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We present calculations of deep inelastic electromagnetic and weak structure functions,
both spin-averaged and spin-dependent, in the quark parton model. We use a framework
of the parton model with arbitrary transverse momenta of nucleon constituents. The already
known results are also included, in order to have a comprehensive review of the whole subject.
The cross sections for neutrine induced scattering on polarized targets are also discussed.

1. Introduction

Deep inelastic lepton-nucleon scattering gives us important information about the
internal structure of a target nucleon. This knowledge is contained in structure functions
which may be extracted from measured cross sections. Bjorken hypothesis [1] that these
functions scale (i.e. depend on one dimensionless variable only) was confirmed in many
experiments, apart from rather small scaling violations (however, in this paper we shall
ignore them). The structure functions were studied in different frameworks, e.g. of the
quark parton model [2, 3] and the MIT bag model [4]. The light-cone analysis' [5, 6, 7]
and the double spectral viewpoint [8, 9] were also used in these investigations (we have
just mentioned a few of the methods and authors). Such different techniques give in many
cases the same results, e.g. scaling, several relations among structure functions and certain
sum rules are common features of all approaches.

We choose the quark parton model (QPM, for short) with arbitrary transverse mo-
menta of nucleon constituents as a framework. We concentrate upon the structure functions
measured in a scattering of high-energetic (in the laboratory frame) neutrinos on polarized
nucleons. Although it is very difficult to build up the polarized target for neutrino projec-
tile, we hope that in not very far future this will be possible, and one will be able to com-
pare predictions given here with the experimental data. In this paper we give also formulae
for other structure functions, both in spin-averaged and spin-dependent case. Those expres-

* Present address: Instytut Fizyki Teoretycznej UW, Hoza 69, 00-681 Warszawa, Poland.
f For a review see H. Fritzsch and M. Gell-Mann [5}.

(923)



924

sions were already given in the framework of ordinary QPM (with neglect of the transverse
momentum of partons) [2, 3, 10] and in our framework for spin-dependent electromagnetic
structure functions {11].

We begin our discussion by first writing a form of the hadronic tensor and defining
the structure functions with their scaling forms (Section 2). The consideration of helicity
amplitudes for forward virtual photon (or intermediate vector boson W)-nucleon scatter-
ing follows (Section 3). Then, we derive the expressions for the structure functions in the
QPM (Section 4) and give relations among them (Section 5). Finally, we present the cross
sections for vN scattering (Section 6) and a summary of the whole work, which includes
a comparison with other papers (Section 7). The Appendix contains less important formu-
lae, as well as a review of the sum rules (six new ones are presented) for deep inelastic
structure functions.

2. The hadronic tensor

In the scattering of interest, viewed in our framework as virtual photon (W)—nucleon
constituent scattering, the intermediate particle (y or W) of four-momentum ¢*(—gq?
= Q? > 0) probes the structure of a nucleon (of four-momentum P*, polarization four-
-vector s, and mass M). We define

(P-q) = My, M

so v is a virtual photon (W) energy in the laboratory frame.

The hadronic tensor W** (which describes the above mentioned process), multiplied
by the leptonic one, is proportional to the differential cross section for lepton-nucleon
scattering. The leptonic tensor is well-known, whereas one writes W*” as a linear combina-
tion of second-rank basis tensors. The unknown coefficients, which multiply those tensors,
are structure functions. To build up W* we have the following vectors (pseudovectors)
and tensors (pseudotensors) at our disposal: P*, ¢, s*, g**, and ¢****, However, the hadronic
tensor W"'(P, g, s) must be at most linear in s (since such s-dependence has the spin density
matrix for a spin 1/2 particle), so we can only use s once. With this constraint we can con-
struct 22 (6 independent of s and 16 linear in s) second-rank tensors, of which 20 (of them
14 linear in s) are independent because the following two identities hold (see Ref. [12])

Q%*(Ps) = (q - )" (qP)—(P - 9)e""(gs)— q*e"(Pgs), (2a)
Q*MR™e"Y(Pgs) = (P - q) {(q - 9)&"(qP)—(1+Q*/v*) (P - 9)¢"'(gs)}, (2b)

where £**(ab) = &""*a,b, (similarly ¢*(abc)), R is defined in (5b), and AB?! = A°B* — A°B*
means the antisymmetrization in the Lorentz indices (4“B* = A°B’+ 4”B* stands for
symmetrization).

