwamoto, Yamada [1, 2], and in other
early papers on the Jastrow method. Another, equivalent form of the kinetic energy,

LS .

PHIWP = de(V,¥%) (V,¥) (4.10)
may be obtained from the BP form by an integration per partes. This CW form was first
used by Clark and Westhaus [26]and leads to an expression for & which differs from that
which follows from the BP form (the two expressions for &*) may be transformed into
each other by partial integration, and are equivalent). Both BP and CW expressions for

E®[f] are given in Appendix A. They involve functions f(£), /(&) and their derivatives,
as well as the function

h(&) = f&)*—1. (4.11)

In applying the Jastrow method to the instability conditions of Section 2, the follow-
ing difficulties arise.
For any trial function ¥, the expectation value &,, Eq. (4.2), satisfies the variational
principle:
&, = E, (4.12)

where E, is the exact ground state energy. We want to use &, in our instability conditions,
e. g., for estimating 4, Eq. (2.1), by making the approximation:

A4, =" - 2225, (4.13)
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However, the variational principle is valid only separately for §,_, and &,.,, and does
not allow us to say whether 4 is bigger or smaller than 4, for a necessarily approximate
form of ¥,., and ¥,.,.

Thus, even if we calculated &, exactly with a given ¥, we would not be able to make
a precise statement about the error in the approximation (4.13). In reality, however, we
calculate &, approximately (we cut off the cluster expansion at &), and consequently,
even the variational principle, Eq. (4.12), does not apply to our calculated &,.

If nevertheless we apply the Jastrow method to our instability conditions, we must
try to choose such optimal forms of the correlation functions f,, that &,, which we calculate
in approximation (4.3); is very close to E,,

&, = E, (4.14)

The need for a high accuracy of calculating &, is enhanced by the fact that, e. g., 4,
in (4.13) is a small difference between two big numbers, &,_, and &,_,.

Fortunately, there are possibilities of testing the accuracy of calculating &,, and
the degree to which (4.14) is satisfied. Some of them are: comparison with the results
of the expansion in powers of x, calculation of a proper smallness parameter of the cluster
expansion, and calculation of the ratio §*)/§®. We shall use allthese tests in estimating
the range of densities for which our Jastrow method may be applied.

(b) Determination of the correlation function

For hard core interaction, the correlation function f = f(¢) vanishes for r <{ ¢, i. e.,
for & <7 x = kgc. In particular,

f(x)=0. 4.15)
Furthermore, f(¢) should show healing
Im f(&) = 1, (4.16)
E~w

and the healing should be sufficiently rapid, to secure the convergence of the cluster ex-
pansion.

To the best of our knowledge, an unrestricted minimalization of &® + & does
not lead to a correlation function which would exhibit a sufficiently fast healing. One
possible way of overcomig this healing difficulty is to assume an analytical form of f,
which assures healing, and to fix free parameters of this assumed analytical form by mini-
mizing £+ &, This is the way followed by Clark and his collaborators (see, e. g.,
[25]). Here, we follow another way, suggested already by Jastrow [27], and impose on f
the healing condition,

Klfl=e Jdr[l ““f]ngv = 6—7‘;2 de[l _f(f)]zgrv(f) = const., (4.17)

which is apparently the simplest form of subsidiary condition giving the desired asymptotic
behaviour of f, Eq. (4.16).
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Our procedure, for any fixed value of x, (i. €., fixed density or kg,), consists of two
steps. First, we find f which minimizes &‘® with subsidiary condition (4.17), i. e., we solve
Euler’s equation of the variational problem

SEP[f 1+ N B[ f]} = 0. (4.18)

Second, we determine the Lagrange multiplier 2 by minimizing &® +&'® . This minimum
value of £ + &, inserted into Eq. (4.3), gives the desired value of &.

This procedure was applied recently by Ali, Grypeos, and Kargas [28] in a calcu-
lation of the binding energy of a A particle in NM.

The Euler equation, which follows from (4.18), is

I +[2/¢+ grlgnlf =B (f—1) = 0. (4.19)
The asymptotic behaviour of the solution is
f(&) > 1+(4e ™ +BfYYE for &€ - (4.20)

i. ., for B = 0 healing is achieved. (This is the reason for our choice, 2, of the Lagrange
multiplier. With a negative multiplier healing would not be possible).

