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The relativistic u-space (state-space of a free particle in the gravitational field) is taken
as a tangent bundle (fibre-space) over the space-time ¥, and investigated as a special Rie-
mannian space Vg with the methods of Ricci-calculus. Anholonomic coordinates are used
to make clear the symmetries of Vs, to define tensors in Vg, to relate them to tensors of V,
and to prove theorems on vector fields and multivector fields in V. Among these theorems
is the relativistic Liouville-theorem in different forms.

1. Statistics of free particles in the gravitational field

Statistical thermodynamics investigates the macroscopic properties of systems which
consist of a great number of subsystems (particles). The basis of the theory is formed by
the laws which describe the behaviour of the subsystems and by methods which permit
the application of the theory of probability. Instead of an exact solution of the equations
of motion for a system of interacting particles, one’s incomplete knowledge of the whole
system is applied to make assumptions about the probability with which a certain solution
for a subsystem will occur [1].

Therefore, statistical thermodynamics for a system of particles is a probability theory
on a manifold of solutions (trajectories) of equations of motion of single particles (sub-
systems), in which the most important interactions may be included. This statement’,
which possibly represents the most fundamental hypothesis of statistical thermodynamics,
should be accepted for the generalization of the usual theory whenever the special equations.
of motion (e.g., Hamiltonian equations of classical mechanics) would be substituted by
others.

Accordingly, for a system of particles, which between their collisions move freely in
the (exterior) gravitational field, one should not try to construct a relativistic statistics

* Address: Sektion Physik, Friedrich-Schiller-Universitit, Max-Wien-Platz 1, DDR-69 Jena.

1 The physical content of this hypothesis is that the macroscopic properties of the system must be
defined by the properties of the subsystems and their interactions. This predicts that the system may be
divided into subsystems which can be characterized by equations of motion including interactions {2].
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which uses canonical equations of motion [9], but the equations of motion?

d*xt i )dx* dx'
zz;?*{k I}EJ}}?=O (.1
should be directly applied. The manifold of solutions of (1.1) is the manifold of all geodes-
ics x* = x*(x%; 6) of the space-time V,. This set of oo” trajectories may be described
uniquely in the manifold Mg with the coordinates (x*) ~ (x*, p*). The tangent vectors of the
geodesics having the components p* = dx*/do figure, firstly, as vectors which mark the
directions of special trajectories. Secondly, they may be taken as 4-momentum of particles,
if p* has time-like or null direction. The degree of freedom m = v —p*p, characterizes
an interior property (rest mass) of the particle. The parameter m remains unessential for
the probability theory on the oo trajectories as long as all particles of the system have
the same rest mass and collisions altering m are excluded (no decay, no fusion of particles).
The eight coordinates (x*) ~ (x*, p¥) of a particle for a fixed value of the parameter ¢
on a time-like or null geodesic may be called the “state” of the particle. This would be
in accordance with the possible interpretation “state of motion + interior property + spa-
tial position + time” of the eight coordinates (x*) ~ (x¥, p) of the particle. Thus, Ms
may be called the manifold of the possible states of a particle or “relativistic state mani-
fold™.
In [3,4] the geometry of tangent bundles (fibre bundles) has been applied for the
construction of a geometry?, including the whole manifold Ms. We accept these ideas
but use the methods of Riemannian geometry and Ricci-calculus [7] which are well known.

2. The 8-dimensional state space

The transformation of the coordinates x* = x*(x*) in ¥, and the linear orthogonal
transformations of the coordinates p* in the local pseudo-Euclidean tangent spaces E,
of V, with the coefficients A% = 6x"'/6x", which follow from the first ones, define the
holonomic “transformations of states”

= xM(5, P =4 X = ;“'()2“) 2.1

in Ms. The corresponding groups may be written as OGx<) = DG(x"HDWL(p*; x").
Tensors in My are quantities which transform like the differentials of coordinates (dx*)
= (dx", dp"). For instance,

~
J

~ A, A A Ox*
& AF (a4 =2, (2.2)
K x ox*
2 Theindices %, 7, ... = 1, ..., 4; i, 9, ... = 1, ..., § number holonomic coordinates; #, 7, ... = 1,..., 8

anholonomic coordinates.