Among 20 structure functions we deal with ,10 give negligible contribution to the dif-
ferential cross sections (i.e. zero for the electromagnetic interaction and of order m}/ Q?
for the weak case; here m, is the fina! lepton mass). These structure functions are coefficients
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of the gauge non-invariant tensors (i.e. such tensors that: T"q, # 0, T*’g, # 0). Hence,
we can write the following decomposition of the hadronic tensor:

MW" (P, q,s) = —G" MW, +R*R*MW, +ie"(qP)W,[2M +iM*c*"(qs)G,
+i[(P - 9)¢*(as)—(q - 5)e"(gP)]G,+ G*(q - 5)G3+ R*R’(q - 5)G4 + R¥*T" MG 2
+MR®¥ e (Pgs)G,o/2 +iR¥T MG, 2+ ..., 3)
where we include the gauge invariant terms only. The rest of the hadronic tensor ‘is
MW"(P, q,s) = ... +q"q¢"W,/M+P"g" Ws/2M +iP¥q" W j2M
+4"q"(q - 5)Ge/M? + P¥q7(q - $)G,/2M* + g*s"Gg/2 + g™ (Pgs)Go[2
+q¥e"(Pgs)G /2 +iP¥q"(q - $)G3/2M? +ig*s"IG /2. (4)

Note that the i-factor stands before antisymmetric basis tensors. It is there, so that
the hermicity condition holds: W}, = W,,. All structure functions: spin-averaged F;
(i=1,2,..,6)and spin-dependent G;(j = 1,2, ..., 14) are real functions of two Lorentz
invariants: v and Q2. In the above expressions we do not use tensors which are on the
left-hand side in the formulae (2). The abbreviations G**, R* and T* are used for gauge-
-invariant tensors and vectors

G = g"—q"¢"|q’, (52)
R* = [P*—(P - 9)¢"[q*]M, (5b)
T = s*~(q - 5)¢"/q". (5¢)

If we assume time reversal invariance, the structure functions G,o, G, in Eq. (3) and W,
G121, G13, G4 in Eq. (4) are absent. Taking this into account we get that the time reversal
and gauge invariant part of our hadronic tensor is similar to one given by Dicus [7], apart
from several constant factors and other subtleties (the most important common feature:
one deals with eight structure functions), but differ from basis used by Kaur [10] (nine
structure functions) or Nash [13] (six structure functions).

Defining

MW, =F, wW,=F, wW,=F;, MG, =g,
M"sz =g, VG; =g, VzG4/M =gy VG5 = g, ©6)

we can easily give the scaling predictions for structure functions. The QPM or light-cone
technique give that in the Bjorken limit (v, Q> — o0, x = Q?%2My finite) F; and g; are
functions of the variable x only. The scaling predictions for the other structure functions
are written in the Appendix A.

The functions F,, g3, g4 and gs are absent in parity conserving interactions, hence
we have only four (Fy, F,, g; and g,) electromagnetic structure functions for polarized
deep inelastic electron (muon)-nucleon scattering.
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We can split up the hadronic tensor as follows

W, (P, q,s) = WST+iw 0

nv >

i.e. we have decomposed it into parts symmetric (W5)) and antisymmetric (W) under
interchange of the Lorentz indices p, v. Suitable contractions allow us to extract structure
functions from W,,. We have, for example

2AFi—(e- 9)gs] = MWIHR'R'[(1+v*/0%) -G}, ®)

and
F3—2(¢ - 5)gx = M(Z/Q)W{(1— 2)e (o) +(e - )£ (09)}/4, ©)
where 4 = (1+ Q*v?)—(¢ - s)z,tand n* (¢*) are dimensionless versions of P*(g") defined by
nt = P'M, " = q"v. (10)

Other contractions, which give the expressions for further structure functions, are given
in the Appendix A.

3. Helicity amplitudes versus structure functions

The number of structure functions is related to the number of helicity amplitudes for
forward virtual Compton scattering. We have ten gauge-invariant terms in 2 decomposi-
tion of the hadronic tensor and ten a priori independent helicity amplitudes. The parity
and time reversal invariance reduces the number of electromagnetic structure functions
to four, and this is also the number of helicity amplitudes for forward virtual photon-
-nucleon scattering.