For a given value of x,, the solution of Eq. (4.19) with B = 0, and which vanish at
& = x,, were determined numerically for a few values of f. With these f functions, ®
and &3 were calculated by numerical integration, and the values of § was determined,
for which &® +5® attains its minimum. (The minimum is attained because of opposite
behaviour of &2 and &®. With increasing range of f; i. e., with decreasing 8, the curvature
of fis decreasing, and & is decreasing. On the other hand, the three body cluster term,
&P obviously increases with increasing range of the correlation function).

(¢) Cluster expansion of D

We want to apply the Jastrow method to calculate D and D,, Eq. (2.8) and (2.13).
The Jastrow method of calculating E(N, 0) = E,_ ,(N) and E(4, 0) = E, . ,(4) has been
explained already in points (a), (b) of this Section. The only quantities remaining unknown
in (2.8) and (2.13) are ¢ = ¢,,-, and e, = ¢,~,, Eqs (3.3) and (3.17). Here, we shall
outline the Jastrow method of calculating e, the removal energy of an impurity from
a system of 4" hard core fermions with a given v. In our case, the impurity has the same
mass M as the particles of the background of 4 fermions, and its interaction with the
fermions of the background is the same hard core repulsion as that between the fermions
of the background. This simplifies our expressions for e,.

We start with the equation

ey = &N +1P—E(A), (4.21)
where &,(A4") is the expectation value of Eq. (4.2), and
ELA 1) = (05 1+ ANH(O; 1 ) 19,031 A
KEUO0; 1o A)F(O; 1 - ),
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where

P
2,(0:14) = [] Fra)@OF,1 - #).

Here f(ry;) is the correlation function between the impurity (particle number zero) and
the i-th particle of the background, ¢(0) is the single particle wave function of the impurity
(spin-isospin function times a plane wave function with zero momentum), and ¥(1... 4")
is defined in (4.1) with f replaced by f. A priori, we cannot assume that f= f: the cor-
relation function fin the pure background might be changed slightly (~ 1/4") by intro-
ducing the impurity.

Similarly, as in the case of Eq. (4.13) for 4, (4.21) is an approximate equation, because
of the assumed simple forms of ¥ (1...4"), ¥(...4), and ¥,0; 1...4), and because
of the approximate way, in which we calculate &,(1....4) and &, (A4 +1;). We shall test
the accuracy of our procedure here in the same way, as in case of 4. One may expect the
accuracy of calculating e,,, and D, D, to be better than the accuracy of calculating A,
4,. Here e. g., in case of D, we avoid subtracting two big numbers, &,(4") and &,(A).
Instead, we calculate directly the removal energy of a spin down neutron (the impurity)
from the background of spin up neutrons. While doing it, we describe correlations between
the spin down neutron and the spin up neutrons with a correlation function f, which
differs from f, which describes correlations between the spin up neutrons.

Now, we apply for both &,(A4") and &,(A4"+ 1)) the IY cluster expansion. For &,(4),
we use the approximation (4.3). Similarly, in the IY cluster expansion for &, (A4 +1,),
we keep only &>*(4" +1,). The derivation for the two first cluster terms, &> (4" +1,)
proceeds analogically to the original derivation of the corresponding two terms in IY
cluster expansion of &,(A4") [1-2]. Here, we restrict ourselves to writing down the final
expression:

EN +1)ep, = 2 N +EP[F1+EDF1+6P0f1+6D1].f 1, (4.22)
where
al[f1=2 (6—‘}2) Jdéf (3 (4.23)
T

Expressions for &’ are given in Appendix A for two forms assumed for the kinetic energy
(BP and CW).

To find optimal correlation functions, f and f, we proceed similarly as in part (b) of
this Section. We impose condition (4.17) on f, and a similar condition on f:

®[f] = der[l —f1* = 37:-5 f dé[1—f(&)F = const. (4.24)

Both these conditions insure the proper asymptotic behaviour of f and f(f - 1,f — 1
for ¢ — o), necessary for the convergence of the cluster expansion of &,(A4" +1)).
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We determine f and f in two steps. First, we minimize the two-body cluster part of
& (N +1p), Eq. (4.22), with subsidiary conditions (4.17), (4.24), by solving Euler’s equa-
tions of the variational problem

SEPLI1+ N B[ F1+eD + 2B, 11} = 0. (4.25)
Second, we determine the Lagrange multipliers f2 and ? by minimixing &,(4 +1),
given in (4.22).
The Euler equation for f is obviously identical with Eq. (4.19), and that for f is:

