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ABSORPTIVE EFFECTS IN NUCLEON DIFFRACTION
DISSOCIATION
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A Deck-type model with absorptive corrections is applied to diffraction dissociation
process Np — (N7©) p. The absorption was strengthened by an introduction of a multiplica-
tive factor A &~ 1.3, which is associated with inelastic intermediate states. Most of the experi-
mental distribution are satisfactorily described by the model.

1. Introduction

The Fermilab [1] and the CERN-ISR [2] groups have presented interesting new data
on the inelastic diffractive process, Np — (N=n)p. For small values of the mass M, of the
diffractively excited system, the Fermilab and the ISR data show a dip in the differential
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Fig. 1. Definition of the decay angles in the Gottfried-Jackson frame. The variables are indicated in
Fig. 2

cross section do/dt,dM att; >~ —0.2(GeV/c)?. This structure has also been studied in
a more differential way as a function of the (N7) system decay angle in the Gottfried-
~Jackson frame (Fig. 1) and found to have several interesting features. A similar structure
is observed in the elastic pp scattering for ¢~ —1.4(GeV/c)2.

It is well known that the absorption effects play an important role in understanding
the structure in the do/dr distributions in elastic scattering and therefore it is interesting
to study the role of absorption in the inelastic diffraction. One of the most popular models
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for diffraction dissociation is the double-peripheral model of the Deck type. A natural
attempt to explain the observed structure of the ¢,-distribution is to introduce the absorp-
tion (double-scattering) corrections into that model [3, 4]. So far the analysis of the reac-
tions Np — (N=)p in the framework of the Deck model with absorption has been restricted
to study of the most important n-exchange graph and absorptive correction to it. However,
a more precise analysis of the do/dt; and, in particular, its dependence on the (Nn) system
decay angle requires taking into account the nucleon exchange and direct production
graphs and their absorptive corrections.

In this paper I present a detailed investigation of absorption to a Deck-type model of
diffraction dissociation. The Deck amplitudes for three single-scattering and four double-
-scattering graphs are discussed in Section 2. Detailed comparison with data is presented
in Section 3.

2. The Deck model

The Good-Walker picture of the diffraction dissociation applied to the production
of the three-body final states in the diffraction dissociation process Np — (Nn)p leads
to the three single-scattering graphs shown in Fig. 2 and to four double-scattering (absorp-
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Fig. 2. The three single-scattering graphs: a) pion exchange, b) nucleon exchange and ¢) direct production

tive corrections) graphs of Fig. 3. In the Good-Walker picture only absorptive corrections
to the n- and N-exchange amplitudes are important [3, 5. Berger and Pirild [3] have
shown that only the final state absorption shown in Fig. 3 is important.

Covariant matrix elements for the three single-scattering graphs are the following
(the variables are defined in Fig. 2) [6]:

o, i4/2 gysFty)
M, = a(py) = _juz % Mogls1, 1)u(p2), (la)

2

My = l_l(P’z) -

i 2 g(Qhy,+m)Fy(usy)

Y 2 2 ki VsMuo(512, t)u(p2), (ib)
U,—m

i \/2 gys(d57,+m)Fp(s,)

IWD = ﬁ(p’Z) s nlz
5=

A/[Np(sa tl)“(pZ)’ (IC)

where F,, Fy and Fy, are the form factors incorporating vertex and propagator corrections,
M,, and My, are invariant amplitudes for the elastic process np — np and Np — Np,
respectively, and g is the Nz coupling constant, g2/4n = 14.5.

The form factors F, can be taken from the one-pion-exchange model [7] applied to
the low-energy (s~ 1.3+3 GeV?) pion production reactions with nucleons and pions
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incident on nucleons. We have:
Fi(t;) = e™b=lr27#, (2a)
where b, = (2+2.5) (GeV/c)2, and u is the pion mass. Because the mass of the produced

(Nn) system is small, the form factor F, for the high energy diffraction dissociation can
be taken as in Eq. (2a). For Fy and F,, I take:

Fr(up) = e Nl (2b)
Fp(sy) = el (20)
where by and by, are free parameters.
a) b)
! Rl i
: Rt {
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Fig. 3. The absorptive correction graphs to: a) m-exchange, b) N-exchange. All wavy lines denote elastic
scattering

Assuming that the off mass-shell corrections are smalk,. the elastic scattering ampli-
tudes can be written as follows:

Mo (54, 1) = is 0,,e"", (3a)

+ P
Myg(s. 1) = Als, 0+ B(s, ) 1 lzy"