The s-channel helicity amplitudes at z = O (here s, ¢ are usual Mandelstam variables)
may be written as

T(h s > X, 5) = ()T, )e(A), (11

where A(1), s(s') are the s-channel helicities of an initial (final) virtual photon (or W)
and nucleon, respectively. The absorptive part of T is just W** and ¢,(4) is a polarization
four-vector of a virtual (W) with the helicity 2. The proper linear combinations of invariant
amplitudes 7; (i = 1,2, 3) and S;(j = 1, 2, 3, 4, §, 10, 11), whose imaginary parts are W,
and G, respectively, give us the helicity amplitudes. Thus for transverse (in this case trans-
verse stands for the direction of the magnetic field) photon (or W) (helicity 4+ 1)-nucleon
(helicity +1/2) elastic scattering we get (calculations are presented in the Appendix B)

MT(+1, #{F} 3 +1, +{F} ) = MT, 21+ Q° M) "*vTy)2
+{—} [M*S,~MQ*S,]F {+} (1+Q*V")'/*vS;. (12)

Taking that the parity changes the signs of helicities (s* is a pseuadovector) we get that 7
and S; are parity non-invariant amplitudes.
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The optical theorem relates those amplitudes to the total cross sections. For example,
the total cross section for y(W)—N scattering with spins of the initial particles parallel
(antiparallel), which is denoted by ¢''(c™), read

""" o FiF[g,—(Q*vHg,]. (3

For scalar (sometimes called longitudinal) polarization of a virtual intermediate particle
(A = 0) we have the following formulae

TO, £+ -0, £3) = LLFA+Q*v)' /25, (14)

where we use abbreviations: Ty = (1+v¥/03)T,~T;, and Sy = —v[Ss+({1+v¥/0D)S,
+S85/2x]/M. Imaginary parts of Ty and Sy are W and G respectively, so called longi-
tudinal structure functions

MW, = (1+Q*v})F,j2x—F, (15a)
MGy = —[g3+(1+0%v))ga/2x+ g5/2x]. (15b)

Parton model or light-cone ideas give that in the Bjorken limit: MW; = MGy = 0,
whereas v = F_ and vG = g, are finite functions of a single variable x.
For the helicity-flip amplitudes we obtain

OT(0, +3 - FL, FL) = 2721+ Q> ) *{4x(M*vS, + Mv*S,) /(1 + Q2 v*)'"?
FSs—iMv2S, o+ ivSy,), (16)

where Q is defined: Q = (Q*)2. For a T(F1, T4, - 0, +4) amplitude we have a similar
expression, only the third and fourth term change the sign. The time reversal interchanges
the final and initial helicities, parity changes their signs, so looking at Eq. (16) we see that
the amplitudes S5 and S, violate the parity, whereas S;, and Sy; do not occur when time
reversal holds.

Most results given in this section are already known. They were written in many pa-
pers (e.g. [6], [10], [12]). We present them, since we want to compare in the next section
the QPM results for the structure functions with the imaginary parts of helicity amplitudes
for different v (W)-helicity transitions (transverse-transverse, transverse-scalar, scalar-
-scalar).

4. Deep inelastic structure functions in the quark parton model
The QPM expression for the hadronic tensor reads [11]
MWS(P, q,8) =% ¥ [ duic)¢™ wi'(, o), an
a =11
where we sum over different quark flavours (index «) and two polarization of a spin 1/2
parton (denoted by = +1). The ¢ factor (¢ ~ k°/P°) is responsible for different normali-
zations of hadronic and partonic tensors [3]. The a-parton tensor wj'(x, o) depends on

four-momentum k*(k* = Mk*) and polarization four-vector ¢* of a quark (of mass m).
In the above integral we integrate over parton four-rmomentum with a weight given by the
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momentum probability distribution Hl(x) (the integral measure dul{x) is proportional
to HY(x)).
We define the following integral

A} =Y Y &2 § dul(x)é™ 8((x * @) — x + ) A(x, o), (18)

where the symbol @ is explained in the Appendix C. If we replace in the expression (18)
the electric charge e, by the weak charge g, we get the integral denoted below by J[A].
The weak charge g, is a coupling constant of a quark to the weak charged intermediate
boson W.