[ +QIf - -1 =0. (4.26)

1t is easy to see that our present procedure leads to § which differs by a quantity
AB ~ 1/ from B, determined in case of pure background according to the procedure
described in part (b) of this Section. According to this procedure &¢*'[F1+&([f]in (4.22)
attains a minimum for = f, i. e., for § = . Hence, by replacing f by f in (4.22), we in-
troduce a change ~ (48)% ~ (1/4)2. Even though &(* and &> are proportional to ./,
the whole change is still only of order 1/.4” and may be neglected. Consequently, Eq. (4.22),
takes the form:

ESN +1) = ELM)+er (P L1+ VLS 1} (4.27)

1t should be stressed that this equation, in which the difference between f and f is neglected,
is possible only because our procedure of determining f is a minimalization procedure.
If we insert expression (4.27) into (4.21), we obtain our final formula for e,:

elv/eFv - elv - el(vZ)[f:l_*-é(a)[f f] (428)

Practical determination of e, is simplified by the fact that the desired solution of
Eq. (4.26) has the simple analytical form:

F(©) = 1—e PE2y(g[x). (4.29)
From Eq. (4.23), we obtain easily the resulit

o =— [x +3 BPx]. (4.30)

(Notice that the first term coincides with the linear term in expansion (3.4). A similar
coincidence of the quadratic terms would require that f = 3/r). What remains, is to calcu-
late numerically &{>’[f, f] for a few values of B, and to find the value of B for which e,
Eq. (4.28), attains its minimum.

To calculate D, Eq. (2.8), we substitute ¢, for e, Eq. (3.8), &, for E(N, 0), Eq. (4.11),
and using (4.3), (4.28) we obtain

. . . d . R
Diegy, = 1+3 [P+ PN +1 x, = [P +EPIN—-é,. (4.31)
1
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With [6(? + &{>]/N being calculated as function of x,, we compute numerically the deriv-

ative (d/dx,) [ 1/N. Expressing &g, by ¢g,, and x, by x,, we finally obtain D/eg, as func-
tion of x,. Similarly, we have

A A da _. -
Dyfers = 143 [657+8)A+5 %, —— [65+857)/4— 6, (4.32)
2

and may calculate D,/eg, as function of x,.
(d) Results

Results obtained for the energy, égvM/ , calculated according to the procedure de-
scribed in points (a), and (b), are shown in Table II for v = 1, 2, and 4.

Most remarkable is the agreement between &/.4" for v = 1 and the x3-approximation
to (E,/A)/er1> Eq. (3.1), for x, S 1. The fact that the “variational” values of &/# are
slightly smaller than the “~ x3 values indicates that the x3-approximation is not sufficiently
accurate. Actually, our values of &4, v= 1, agree for x, < 1 completely (within the

TABLE 1I

Jastrow method results for total energy (with the BP form of the kinetic energy). Values of (E,/A4")eEy,
calculated in the x3-approximation, Eq. (3.1), are denoted by “~x3”

» x | 8 oW | oy | s ~xd | EOED | gy 13

| 0.6 0.6 0.02 0.00 0.63 0.63 0.03 0.01 0.14
0.8 0.7 0.06 0.00 0.66 0.67 0.07 0.02 0.24
0.95 0.7 0.09 0.01 0.70 0.71 0.10 0.04 0.48
1.27 0.8 0.20 0.05 0.84 0.86 0.23 0.10 0.75
1.59 0.8 0.35 0.14 1.09 1.11 0.41 0.21 1.29
1.75 0.8 0.44 0.24 1.28 1.28 0.54 0.30 1.69
191 0.8 0.54 0.36 1.50 1.49 0.67 0.43 2.02
2.22 0.9 0.74 0.71 2.11 1.97 0.96 0.58 2.49

2 0.76 0.8 0.27 0.09 0.96 0.93 0.33 0.11 1.05
1.01 0.8 0.40 0.21 1.23 1.16 0.53 0.23 1.57
1.26 0.8 0.62 0.42 1.64 1.50 0.68 0.43 2.36
1.39 0.9 0.76 0.55 1.91 1.72 0.72 0.52 2.52
1.51 0.9 0.88 0.76 2.24 1.96 0.86 0.66 2.83
1.76 1.0 1.20 1.31 3.11 2.57 1.09 1.00 3.40
2.02 1.0 154 2.21 4.35 3.38 1.44 1.48 3.82