3 The Finslerian geometry (see e.g. [6]), as applied in [5], relates to a submanifold of A, which
is equivalent to the manifold of 007 trajectories in ¥, with a discrete depending on the direction norm of
tangent vectors.
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The transformation of coordinates in ¥V, lead also to the anholonomic transformation
of states

dx* = Afdx*; Dp¥ = AFDp* <« dx* = A¥dx". 23)

According to (2.3) the components of tensors in My transform like the differentials of
coordinates (dx") = (dx*, Dp*) in Mg, which represent the direct sum of the differentials
of coordinates in ¥, and the covariant differentials of p* on V,.

The relation between the holonomic and the anholonomic components of tensors
in Mg is given by the anholonomic transformation of coordinates

d""—-d"'\' d4+m_d41>n m 1i.n
x™ = dx", x = dx +lnpdx 2.4)

and may be written as 1" = Ajt" etc., using the coefficients

v v v m n 7 n m
All = 5u+64+n5ﬂ {l m} pl’ Ay = 6¢_5£+m5v {l n} Pl, (2.5)

where 6 are Kronecker symbols.

Tensors in Mg may be constructed by extensions of tensors in ¥,. Such extended
tensors with respect to anholonomic or holonomic coordinates are represented by the
“horizontal extensions”*

((H)tx) = (tk5 0)’ ((H)t;c\) = (tln 0)9 (26)
x x k m

(®r) = (50, (PF) = (”" - {z m} ¢ ) D
the “vertical extensions”,

(V) = 0,8, (VF) = (0, ), (2.8)

V) =0,1), V)= ({ ; mk} Pt tk), (2.9)
the “direct extensions”, e.g.,

™ = 19, () = (:", f_ {l km} p’t"'), (2.10)

and Sasaki’s extended tensors [3] having the structure®

(O = (&, D, ((S)tv?) = (&, &*,p). (2.11)

4 In [4] called “lift”. Sasaki ([3], 1958) uses only the term “lift of a curve”. According to [7], p. 78,
the “extensions” might also be called “prolongations”.

5 The covariant derivation is indicated by (;), the partial one by (,). The signature of V4(+ ++ —).
Gothic kernels, e.g. ¢, ¢,,¢%, ...,t,p, ®p, u, ..., symbolize vectors. The calculus of basis vectors is
given e.g. in [10], p. 53.
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The field of basis vectors ¢,, or, accordingly, e”, of ¥, with the property g,, = ¢, - ¢,
after direct extension induces a field

() = (em en)y,  (ep) = (em+ {, km} P'e e,..) (2.12)

of eight basis vectors ¢,, which defines a metric field

» i J k l k [
(gw) = g , Agas) =\ ¢ (2.13)

0 k)
Zxm ! n p gnm

in Ms. So the state manifold My underlies a metrization to a Riemannian space Vs, which
in accordance with [8] shall be called “relativistic state space”. The choice of the metric of
Vs as a tangent bundle | E,(x) is unambiguous. Any metric field in M which has a phy-

xeVa
sical sense must be defined by the metric of ¥, and the Euclidean metric of the local E, in
all admissible systems of coordinates (see (2.1)) in My The metrical fundamental form

dS? = g, dx*dx" = grdxtdx’ (2.14)

of Vs splits into a horizontal and a vertical term of a sum if taken in non-holonomic
coordinates. For that reason, it may be spoken of that locally an anholonomic horizon-
tal subspace of Vj is stretched up by ¢, and an anholonomic vertical subspace of Vy is
spanned by ¢4

3. Horizontal and vertical flows

We regard the tangent vectors

- dx“ ax™ Dp™
t = do = ”‘}“g e, + -d—a' Chim 3.1
of the curves x# = xf‘(xg; &) in V3 for the purpose of the interpretation of these curves of
Vs in the basic space V. A curve in Vg shall be called a “horizontal (vertical) curve”, if
in each of its points lies in the anholonomic horizontal, or, respectively, vertical, subspace.
A point P in Vs having the coordinates (x#) ~ (x™, p™) corresponds in V, to a point
P ~ (x™ and a vector p = p"e,, at that point. This means that:
A. A horizontal curve x# = x#(xi; &) corresponds in ¥ to a curve x™ = x"(x5; ¢) and
a sequence of parallelly transported vectors p(x™) at the points of this curve.
B. A vertical curve x* = xl’;(xg; &) corresponds to a bundle of ordered vectors p(xg) = p"e,,
at the point P ~ (x3) in V.
Arbitrary curves in V3 may be defined inversely to the given interpretation by sequen-
ces of points with vectors attached to them or points with attached successions of vectors
in V,. The geodesics x™ = x"(xy; o) in ¥,, defined by

—=p —=0 (32)
(13
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together with their tangent vectors, correspond to horizontal curves in ¥y, which we will
call “horizontal flow”®, The radius vectors of points on straight lines through the points
of contact (origin of coordinates) of E,, tangent to V,, correspond to vertical curves in
Vs, which we will call ““vertical flow”.