Contracting Eq. (17) with suitable tensors (see Egs. (8), (9) in Section 2 and (A4),
(A5), (A6)in the Appendix A) and making use of the definition (18) we get, e.g. for F, and g,
electromagnetic structure functions

2F, = I[(x - 0)]—{@*/2x(* + QM [p*(1 + Q*V*) + (x - ©)° = 2(xc - @) (i - )
~(@*V?) (- )], (192)
2e -+ 5)gy = I[(G * @] +(Q*WHI[(E - v)], (19b)

where u = m/M, 6 = nuo, and v* = [r*— g*— (g * 5)s*}/4. For the weak F; and g structure
functions we obtain

(L+Q*v)F3 = —2J[L(x - 0)]+2(Q°v*)I[L(xc - m)], (20a)
(¢ 5)gs = J[L(E - @] +(Q*/2xvH)I[L{(E - ) [(x - m)— (e - @)1 +Q7/v*)
+@ - ) [(e - 9 +(Q*V) (- M}, (20b)
where { distinguishes between quarks ({ = +1) and antiquarks ({ = —1). In the Bjorken

limit (Q%/v? — 0) only the first terms on the right-hand side in (19) and (20) give non-

-zero contribution. For other structure functions one may write similar expressions.

In order to compute the Lorentz scalar products in Egs. (19) and (20) we must specify

the four-vectors x* and ¢”. The form of the polarization four-vector of a quark (calculated

in the infinite momentum frame) is given in the Appendix C, whereas we decompose x*
as follows [11]:

k" = yn"+eg"+x, n", 21

where (7 -n) = (¢ n) =0 and n?> = —1. The transverse four-vector n* (we choose T
and o along the z-axis) gives the direction of transverse momentum of a parton, whereas
Kk, is the absolute value of this momentum. The Sudakov parameters y and ¢ are related
to the energy and z-component of the quark momentum (see Ref. [11]).

Thus the results for electromagnetic spin-averaged structure functions read (we use
Eags. (21) and (C8)) in the Bjorken limit

2F, = I[x], F,=1Ix]; Fo=Ixi+4"] (22)

For spin-dependent functions we get

2gy = I[nx], 2(g,+g2) = I[nu]. (23)
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For neutrino induced reactions the structure functions are given by the following integrals

Fi=J[x], F,=2[x*], Fy= -2l F.=J2c+p%] (24)
and

g =Jmx, 2gi+g)=Jd, g =Jnx), g.at+gs = —2J[n¢x*],

gs = =2J[nlxnls gL = 2J[nlxl]. (25)
The results for gauge non-invariant functions (i.e. those’which stand in front of the gauge
non-invariant basis tensors) can be found in the Appendix D.

Comparing Egs. (22), (23), (24) and (25) with the ones given in Section 3 we notice
the following correspondence in the QPM. Those structure functions which occur in the
decomposition of the imaginary part of the helicity amplitude T(4+1 — +1) (transverse
photon (W)-transverse photon (W) transition), i.e. Fy, F5, g, and g; are proportional
to y (under I or J integral). The functions F; and g which give the Im 70 — 0) (scalar-
-scalar transition) are proportional to the linear combinations of x3 and 2. For the beli-
city-flip amplitude (Im T(0 — 1)) we expect the proportionality to u (helicity flip only
takes place for massive particles). And this is the case, since g, +g, and gs structure func-
tions are proportional to u or uy, respectively.

We define the function f7(x)

flx) = | d*xHYx)(x—x) (26)
and similarly

(KHODLS(x) = § d*rH0KT3(x—x). (27
Using above definitions (and ¢ ~ x) we are able to recover the well-known results for the
electromagnetic structure functions. For F;, F,, and F; we get (see e.g. [3])

2F (x) = Fp(x)[x = ¥, e;f(x), (28a)

[ 3

XFi(x) = Y. [0 e+ 121 f), (28b)

124

where f(x) = f1(x)+f¥x) (f1¥(x) is the distribution of quarks with spin up (down)).
The expressions for g; (Ref. [3]) and g, +g, (Ref. [11]) can be written

2g:(x) = ¥, e;4£.(x), (292)

2x[g1(x)+ 82(0)] = ¥, €2 Af(x), (29b)

where 4f,(x) = f1(x)—f4(x). The formulae for spin-averaged structure functions in neutrino
induced reactions are

Fi(x) = Fy(x)[2x = ¥, gafu(), (30a)

Fy(x) = =23 g20.fux), (30b)

XFL(x) = ¥ ga[2xi(x)>at 121 f), (30¢)
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and for spin-dependent functions we have

gi(x) = Z g2 Af(x), (31a)
2x[gy(x) +g2(0)] = ; gau.Af(x), (31b)
AOEDY gaLeALX), (31c)
ga(x)+gs(x) = —2x Z:. g2 A1), (31d)
gs() = ~2% 8alaltedfo(), (31e)
xgu(x) =2 Xa: 8L (X)Dadf ). (31f)