4 0.4 1.0 0.32 0.06 0.98 0.96 0.19 0.06 0.75
0.6 1.0 0.53 0.18 1.32 1.27 0.34 0.16 1.23
0.8 1.0 0.81 0.39 1.81 1.72 0.48 0.37 1.90
1.0 1.1 1.12 0.80 2.52 2.30 0.71 0.52 2.24
1.1 1.1 1.29 1.09 2.98 2,75 0.84 0.66 2.73
1.2 1.2 1.52 1.41 3.53 3.20 0.93 0.80 2.90
14 1.2 1.94 2.40 494 4,30 1.24 1.20 3.94
1.6 1.2 2.42 3.88 6.89 5.69 1.60 1.72 5.07
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accuracy of Table II) with values of (E,/A4 e, calculated in the x®-approximation of
[22, 23]. The particular accuracy of our Jastrow method for v = 1 should be attributed
to the fact that only odd orbital momentum states appear in the expectation value, &.
To achieve a comparable accuracy for v = 2, 4, one should introduce different correlation
functions for even and odd values of /. But even with our state-independent correlation
functions our results for &/.4" for v = 2, 4, are very close to the “~x3” results for x, < 1
(in this respect, our results for v = 4 are not worse than the FHNC results reported by
Zabolitzky [29)).

We have tested our numerical accuracy by calculating &, v =1, 2, 4 with the BP
and CW form of &®. The results obtained with the two equivalent forms of & agree
within the numerical accuracy of Table II.

Now we would like to answer the question, for which range of x’s is our method of
calculating & reliable. A comparison with the x*-approximation is useless for big values
of x for which this approximation is not expected to work.

The 1Y cluster expansion, applied in our method of calculating &, is essentially an
expansion in the number of / factors. As a smallness parameter { of the expansion,
Iwamoto and Yamada [1] have considered w/(2/4") = pw, where w is the volume within
which the correlation of two particles is strong. A reasonable measure of w is { drh and
by incorporating statistical correlation, one is led to the definition

v

&= QJthng =

J deh(&)gr,(€)- (4.33)

The hope, however, that { is a proper measure of the ratio of successive terms in the
IY cluster expansion is, at least in our prodecure, not fulfilled. Values of { shown in Table I
are much bigger than the ratio £/,

Another reasonable measure of  is { dr(1 —f)? which suggests to consider the Jastrow
wound integral x;, Eq. (4.17), as the smallness parameter. Values of «; in Table I, and
their comparison with values of §®)/&® suggest that x; is a much better indicator of
the convergence of our cluster expansion, than {. In particular, x; = 1 in the same range
of values of x,in which €?)/&? = 1. (At very high values of x both { and x; are of the
same order of magnitude, determined by integration in (4.17) and (4.33) over £ < x(r < ¢)
whose contribution to both { and «; is the same, and does not depend on the shape
of f).

We settle the question of the range of reliability of our results in the following way.
We shall consider our results as completely unreliable in the range x > X in which
36 > 1 (this is about the same range in which x; > 1). Consequently, we shall
restrict our discussion to the range x < X. Obviously, for values of x approaching X our
results are becoming less reliable. According to the results for &¥/&® in Table II, we
have X, == 2, 3, ¥, = 1.7, X, = 1.25 as the upper limits for the applicability of our method
of calculating &, for v =1, 2, and 4 respectively.

With the results obtained for &, and &, we may calculate 4. Eq. (4.13). Expressing
&r; and x, by g, and x,, we obtain A/ep, as function of x, which is shown as curve J in
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Fig. 2. Since at fixed density, X, =: 2.3 corresponds to the value of 2.3/21/3 = 1.8 of x,,
we see that our upper limit for the applicability of our method of calculating A/e, is
determined by X, = 1.7. The dotted part of curve J in Fig. 2 lies in the range of values
of x, beyond this upper limit.