Tangent vector fields of the horizontal and the vertical flows are

(®p) =50 and (VP = (0, p). (3:3)

It is possible to include the condition of time-like or null orientation in the definition of
the flows.

- o n H

A remark should be added on the parametrization of the curves x* = xH#(x4; o)

of the horizontal and the curves x# = xa(x a) of the vertical flow. The parameters a

of the basic geodesics x™ = x"(x}; o) in V, may be taken as parameters a = ¢. For o'
v v

we propose the use of parameters o = o(m), depending on the length m = (—p “p)t/?
of the straight lines p* = p*(p%; m) through the origin of coordinates in E, which are the
preimage of the vertical flow (cp. footnote 10 to equations (4.20)).

The distinction of the definitions of the horizontal and the vertical low reminds the
distinction of the free motion of the particles and their interactions in the kinetic theory.
The number of geodesics with different directions through each of the co* points of ¥,
is co3, Hence, the manifold of all possible free motions of particles corresponding to the
solutions of (1.1) is made up of o7 curves and coincides with the trajectories of the hori-
zontal flow. The number of curves p* = p*(p¥; 1) with different directions through each

Fig. 1

of the co* points of the co* different tangent E, to ¥V, is 0> (cp. Fig. 1). So we have a mani-
fold of oo!! curves, which may be taken as characteristic lines of possible transitions of
particle states by interactions which are regarded as instantaneous. For the purpose of
illustration it might be supposed that the jump-like change of momentum at collision
occurs along straight lines in E, with the directions p(x§)—po(xb) = p(x%: p*, pk). Since
each E, is flat the vectors p(x}; p*, pb) with variable pr may be taken as free and be trans-
ported to the points of contact p* = 0 of the E, with V,. In this way the c0* bundles of

6 In [3] — “geodesic flow”. Indeed, these curves turn out to be geodesics in Vs (cp. (4.19).
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straight lines in E, may be represented essentially by one bundle of straight lines fixed
to the origin of coordinates of E,. So a manifold of co” tangent straight lines to ¥, remains
which coincides with the vertical flow.

4. Theorems on vector fields in the state space

In discussing fields of vectors or tensors in a space one has to predict that uniquely
a vector or a tensor is given in each point of the space. This must be taken into account
far the interconnection between tensor fields in ¥, and in Vj since one point x*in ¥V,
is connected with co0* points in Vs. Above (cp. (2.6)+(2.10)) we have defined a tensor at
a point P ~ (x*, p*) in ¥, as the extension of a tensor at a point P ~ (x*) in V,. Taking
for each point P ~ (x*, p*) in V3 (p" variable, x* fixed) the same extension of the tensor
in P ~ (x"), we may construct a tensor field in Vg as an extension of a tensor field in V.

The field g,,v(x’?) is an example of a direct extension of a field into V5 (cp. (2.12), (2.13)).
The tensor g,,v(x" ,p") remains constant for variable p*; the partial derivative Buv.atm
is zero.

Let us regard other extensions of fields. It is well known, that for the interpretation
of the general theory of relativity in terms of classical physics, 3-frames of reference must
be introduced which may be given by 3-dimensional arrangements of bodies with the
world-lines x* = x*(x%; 7) and the 4-velocities 4*(r). Analogously, for setting up the rela-
tions between the relativistic state space and the classical phase space we must introduce
congruences with the tangent vectors’

((H)ux) - (uk’ 0)’ ((V)ux) - (0, uk). (41)

H H
The parameters t of the curves with the tangent field ™u*(z) in Vs may be identi-
H
fied with the parameters T = 7 (eigen-time) of the world lines x* = x*(x%; 1) in V. The

curves in ¥ with the tangent vector field ‘V’u"(:) correspond to congruences of parallel
straight lines p* = p*(ph; ¢) in the E, having the direction of the vectors u* at the points
of contact,.and may be interpreted, according to (3.B), as successions of radius-
-vectors in the E, showing to the points of these parallel straight lines. The param-

v v v
eter T may be chosen as a function T = t(¢) of the distance & = —p*u, between the
origin of coordinates of E, and the 3-planes of constant relative energy which are orthog-
onal to the parallel straight lines.