If partons are on the mass-shells we have to add in Egs. (26) and (27) the mass-shell delta
function d(k®— u?) under the integrals. Neglecting transverse momenta of such partons,
i.e. assuming x* ~ yn* instead of Eq. (21) (we put ¢, k| =~ 0), we get that the polarization
vectors of a parton and parent nucleon are equal: 6" ~ s* (see calculations in the Appendix
C), and hence several structure functions (or their linear combinations) vanish in such
approximation. These functions are: g, = 0 in the electromagnetic, and g, = 0 and g, +
+2g, = 0 in the weak interactions case. It is also obvious that the QPM gives zero result
for the time reversal non-invariant structure functions (see Appendix D).

5. Relations among structure functions

The QPM gives several relations among structure functions. The best known is proba-
bly Callan-Gross relation {14]:

Fy(x) = 2xF,(x), (32)
written here in Egs. (29a) and (30a), and which holds for electron and neutrino scattering.
The parton model confirms also the relation for weak spin-dependent structure functions

obtained by Dicus [7] and De Raad, Milton, and Tsai [9] with help of different approaches.
In our notation it reads (compare Eqgs. (31c, d))

—2xg3(x) = ga(x)+gs5(x). (33)

We can get additional equalities if we specify the weak charged current of a parton. Using
the GIM current, we have for quark coupling constant to W ¥ (neutrino (antineutrino)
induced scattering):

gi(+) = FIPF:F,+3%, (34)

where I is the third component of a-quark isospin and F, is the flavour number (defined
as bypercharge minus baryonic number: F = Y—B). For the electric charge squared we
have {15]

ez = ([F 1Y +5 B.+5 Fa). (35)
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Taking a difference of structure functions for proton and neutron target (isospin symmetry
changes I, but not B, and F,) we get (using Egs. (28), (29), (30) and (31))

12(FY—F{") = F'—FY, (36a)
6(g7¥—gi") = —(g¥—g%), (36b)
12x[(g, +22)F—(g1+22)"] = g5 —g5". (36¢c)

The first equality is the best known one [16], third was written in the covariant parton
model framework by Nash [13] (the second and the third one were first derived, using
light-cone algebra, by Dicus [7]). Above relations are consequences of quark weak charged
current assumed here, for another choice, e.g. the Cabibbo one, we obtain similar but
distinct equalities.

For several structure functions discussed in this paper one can write certain sum rules.
Those sum rules are considered in the Appendix E.

6. The cross sections for neutrino-nucleon scattering

The double differential cross section for neutrino-nucleon scattering is equal to

d*c Gy

— = [ (MW, 37
dxdy 167 ol ) (7

where y = (P - q)/(P - 1) = v/E (" is the four-momentum of incident neutrino, E its energy
in the laboratory frame) and leptonic tensor /,, is written in the Appendix F. The form
of this cross section in terms of scaling structure functions is also given in this appendix.
Taking the difference of such cross section for scattering on target polarized in the
s-direction and in the opposite one we get (in the scaling limit)
d’c ©) d*c (=5) 2G*ME
s)— —5) =
dxdy dxdy T
+21y[(e - )= (2 - )Jxg2a—[L+(1 =T (e~ )xgs =5 2~N (e 9~ 5)]gs},  (38)

where we have used the relation (33) to eliminate g, structure function. Here t = +1
differentiates between cross section for neutrinos (tr = +1) and antineutrinos (1t = —1),
whereas 1* = [*/E. For nucleons polarized in the beam direction, i.e. s§{ = 3*— =" (L = lon-
gitudinal polarization; (¢ * sy) =~ (4 * s) =~ —1inthe scaling limit), we obtain the difference
of cross sections which rises linearly with the energy E

{tyly(e - 9)—2(4- s)]xg,

d? d> 2G*ME
a ()= (= 5) = e [+ (1= )P Tgs + 12— Vg - (39)
xdy dxdy 1

The QPM enables one to predict y-dependence of such cross section. If we denote the
quark (antiquark) contribution to 2xg,(x) by Aq(x)(4g(x)) (from Eq. (31a) we have
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dq(x) = 2x Z g24f,(x), where we sum quark contributions only), then we get

2xg(x) = q(x)+4(x), (40a)
2xg5(x) = q(x)—g(x). (40b)

Hence we obtain for neutrino-nucleon scattering

d*c" d*c"® G>*ME
[ - y(TT)] = [49(x)—(1-y)*47"(x)], 41

whereas for antineutrino induced reactions

d*ev G*ME
[ 7 an- (Tl)} ———[(1-y)*4g¥(x)— 43¥(x)], 42)

where we mark in brackets whether spins of neutrino (or antineutrino) and nucleon are
parallel (11) or antiparallel (1]). This y-dependence is similar to one obtained for spin-
-averaged scattering, the only difference is that antiquark contributions have opposite
signs.