Curve J should be compared with curve C in Fig. 2 (with our state independent
correlation function, we are not able to treat the Serber hard core, curve C(S)). The fact
that curve J lies below curve C should be attributed to the exceptional accuracy of our
“variational” Jastrow results for &, . A similar accuracy in case of v =2 should lower the
value of &,, and shift up curve J. Consequently, an improvement in calculating &, should
only strengthen the inequality 4 > 0. -

In an analogical way, we obtain 4,/eg,, shown as curve J in Fig. 4. Here, our upper
limit for the reliability of our results is X, = 1.28. (There is a difference at high values
of x, between curve J, obtained with a corrected computer code, and the preliminary
results represented as crosses in Fig. 2 of [5] and in Fig. 3 of [6]). Our Jastrow method
results indicate that 4 > 0, and 4, = 0 at x, =~ 1.2-1.3.

Results obtained for the removal energy e;, calculated in the way described in point
(c), are shown in Table III.

TABLE III
Jastrow method results for e; (with the BP form of the kinetic energy). Values of ¢, calculated in the
x3-approximation, Eq. (3.4), are denoted by “~x3”

» x B & ~xd e ;,
!

1 0.60 0.5 0.36 0.35 0.23 0.09
0.80 0.5 0.55 0.53 0.35 0.17
0.95 0.6 0.72 0.68 0.45 0.25
1.27 0.6 1.25 1.16 0.65 0.41
1.59 0.7 2.02 1.67 0.91 0.65
1.91 0.8 3.15 2.32 1.26 1.0
2.22 0.8 4.80 3.17 1.6 1.4

2 0.76 0.8 1.20 1.16 0.46 0.22
1.01 0.8 2.07 1.89 0.69 0.40
1.26 0.9 3.33 2.94 1.0 0.67
1.39 0.9 4.13 3.62 1.1 0.82
1.51 0.9 5.13 4.24 14 1.0
1.76 1.0 1.73 6.10 1.7 14
2.02 1.0 11.35 8.45 23 2.0

Similarly, as in case of &, we consider as the upper limit for applicability of our
method of calculating e, the value X, beyond which &{*/ef? > 1. We have X; = 1.7
(the corresponding value of x, is 1.35), and X, = 1.3 (the corresponding value of x,
is 1.0). To calculate D and D,, we apply Eqs (4.31) and (4.32), in which we use the pre-
viously calculated values of &, and &, . Since our upper limits for the validity of our results
for &, and &, are bigger than X; = 1.7 and X, = 1.3, the latter ones determine the range
of validity of our results obtained for D and D,.
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Our results for D/eg,, and D,/eg, are shown as curves in Fig. 3 and Fig. 5. We see
that D > 0. In case of NM, Fig. 5, we have D, =0 at x, = 1.2-1.3, however this value
of x, is far beyond our limit, X, = 1.0, of applicability of our method of calculating D,.

5. Discussion
(a) Neutron matter (ﬁM)

All our results, shown in Fig. 2 and Fig. 3, as well as the discussion in Section 3(a)
of £,, reveal spin stability of dense NM treated as a nonrelativistic hard core gas. Even
at x, values beyond the limit of applicability of our Jastrow approach we do not see any
tendency towards ferromagnetism. Obviously, our results apply to any hard core fermion
system, €. g., the hard core interaction model has been applied since a long time in the
theory of magnetism of metals (for a review, see [30]).

Our results contradict previous analyses [31-34] (see also [35]) which have suggested
the possibility that hard core NM becomes ferromagnetic at a density, comparable to
neutron star densities. On the other hand, existing calculations (see, e. g., [36]) of magnetic
susceptibility of NM, performed with realistic forces, do not reveal any tendency towards
ferromagnetism (see, €. g., the review article by Baym and Pethick {37}). Consequently,
the opinion has been accepted that pure hard core interaction would lead to ferro-
magnetism, and only the presence of attractive forces makes NM spin stable. Unfortun-
ately, this opinion relies entirely on calculations with realistic n—n forces, and the approx-
imation methods applied in these calculations are not expected to work at high densities.
Furthermore, this opinion rises serious doubts, because the model of pure hard core inter-
action should approximately describe real NM, especially at high densities.

These difficulties are resolved by our results which show spin stability of NM (at
least in a wide range of densities of the liquid phase). It should be stressed that to demon-
strate spin stability of NM, it is sufficient to consider pure hard core interaction. Namely,
the attraction between neutrons increases spin stability (see, e. g., [35]).

Now let us discuss the previous analyses. Morita et al. [34] restricted themselves to
the linear, i. e., x-approximation and predicted a transition to a partially and totally
ferromagnetic state at x, = 1.57 and 1.87, in agreement with the L values of Table 1.
Because of the neglect of terms higher than linear, their result is of no significance.