(3b)

In Egs. (3) the spin of the target is neglected because in the diffractive limit (large s, and
small ¢,) the scattering angle of the proton in the (nN) rest frame is small. The amplitude
My, can be simplified assuming the #-channel helicity conservation. Then

B(s,t) =0 C))
and

A(s, 1) = i — ape™. (5)
2m P

I consider in detail only this case. Assuming the s-channel helicity conservation one obtains
similar final results. »

In the absorptive graphs of Fig. 3 we assume the intermediate state particles (N, p)
and (m, p) to be on the mass shell. Detailed arguments for the absorbed pion exchange
amplitude are presented in Ref. [3]. For the absorbed N-exchange amplitude the argu-
ments and calculation are similar. The absorptive amplitude for the two graphs in Fig.
3a is

Ay = J(Z 7 3 Anp(S125 13)AL(s, 14, 15, 57, s2)2n5(py* — m?)2rd(py* —m?), (6)
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where Ay, = is;,0n,¢"*" is the elastic Np scattering amplitude and

tl
= GTe (M) = (2g Nt s
—u

is the m-exchange amplitude. Integrating Eq. (6) and consistently dropping correction
terms of order (M/y /s) we obtain

(t2 )UNp bzt =2
M = — b +b,)V*
abs SnFﬂ(tz)\/_,z exp b +b2 ~(by+b3)
2 \/ 1;' 2
dUTo(2(b, +bz)UIVD T exp (— U%(b, +b3)—b,|ty— ). @)

0
The spin factor of the M}, has been taken to be the same as in the amplitude M,. In Eq.

- . b -
(7), the function [, is the modified Bessel function, V = p,r+ -I;—ﬁ;—p'n and
1 2

P U?-m?(1 —|x,])?/|x2|, where x, = p3/pacy In the center-of-mass frame.
X2

For the two graphs in Fig. 3b the absorptive amplitude is

Afbs = f(2 ) Arplss 13)ANS, 17, U, 819, ’2)27!5(17”2—mz)?_m)(p“z—pz), (8)

where 4,, = isla,,peb"3 is the elastic mp scattering amplitude and

\/#2("1 —4mH)—(m? )P —uy— 1+ 1)) (uh~m?)

Ay = GTr (M) = 2 -
-

X OS¢ NI TR
is the N-exchange amplitude. After integrating to remove the two delta functions, dropping
correction terms of order (M/,/s), we obtain

~

i - ’ ' I3 ’
A= j B A1, 13)ANG, o U, 530 13) ©)

1

withty = =g}, 1} = t, —(@3+24r - Pi1), 4y = u,— (@5 =241 - PaD/IXsl, S12% $4a, th =1,
X3 = p31/Pacm- R R

The vectors pit and p3; are the transverse components of the momenta of final-state
particles p and =, respectively; p3, is the center-of-mass longitudinal component of pj.
Because x, is small, the spin factor in Eq. (9) may be approximately written as

Pty —dm?) — (i —uy =+ 1) (W —m?) & Pty —Am?) —(mP - pt —uy—t,+1,)
x(uy—m?) = Y. 10)
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Inserting Eq. (10) into Eq. (9), we obtain

) bit, s
MN(UZ"“?n )O-np CXpl{ — l’) +b ‘-(b1+b2)l/
1 2

MY, =

abs

$nFN(uy) ¥ (1, —AmP) —(m® + 1P —uy— t,+ 1) (uy — m?)
x J AU (2(b+b,)U|V)

0

. P 2| H 2
¢ ba|uy’ —m2| ~(by +b2)U (11)

uy—m?
with u; = —-U2/1x3§+mz(l-§x3i)+pz(l—1[1x3l), V= Par+ 7 Pir

3. Comparison with data

The model is compared with the data on the neutron dissociation reaction
[{]np — (pr~)p for the incident neutron momenta between 50 GeV/c and 300 GeV/c,
with mean value of ~ 200 GeV/c. Our calculation has been performed for the Pp,p
= 200 GeV/c. The parameters b, = 4 GeV-2, b, = 5 GeV-2, g,y = 24mb, oy, = 38mb
are taken directly from the elastic and total cross section data. For the formfactor param-
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Fig. 4. Distributions in #; for M < 1.35 GeV. The solid theoretical curves are computed for Mror = M,
+M7, and b. =2GeV-2. Dashed lines show unabsorbed model (Mrot = My+Mn+Mp) for
b, = 2GeV~2, by = bp = 1GeV-? and are multiplied by 0.33 in order to make the integrated cross

section agree with data
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eter b, the value b, = 2 GeV~? has been taken -(see formula (2a) and related discussion).
The parameters by and bp have been adjusted to fit the data. The data are reproduced
adequately with by = 1 GeV~2 and by~ 1.5 GeV-2.