For nucleons polarized in the plane transverse to the beam direction, i.e. (A - sg) = 0
(T = transverse polarization of a nucleon), we obtain in the Bjorken limit

[ d’o d’c G*MQ o,
2 (s1)— (=sp)|= sign (¢ * st) {ty°xg, +21yxg,
dxdy dxdy ny

~[1+1=)"1xgs~(2~y)gs/2}, (43)

so the difference is rising linearly with Q, not E, in this case. The QPM result for this differ-
ence is discussed in the Appendix F. An interesting result is obtained for on mass-shell
partons with negligible transverse momentum. In such approximation the following
asymmetry for scattering on the isoscalar target

O'VN(ST)—UVN(—ST) Aq
U;N(ST) - U;N( - ST) 44

is rather small, since clearly quark contribution 4¢ dominates over antiquark one 4§

1
(dg = {49(x)dx, and similarly for 47).Hence, the quark contribution to ¢"(sg)—0"(—s1)
0

is mainly of transverse momentum origin in the QPM with on mass-shell partons.

7. Summary

In this paper we have derived the forms of the spin-dependent structure functions for
deep inelastic neutrino-nucleon scattering. To get the results we have used the QPM frame-
work wtih arbitrary transverse momenta of partons. The last assumption is very important
since for on mass-shell partons several structure functions, i.e. g3, gt +2g5 and g} vanish
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if one neglects transverse momenta. Kaur [10] has written similar formulae, but with
neglect of transverse momentum (k" = yP* in this work) and also had one structure
function more.

We have repeated here, in the QPM framework, relations among different polarized
structure functions first given by Dicus [7], who has used the light-cone algebra technique.

We have showed that the structure functions may be divided in three different groups
(with different functional forms), each connected with the corresponding forward amplitude
for definite helicity transition.

The spin-dependent part of the VN cross section has been discussed here and the result
that it rises linearly with E for longitudinally (with Q for transversely) polarized target has
been obtained. We have also given the y-dependence of such cross section for both polariza-
tion cases.

I would like to thank R. Rodenberg and L. M. Sehgal for critical remarks and reading
the manuscript. I am also grateful to Alexander von Humboldt Foundation for financial
support.

APPENDIX A

In this paper we deal with the structure functions which may be gauge (G), parity (P)
or/and time reversal (T) invariant. Thus-we have: for W,, W,, G, and G, (G, P, T); for
Wi, Gs, G, and Gs (G, T), whereas G, (G, P) and G, (G). After each group of functions
we have marked their type of invariance. Among gauge non-invariant structure functions
We(P), G2 (P), G5 and G, are also time reversal non-invariant. For other functions
the following invariance holds: for W,, Ws, Go (P, T) whereas Gg, G7, Gs (T). Thus we
have 10 parity invariant and 10 parity non-invariant functions, whereas 14 of them are
time reversal invariant and 6 are not.

For neutrino scattering the following crossing properties hold

W(v, g%) = =W (=v,q*) (i =1,2,3,4,6), (Ala)
Wi, 4°) = Wi(—v, ¢°), (Alb)
and similarly for spin-dependent structure functions
Gi(v, g% = —=G(—=v,¢¥) (i=1,57,12,14), (A2a)
Gl(v,q>) = Gi(-v,q®) (i=23,4,628,9,10,11,13). (A2b)

The scalling limits of the structure functions which are not written in Eq. (6) are:
vWy— F,, VvWs~—Fs, vWs— Fg,
VZGG/M — 8e> V2G7/M - g7, vOg = gs,
MVZG9 > 8o, MVZGIO = g10o  VG11 — 115
M"’zGlz > 8i12s VZG13/M - 813 VG4~ 8ua (A3)
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On the right-hand side we have functions which depend on x only (ignoring scaling viola-
tions).