Rice [31] applied the condition for a ferromagnetic transition in the Landau theory
of normal Fermi liquids [38]. He restricts himself to terms quadratic in x, and concludes
that NM undergoes a ferromagnetic transition for x, > 0.98. If not for an error in his
Eq. (4) he would predict ferromagnetism for x, > x; with x; = x,(g,) = 1.05 in the
quadratic approximation (see Table I). The correct derivation of the expression for x;
from the Landau theory is given in the Appendix B. However, even the corrected result
of Rice is of no significance because of his neglect of the cubic terms in x whose importance
has been stressed in Section 3(a).

Other estimates of x; are more sophisticated and by their complexity are better
protected from demonstration of their inadequacy. In his early work Ehrman [33] applied
a simplified version of Brueckner theory. However, he neglected the exclusion principle
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in his reaction matrix equation, the only source of the quadratic term in (3.10). In conse-
quence, in Ehrman’s expression for energy the term quadratic in x, is missing. Also, the
coefficient 76/45 in his Eq. (20) should be replaced by — 1/9; the positive sign of this coeffic-
ient would correspond to an attractive D-state contribution produced by hard core. Conse-
quently, one cannot attach any significance to his result, x, = 1.674.

Brownell and Callaway [32] have applied Brueckner theory with the reference spectrum
approximation. However, the reference spectrum approximation is known to be inade-
quate for dense neutron matter. Namely, even for realistic potentials with attractive com-
ponent the self-consistent potential energy of the hole states near the Fermi surface is not
as attractive as in nuclear matter, so that the healing parameter y becomes imaginary
[40]. An expansion of the condition for ferromagnetism, considered by Brownell and
Callaway, in powers of x, may be compared with our formulae, and shows the sensitivity
of their result to the value of healing parameter y. The value of y taken by Brownell and
Callaway ad hoc from nuclear matter calculations with realistic forces, leads to a cubic
term in their expression for g,, which is 30 times smaller than the cubic term in our ex-
pression (3.13) (and 20 times smaller than the analogical cubic term in our exact expression
(3.7) for A). Consequently, the meaning of their result, x; = 0.86, is obscure.

The paper of Silverstein [35] is sometimes interpreted [31], [41] as indicating that
hard core neutron matter would become ferromagnetic at sufficiently high density, even.
with attractive Wigner force added. In fact, Silverstein applied first order perturbation
theory to an effective interaction consisting of a purely S state repulsion of zero range,
I5(r); and of an attractive Wigner force, V,(r), and shows that by adjusting / one may
always get a ferromagnetic transition. Since the contribution of the effective repulsion
16 to the spin symmetry energy is proportional to —I, one may always get a negative
value of total g, for any ¥, by taking a sufficiently big value of 7. However, an effec-
tive S state repulsion is not equivalent to the hard core interaction, and the otherwise
correct result of Silverstein is not relevant in the dense hard core Fermi gas problem.
(The proper form of an effective interaction in this problem is the pseudopotential of
Huang and Yang [8] and its application leads to our results.)

In all our considerations, we have treated NM as nonrelativistic, homogeneous gas
of hard spheres. We have shown that within this model, NM is spin stable for x, < X,,
and we have argued that X, = 1.7. Actually, the precise value of X, is probably irrelevant
for the behaviour of real NM. Let us assume that ¢ = 0.4 fm. Then, for x , == 1.7, we have
¢=26fm>3 and Mp = 4.3x10'® g/cm®. At such high density one certainly expects
important relativistic effects, the appearance of other barions and pions, a possible solid-
ification (see; e. g., [42]), not to mention such exotic possibilities as formation of an ab-
normal phase or of quark matter (for a review see, e. 2., [37, 43]). Notice that already at
x;=1(. e, at p=0.5fm3 Mp = 0.9x10'® g/cm?) the average kinetic energy of a
neutron (i. €., €,/N) is equal about 156 MeV (see Table II), i. e. about 179, of its rest
mass.