The basic observation about the amplitudes of Section 2 is that in the total cross
section only the m-exchange term, | M,|? is important and the two diagrams: N-exchange
diagram and the direct production, tend to cancel, |My+ Mp| = 0, M, - (Myx+ Mp) ~ 0.
However, the sum My-+ Mp has an important influence on the decay angular distri-
butions of the (N) system, particularly for cos @ ~ +1. Forcos 0 ~ —1 and cos 0 =~ +1
N-exchange and direct production are important respectively (Fig. 8). The ¢, dependence

L
30 4
20 ——*— .
~
o unabsorbed
=
[
e
L .
10
0 !

-1 0 1
cos 8

Fig. 7. Logarithmic slope b of the momentum transfer distribution as a function of cos # for unabsorbed
and absorbed Deck model

of the m-exchange contribution and the absorptive correction to the m-exchange graph
Myor = M+ My, is compared with data in Fig. 4. We observe that this simplified version
of the model is totally inadequate to reproduce the experimental data.

As the next step we compare the data with calculations which include all the contri-
butions from Fig. 2 and Fig. 3 described with formulae Myor = M,+ My+ Mp+ M7,
+ M. Our results are represented by the dashed curves in Fig. 5. The agreement with
data, although better than in Fig. 4, is still unsatisfactory.

Several analysis of the two-body reactions have shown that the absorptive effect is
stronger than it follows from the elastic intermediate states [8]. The inelastic intermediate
states are usually taken into account phenomenologically by the multiplicative factor
A (4 > 1). In this case the total amplitude for the considered reaction is

Myor = Mn+MN+MD+’1nM:bs+)'NM?bS' (12)
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The results of the calculation using (12) and for two sets of values for parameters A
(b= In =13 and i, = 1.4, Ay = 1.2) are shown in Fig. 5 and Fig. 6. The agreement with
data becomes quite satisfactory for the case 4, = 1.4, Ay = 1.2 (particularly for small M).
The absolute normalizations in Figs. 4-6 are as given by Egs. (1-12). In Fig. 7 I compare
my calculated slopes of the 7, distribution as a function of cos § for 4, = 1.4 and Ay = 1.2.

We conclude this section with the observation that within the absorbed Deck model
there exists the following simple explanation of the dependence on cos 0 of the structure
in the #, distribution. For cos 6 > 0.3 the direct production graph, which has not any
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™M el
0
R 0 1
cos 8

Fig. 8. Distribution in cos 8, showing the cancellation of My and Mp. The model is calculated for
M < 1.35GeV, 0.02 < —t, < 1 GeV?, b, = 2GeV~2, by = 1 GeV~2? and bp = 1.3 GeV-2

absorptive correction, is important (Fig. 8) and the structure in do/dt; vanishes. If cos 8
< 0.3 the n- and N-exchange graphs and their absorptive corrections are dominant. In
this region of the phase space the structure in do/dt, exists for small M. Very clear structure
in ¢, distributions at small value |z, is observed for small M and cos 8 (—0.6 < cos 0 < 0.3)
where the logarithmic slope b is the greatest.

4. Conclusions

The absorptive Deck model describes satisfactorily the inelastic diffractive process
Np — (Nn)p in the whole region of the phase space. Two important facts are the following:

a) inclusion of baryon exchange and direct production contributions (as follows
from the Good-Walker approach) is crucial for complete agreement with data,

b) theoretical results are very sensitive to strength of the absorptive corrections.
The data can be correctly described by a model with ““strong” absorption with a pheno-
menological factor A > | which accounts for the contribution of the inelastic states to
absorptive effects. We find 4~ 1.3.
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From experience with binary reactions it is known that A~ 2 [8]. However, if the
Regge phases and all spin effects are included in the absorbed Deck model the effect of
absorption becomes smaller and the necessary inelastic factor stronger.

With normalization do/dt;, in the total region of phase space it follows, that b,
= 2GeV-2 This value of b, is consistent with the one-pion-exchange approximation
(Eq. (2a)) and two-dimensional cos 6 — ¢ distribution in the unabsorbed Deck model [3].

I would like to thank Professors S. Pokorski and M. Swigcki-and Dr Z. Ajduk for
helpful discussions.
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