We present below the expressions for structure functions in terms of suitable con-
tractions of the hadronic tensor. Thus we have for gauge invariant ones

(L+Q*V)F,+(1+Q*/V)) (e - 5)ga+(2 * 5)gs

= MxWEL{3R*R'/(1+v2[Q}) - G*}, (Ada)

gi+82 = —MA Q)W (e - )" (r)+(1+Q*v))e"(0s)}/24, (Adb)
gs = MW (e~ s)R*R*[(1+ Q) R*T"}/4, (Adc)
Fi~(g-s)gL = 2xMW5S'RFR (1 +Q*v?). (A4d)

For other functions we can write
Fio+(0-5)gs = — MWE2n"0" +[4(v*/Q%) - 2]0" 0" —2(e - 5)@"s"}/2x4,  (ASa)
Fs+(0 - s)gs = —2MG? QWS4 - Dn"e"+ o"e" + (e - 5)¢"s"}/ 4, (ASb)
gs = 2M(?IQHWEN —(0 - s)n"e”" +(0 - s)e*e” +(1+ Q*v)a"s"} /4, (A5c)
g, = —MWNe™(RT)/4. (A5d)

For time reversal non-invariant structure functions we obtain

Fs3(0" 5)gus = —2MOA QYW (A —Dn*e’ — (e - 5)e"s}/4, (A6a)

810 = —22WI(o" +(Q*V))n*}e'(mes)| A1 + Q7 V), (A6b)

g1 = —20W (o )n"e’ +(Q*V)n"s'| A+ 0"}, (A6c)

g12 = 2M(* QWL (nos)/4, (A6d)

g1 = 2M QWM (- s)no” + (1 +Q* v*)g"s} 4. (A6e)
APPENDIX B

The s-channel helicity amplitudes in the forward direction (¢ = 0) are defined by
T(A,s = A, 5") = ef(A)T*(P, q, 5)e,(2), (B1)

where ¢,(1) (4 = 0, +1) is the polarization four-vector of a virtual intermediate photon
(or W), which satisfies: &(4) - ¢ = 0. The tensor T*'(P, g, s) has the same covariant form
as W*" (apart from terms required by current algebra, see e.g. Ref. [7]), only the coefficients
are now complex functions T; and S, which imaginary parts are W; and G, respectively.
The spin four-vector s* of a nucleon is

st = as‘(P)vuYSus(P)’ (Bz)
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where the nucleon spinors are normalized: #(P)uP) = 5. The form of a polarization
four-vector for right (left)-handed (A = +1(—1)) boson is [2, 17]

Sﬂ(i) = (09 il’ i’ 0)/21/29 (B3)
whereas for scalar polarization, i.e. for 1 = 0 we have
&(0) = (2xP"+¢")/Q(1+Q*/v*)'2, (B4)

which satisfies £2(0) = 1 and where we choose P and q to lay along the z-axis (e.g. in the
laboratory system we get: g* = (v, 0,0, —(1 4+ Q?v»)'?)). The formulae for &*(A) given
above are valid in all frames which can be reached applying the Lorentz boost along the
z-axis.

APPENDIX C

In this appendix we give several useful formulae. The first expresses the hadronic
tensor in terms of parton quantities (compare with Eq. (17))

MWH®(P, q,5) =Y. 3. | dul(k, u*)E™'wi'(k, o; 1), (C1)
x N

where most of the symbols are explained in Section 4, and #? is equal to the final parton
four-momentum squared (for on mass-shell partons: u?> = m?). The integral measure is
defined by

dul(k, u*y = d*kdu®H(k, u®), (C2)

and normalized as follows
§ dulk, u*) = n, (C3)

where 7] is a number of partons with flavour a and polarization # inside the nucleon. For
partons on the mass-shells we have to add, in Eq. (C2), two delta functions: (k% —m?)
and 8(u®—m?). The partonic tensor w*’ is obtained from Feynman diagram for virtual
y(W)-parton scattering. The result reads in the electromagnetic case

we' = 3 e;0((k+q)* —u®) Tr [(1+n&yso - y) (k -y +Lm)y*(k - y+q - y+{m)y’]
= e28((k+q)* —u®) {2k*k’ + kg — g™ [(k - @)+ k* — m*] + inme*'(qo)}, (Co
whereas for the weak charged current we get
we' = % g28((k+q)* —u®) Tr [(L+nlyso - y) (k - y+{m)y*(1—{ys)
(k- y+q - y+Emey (1 =0ys5)] = 2g2((k+49)° —u?) {2k + k"q ~ g [(k - g)+K7]

+inme*(qo) + inme™ (ko) + ile"" (kq) — n{mo* k" + n{mg" (o - q)—nima'*q"}. (C5)
The delta function in (C4) and (C5) can be written
8((k+9* —u) = 8((x - &) —x-+)/2M, (c6)
where

w = (k*—u?)2Mv. <n



936

Our assumption is that @ — 0 in the Bjorken limit, and this enables to write Egs. (28),
(29), (30) and (31). Such assumption is satisfied for on mass-shell partons and for partons
which are not very far from their mass-shells.