In conclusion, our method of establishing spin stability of NM, especially the Jastrow
method, is reliable at all densities at which the assumed model of NM is applicable (prob-
ably at Mp < 10%% g/cm?).
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(b) Nuclear matter (NM)

The results shown in Fig. 4, and the discussion of ¢, in Section 3(b), suggest the
occurrence of x-instability of NM at x, = 1 —1.3. Also, the results shown in Fig. 5 support
this suggestion. There are, however, the following difficulties in drawing any definite
conclusions. The x3-approximation suggests the onset of partial k-polarization at x, =
= x4(&,) = 0.96, 1. e., for ¢ = 0.4 fm, at about six times the equilibrium density of NM.
But the discussion in Section 3(b) led us to the conclusion that we should not rely on the
x3-approximation for x, 2 0.8. In the Jastrow method we did not calculate x4(e,) but
only x,(4,) and x,(D,), and we expect that x,(e,) < x4(4,) < k4(D,) (see Fig. 1). And
indeed, the x3-approximation gives x,(4,) = 1.05, and x,(D,) = 1.24. Now, our Jastrow
method gives x4(4,) = 1.3, but at x, = 1.3 we have already &/¢® =~ 1 and the
question arises wheather our cluster expansion of 4, converges at this high value of x,.
A similar convergence problem of our cluster expansion of D, arises already at x, > 1.

As we have mentioned in the preceding point of the present Section, the attractive
part of nuclear forces is expected to increase the x-stability of NM (at equilibrium density
of NM, nuclear forces give a positive contribution to ¢, [44]). Consequently, a possible
k-instability in case of pure hard core interaction may be removed by attractive part of
nuclear forces, or shifted to higher densities where all the new phenomena, mentioned
in the preceding point should be considered.

We are now working on improving our method on investigating the x-stability of dense
NM. It appears particularly important to clarify the possibility of the o7 instability. If
it turns out that NM is o7 unstable for ¢ > p’, then one could interpret it in Landau
theory as instability with respect to excitation of the spin-isospin wave [45]. The unstable
state, developing from normal ground state, is locally spin and isospin polarized and is
spatially inhomogeneous. Thus in this unstable state all the symmetries of the normal
ground state are broken. However, due to this symmetry breaking the expectation value
of the pion field does not vanish and one may consider (after taking account of pion-nucleon
interaction in NM) a stable “abnormal” state of nuclear matter in which spatially in-
homogeneous, locally spin and isospin polarized NM coexists with a pion condensate.
This strongly oversimplified discussion shows the relevance of the possible ot instability
of NM for the very much discussed problem of possible existence of pion condensate in
dense NM [46-48].

APPENDIX A
1. Expressions for &3

We apply Clark’s notation (see, e. g., [26]), and write
g(s)[f] = &+ 8 +8,+ 6y, (A.D)
where the four-body cluster term linear in % is approximated, as suggested in [2], by

Ew = —(17/105)8,. (A2)
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In the case of the BP kinetic energy, we have:

1. »\? .
‘—&(BP) = - (6——‘7?) Jdixzd‘fl3f223f12f1’zf13f1’3§12§13

N
2 i, 2,
x |14 7112113123— — 53— — 11, |, (A.3)
v v v
1 . n -
- & (BP) = &§BP.0)+&(BP, 1) for x = h, hh, (A4)
where
1. v\? S 2 2,
— &BP,0) = | — dé,»,d& 3¥ 1203 3 lislislys— — 155, (A.5)
A 6n°) v v
i v\’ [ . , 2 ,
7 é(BP, 1) = — g;;'z J d&1,dE 5 f12f12015 ;’3 {325l
7 “~ 3 2 ? o >
+1y3ly50 3612615 — M 13153812632 ¢ » (A.6)
1 . I
./—VT &u(BP, 0) = (6;5) J Ag;,dE 37 ol 3hys
2 1, 2,
x |14+ —llisls— — 1, — — B3 |, (A7)
v v v
I . v \? " o ,
iy 5’;;:;(]3})7 1) =~ 173 d512d513f12f12h13h23
A 67
2 , , o~ o 2 , 2 RPN
X 7 [Lialaslio + 120503812813~ o Iiplia— 5 li3113612€13 ¢ > (A.8)
where
(&) = —f) If"(©)+2f'(©)/¢]). (A9)

Here, we use the general notation: primes and double primes denote first and second
derivatives with respect to the argument, subscript ij at a function indicates that the argu-
ment of the function is ¢;; = kg,ryj, and ?jii = &/

In the case of the CW kinetic energy, we have

E(CW) = —&(BP), (A.10)
and for x == h, hh:
E(CW) = &(BP,0) with ¥(&) - f(&)> (A.11)
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The scalar products .Afij .:;ik may be easily expressed by &;j, &y, and &y, e. g., we have:
&85 = (B4 &1 —E33)/2815 445, (A.12)