In general, a tensor field in V5 depends on all coordinates xa, and it corresponds to
a manifold of tensors in each point P ~ (x*) of ¥, (cp. (3.A), (3.B)). The components p*
of the tangent vectors in P may be taken as parameters for this manifold of tensors.®
The fields of the tangent vectors of the horizontal and of the vertical flow in V5 are not
extensions of fields in ¥,. At a point P ~ (x*) in ¥, such vectors correspond to ®p or

7 Normalization u*uy = —1.
8 In the case of spherical tangent bundles ({3], 1962) or of the Finslerian geometry [5], the tensors
would depend on the direction of the p* only.
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to Vp, which, after displacement to the origin of the local E,, point to each of the points
of E,, or to the points of E, lying in the light-cone, if the convention after (3.3) should
be applied.

The definition of the covariant derivative of geometrical objects in Vy will be illustra-
ted by the example of the covariant derivative of a vector B, respectively, to non-holo-
nomic or to holonomic coordinates:

V= VLS, V=g {;C vﬁ} V=, (4.2)
The partial derivative in non-holonomic coordinates is defined by (,) = A,‘E(_;;). The
relation between the coefficients of the affine connection I'y, = ¢, , - ¢ and the Chris-

-~

toffel symbols { fev ﬂ} =ern- ¢ of the metric gns 1s (cp. [7,10])
RS AR T
Iy, = A;ALAS {’.C ﬁ} A,CA,,A&E‘. 4.3)

The coefficients I'y, may be calculated also using the Christoffel symbols {KV“} of the

anholonomic components g,, of the metrical tensor by

v v oV ay Y3
I = {K u} —[878xe 26"+ 87 802" — Q"] (4.4)

where the objects of anholonomity are

Q. =y = Avx v “.5)

[x,n]

The computation of the components { ;evﬁ} yields lengthy expressions, in which the cur-

vature tensor RY,,,, the Christoffel symbols and the components p* of the tangent

k
Im
vectors of V, appear. For the results see Sasaki ([3], 1958) or [11]. The transformation of
Sasaki’s formulae using (4.3) or a direct computation using (4.4) leads to:

1
no__ LI | n s n 1 n 5 di--iwx_}~ n 5
ka'“{k ’"}, F4+km~7Rmksps rk4+m_7kasp9 ka - ZRSMRP’

’1 n n n
Tas™ = {k m} s Tdin =0, Tyliim=0, Tygim=0. (4.6)

The only non-vanishing components of the object of anholonomity are

h 4+n _ 1 n
{’» m} ’ Qk4+m - 2 {k m} M (47)

The advantage of the application of anholonomic coordinates in ¥, appears in the
simplicity of the results (4.6), (4.7) and in the simplification of the proof of theorems on
vector fields in the state space, which will be given below.

4+n __ 1 pn 5 4+n __
ka - 7 R smkD > Q4+km =

(N
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Let us regard an arbitrary differentiable tensor field (t*) = (¢", t**") in V,. The com-
ponents of its covariant derivative are

tn,m+ {k n'n} tk+% an"spst4+k t",4+m+_;_ nkm’pstk
(7)) = | o e e . (4.8)

If the horizontal and the vertical extensions (‘P¢*) = (¢*,0) and (V%) = (0, r*) of the
field t*(x') in ¥, are taken, we obtain

: n k n :
@ ) = t""' .............. %R"""pst) (V) = %R"‘"’pstko 4.9)
H2 % Rnsmkpstk 0 ) 4 : HE t”;m 0 ° *

Here the symbol (;m) has the meaning usually attributed to it in V.
With (4.8) it follows for the derivatives of the tangent fields of the horizontal and
the vertical flow® that

0 O+ 4 RsD" D" 0:0
vy om T2 kmsl E WMy y (i) 4.10
P (% Remep’p* 0 ) S (0 51‘.,) @19

Using (4.9), (4.10) the following theorems (cp. [3], 1958, for A, C, D, E) may be shown:
A. The horizontal extension "t of a field tin ¥, is geodesic (respectively incompres-
sible, a gradient, normal to a hypersurface) if and only if t has the same property in V,, i.e.,

=0 <« @ Wy - g 4.11)
=0 < My =0, (4.12)
fmmy =0 < Pt =0, (4.13)
ity = 0 < @, Dr . = 0. (4.14)

B. The vertical extension V't of a field t in V, is geodesic and incompressible
in Vs, i.e.,

W Ve =0, D¢, =0; (4.15)

it is a gradient, if the underlying field t in ¥, is covariantly constant, and it is hypersurface
orthogonal, if the field t in V, is recurrent (with k, arbitrary), i.e.,

tun =0 o V=0, (4.16)

tusn = tuky < V0Vt = 0. 4.17)

°® Here the independence of coordinates in Vs is applied, which means that 9x*[ox* = 6‘5 or
ox*[oxt = 6;“ .
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C. The Sasaki extensions (2.11) of an incompressible field t in ¥V, is incompressible
in Vs, le.

®p =215, = 0. (4.18)
D. The tangent vector field p of the horizontal flow is geodesic and incompressible,
ie.,

®p= Ppt =0, @p =0 (4.19)

E. The tangent vector field ¥’p of the vertical flow is geodesic and a gradient field, i.e.

Ve (Vpa _ (V)

p P Vg = 0L (4.20)

p

F. The Lie derivatives'2 of the fields ®p, Vp, ™y, Yy defined by (3.3), (4.1) with
respect to each other have the results given in Table 1. There, the following notations
are applied:

- . vy - . ,
Mg =y, 0, Yu, = (0, 1) 4.21)
TABLE 1
£ 4 & &z
H)p vip (H)y (Viy
(H)px 0 (H)pe » — () _ (V)& H)x (V)%
(H)Px (v)ﬁx * (")Px' . ‘g,x—(v)"x (“)“x
(V)px ~H)px 0 0 V% &
(V)Px 0 Z(V)Px * 0 —€x
(Hy,x (H)x 4 (V),x 0 0 (V)
(Hy,, (Hy 4 (V) 0 My, 0
(V)yx —(H)x  (V)x e Vg% 0
Vg, — ) L (V)] My, * Mg, 4+ Vg, 0
. N - - v v
10 Using Vp, (VIp¥ = —m? and the directional derivative Djdo = (;u) Vp* we find the rela-
- v v -~ -
tion ¢ = const * e™ between the parameter ¢ and the function m(xx) of the particle state.
' With (4.10) we obtain (Vp, = —mm , and gmn = —(m?/2).4+ma4+n (cp. the Finslerian geom-
etry {6]).

!2 The definition of the Lie derivative of multivector fields s¥x-*e» = slk15%2. . g%l and

Skyxa.x, With respect to the field £* (cp. [7] p. 106) may be written in the form ZLs*t¥2-*r
t

= ;ﬂsxmz...x,m__p’[x,,];ps]xxxz...xp-x}n’ L ixznp = PSiixz.sipn + P [kpSx1x2.xp - 1] DEIDG applicable
for anholonomic components as well. !
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extensions of the 4-acceleration field u, = AT W

ey = —(Ugmp’, u,) (4.22)
gradient in V5 of the relative energy & = —™Wp*™y, = —Vp*Vy of a particle with
e = —pu) in Va;

®re = ResenpPu", 0), V1 = (0, Reginp"p'u”) (4.23)
Mk = (Rigis'u™p’, 0), (4.24)
Pl = (w0, 0, Yl = (0, P (4.25)
fields in V.

Instead of the results in Table I indicated by (*), vanishing Lie derivatives may be
produced after changing the norm either of the derivated field or of the field with respect
to which the derivative is taken by factors depending on m, e.g.,