The integrals over &;, and &;; may be expressed as triple integrals over &,,, &,5,

and &,3:
§12+&rs

jdélzdém = 8n’ _\. d&;¢12 I d&i3éis j d&;385;5. (A.13)
0 0 {$12— %13}
2. Expressions for &
We write
él(vs)[f’f] =% = eyt e temnten (A.14)

where we have suppressed the subscript v, to simplify notation.
In the case of the BP kinetic energy, we have

v \? [ s s
ét(BP) = - (6—n§) fd‘fmdéoz{zfozzfmf(;1f1zf12§01§21

+f122fo117<;1.?02%2&01802}ng(fxz), (A.15)
6 (BP) = 6 (BP,0)+é4(BP,1) for x = h, hhl, hhN, (A.16)
where
. vN (L . o b,
éxBP.0) = ~2( — J déo1déor¥ 010z — I, (A.17)
5 AP 3%
é(BP, 1) =2 6? déo1dSo2 fo1 foiho2z *v“ L2l26016215 (A.18)
é,(BP, 0) = &(67:2) J dgvmd‘foz;?m};ozh:2&%(512), (A.19)
éum(BP, 1) = 2( ) J d€01d§02f01f01h02h12 - 1121175015215 (A.20)
én(BP, 0) = ( ) l dée1d§021/12501;'_ozgrv(§"12)a (A.21)
N 2
éun(BP, 1) = 6-?:_ déo1dés,. fxzf:zhoxhoz — 112112’ (A.22)
where
V(&) = —f©) O+ )8, (A.23)
h(E) = f&*~1. (A.24)

Otherwise the notation is the same as in first part of this Appendix.
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APPENDIX B

Spin instability condition in Landau theory

The condition for a ferromagnetic transition (which is equivalent to condition (2.3))
may be formulated in a simple way in Landau theory of normal Fermi liquids [38)]. The
central quantity in Landau theory is the quasi-particle interaction,

2_2
f(cos 6,0,6") =

M*kmé [F(cos 8) +G(cos H)a - o'], (B.1)

where 0 is the angle between the quasi-particle momenta, ¢ and ¢’ are Pauli matrices,
and M* is a quasi-particle effective mass at the Fermi surface. The effective mass M*
of a quasi-particle is related to dimensionless parameter F,

1

, [[dcost
F, =% 5 F(cos 8) cos 0 (B.2)

-1

by
M*M = 1+1F,. (B.3)
Magnetic susceptibility of a Fermi liquid is determined by dimensionless parameter

1

d cos 0
Gy = j czs G(cos 0). (B.4)

-1
so that the spin symmetry energy of a Fermi liquid

*ke>

3IM*

&y =

(1+Gy). (B.5)

Thus, condition (2.3) for spin instability of unpolarized ground state reads
Gy < —1. (B.6)
The quasi-particle interaction in a hard core Fermi gas has been calculated by Abrikosov

and Khalatnikov [39], who used the quasi-potential method of Huang and Yang [8] and
restricted themselves to quadratic approximation in x,. They obtained

0
cos-  14sin -
105 6.0, 2meh? || 2xf, 1 T
cosb,0,6) = : —=
QMbky, 7 o
2sin- 1—sin-
2 2
O s
in - in —
2nx,h? 2x, ) .- ,
- 1+ —|1———In ¢ 0. (B.7)
QMkg, i3 2 0
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From equations (B.1-B.3) and (B.7) one obtains the following formula for quasi-particle
effective mass at the Fermi surface,
8

MIM* = 1 — —— (7TIn2—1)x2. (B.8)
1572

The parameter G, may be calculated from equations (B.1, B.4, B.7):
M* x, 4x,
Gy = -2— =1+ —3—(1—1112) . (B.9)
¥

Hence, the condition for the spin instability of unpolarized ground state reads, in qua-
dratic approximation in Xx,,

16x32 2
— 1377(1“ 242)— —;x2+1 <. (B.10)

Our formula for G, (and, in consequence, our condition (B.10)) differs from that given
by Rice [31]. This difference results from an error in the calculation of G, in [31]. Our
correct expression (B.9), inserted into (B.5) yields, within the guadratic approximation
in x,, a formula for g,, which is identical with formula (3.10).
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