g ®p =0, £ @pm)y=0, £ Vp*=0. (4.26)
HMp/m Vip m- (Vy
TABLE 1T
¥ R ¥ £
)y Vip )y My
pxi. 0 Pkl * __((H)l[x+(V)r[x)(V)p}.] qx}.+vml_(V(l[x(V)pi.] *
Pxi 0 3pes * | ra—e,Mpa vea—Mppee 5y
g Wk 4 (H)[x(V)}3] 0 HpIR(VIZA_ (Bl | xd_(V]Ie(V), 2]
4+ le)(V),2)
dxa rxat Mp Wiy 2gcn * | ®ppBhegy+ iz Uy
—@p) * —&, Wy
prA le_qxl+(V)p[x(V)ll] —rKA (V)p[K(V);‘).] 0
Txa VMpp(Vi 3 —Hr ) 3rca * | Opp @k + Vi) | —euMuy
uk* ((H)I[x+(V)r[x)(V)uﬂ.] ; —uRh e | DI(V);4] — (V) [e(V) 4]
4 (), [K(V))A]
U, 6 My wer % | i Vuy 0
+ Dy (V- (D + I @+ Mg
okH (D4 (V) Ix)(VIpA1 0 0 WA ((VIpRL
._wx)' * —
Uxa My Vpay—rea 2065 * | Wi Vpy — M ye
W ((D]lx 4 (V)plxy(HpA) .y — () e((H)al g (VIpaly | _ (Ve 2
— () [x(V) 4]
Wk Uxa=—dxa+t (H)l[x(H)P;.] Wia  * (H)l}[x(ﬂ)ﬂz] - (H)M[xs,z] 0
Uy



873

This is proved easily using V’p, = —mm_, and the definitions’"'2. In particular, a conse-
quence of this is

F. The fields ®p*/m, Vp*,  “Wy* mOy~,

(82} (H)

H 2 2
Mp Im?, peim?, Uy, u,fm

and the multivector fields being defined as alternating products of them (cp. (4.27),
(4.28)) are absolutely invariant with respect to the vertical flow field p* (i.e., have
vanishing % ).

(V)p
G. The Lie derivatives of the bivector fields
H V) _ H) (¥) _. (V) v)
Pra = ¢ )P(x( Pip Gua = P Hap Tka T P Uip
_ (H) v . () v .. (H),, (H)
Uy = u[x( )u).), Uy = “[x( )PA], Wea = 5 U Pa (4.27)

with respect to the fields “p, Vp, Uy, Vy have the resuits given in Table II. There,
in the same way as above, instead of (#), results may be obtained which vanish (cp. F')

or in which the underlined terms cancel, e.g., & v = —mMVa<Vpi
m. (Vg
TABLE III
F
(H)p
pulx p[xl(V)lu]___vxi.u
Pxin ‘ PV —r
grAn — wlsAV) ) gled((H)pul 4 (V) uly
Axip “x).u_‘ﬂxl(ﬂ)ly] + W[x).((H)"u] - (v)lp])
ucin — g~ ra_ IR AY) U] _ p (8 A((HD 1) 4 (V) k1)
Uxan U[“((H) ruy= Yy —r [Kl(H)Iul
oy pIEADyal ¢ (V)puly
Uxip I Pxi.u+P[x).(H)ly]
H. The Lie derivatives of the trivector fields
— (H),, (V), (V) _ (H H v
plc).;x - p{x p). u,u]’ Qx).,u - ( )p[x( )ul( )up]’
—_ #H),, V), (V) _ (H H v
ux/lp - u[k U, Pu]a vx).u - ¢ )u[x( )p).( )pu] (428)

with respect to the horizontal flow field "¥'p* have the results given in Table ITI.13

13 Other Lie derivatives of these trivector fields may be computed with the results in Tables I, 11 apply-
ing the rule of Leibniz for products.
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1. Divergences of multivectors defined by (4.27), (4.28) are'4

A H A H Vv A v
px A = %( )Px, qx A = %( )ux__%( )lxy r* A = '—%( )ux’ (429)
u“;;. _ __% (V)ax__;_ ul;l(V)ux’ UK;-;). - 2(H)ux__% ul;l(V)px, (4.30)
A 1 i 4 A 1 (V)i (V) A
Py = St -4 gt = VI VA, (4.31)
ux).u;u — unl+% (V)l; {x (V)pll_%_ ul;l',x).. (4.32)

5. Concluding remarks

Among the above theorems the incompressibility (4.19) of the horizontal flow and
the first equation in (4.29) according to [8] and [4] may be regarded as relativistic generaliza-
tions of the Liouville theorem of classical statistical mechanics. The results for the Lie-
-derivatives of fields with respect to the horizontal flow field given in Tables I, II express
equivalent generalizations of this classical theorem (cp. [11]).

Here as internal property of the particles their rest mass only has been taken into
account. Similar theorems as the above are of importance for the description of the motion
and the statistical mechanics of particles with internal degrees of freedom. The proof
of the theorems given above is a first step toward dealing with such problems.

The author is much obliged to Dr. D. Kramer for helpful discussions.
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