The polarization four-vector of a spin 1/2 quark was calculated by us [11] in the case
of non-negligible transverse momentum (for simpler case see Ref. [3]). The result is

pe® = ps*+(e - s) (1 — un®) /(15 Q* v*)'1?
—u{(x - )—(e ) [(x m)—u)/A+Q* )2} (¢* +an)|[(x - @) +a(x - ©)],  (CB)

where a stands for: a = (1+ Q%v?)!/2—1, and hence vanishes in the scaling limit. If we
neglect Ferii motion of quarks (i.e. put ¢ and x, equal to zero in Eq. (21), so k* ~ yn%)
we obtain

o® = %+ (0 - 5) (x— 1) {[x + ap/(1+ Q*v*) 2 n* + o*/(1 + Q2 vH)/*} . (C9)

For on mass-shell partons (k* = p?) we have p ~ y (it comes out from the equality:
k* ~ y* and hence y* ~ u?), and therefore we get the known result: o* ~ 5%

APPENDIX D

The appendix deals with calculations of certain weak structure functions in the QPM
framework We present here results for the gauge non-invariant ones. The time reversal
non-invariant functions are zero in our framework since we have no such terms in the
decomposition of the partonic tensor. Thus we have: Fg, 210, 11, £12, £13> L14 = O.

A typical example of a formula for the structure function is
g = —J(e-){(xk - m)(F 0)—(x-0)(F 1)} +{(x (G 5)—(x"5)(¢" 0)}
QW) {(k - 1) (6 - s)—~(x - 5) (6 - m)}]/x4. (D1)

Some of the gauge non-invariant functions, i.e. F,, Fs and ge give zero in the Bjorken
limit. However, if we define F, = vF,/M and g¢ = vge/M we get for these functions finite
results

Fy = J[u*])2x, (D2a)
g6 = J[nlu(u—x)]/x. (D2b)
Using Eq. (26) we may write
27F (%) = ¥ g2u (%), (D3a)
x2ge(x) = ¥, 82lota(ta— x)Af (x). (D3b)
For other functions we obtain
g7 = —gs = J[nlu], (D4a)

g = JInxul/x, (D4b)
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and similarly to (D3) we have
xg7(x) = _ng(x) = Z g:CwuaAfa(x)’ (Dsa)
xgo(X) = Y, gt Afi(%). (D3b)

Comparing (D5a, b) with (3le, b) we get the following identities

—2xg7 = 2xgg = gs, (D6a)
8o = 2x(g1 + 82)- (D6b)
APPENDIX E

In this appendix we recall known, and derive unknown sum rules for the structure

functions. From the charge symmetry we have: F;" = F{® and g}" = g}?, so we can always
change the weak structure function under the integral according to these equalities.

First we write the known sum rules, true in the QPM, as for example the one given
by Bjorken [18] (the similar for F3/x was obtained by Adler [19]),

i [FP() - F(x)]dx = —1, (E1)
Gross and Llewellyn Smith [20]
j [FP()+FP(x)]dx = —6, (E2)
and once more Bjorken {21]
6 j [87°(x)— gT'(x)]dx = (G4/Gv). (E3)

The scaling version [3] of Burkhardt—Cottingham sum rule [22] is

g [82°(x) - g2"(x)]dx = 0. - (E4)

Equations (E3) and (E4), together with relations (36D, ¢) and (33) give the new sum rules
(assuming GIM weak charged current for quarks)

g [g5°(x)— g3°(x)Jdx = —(GaA/Gv), (E5a)
g [£2(x)—g¥'(x)]dx/x = O, (E5b)

g [85°(x)> g5'(x)]dx/x = 2(GA/Gv). (E5¢)
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If we assume SU(2) symmetry for the *“sea” of quark-antiquark pairs (i.e. ny = ny)
we get in the QPM

1

§ [F()—F'(x)Jdx/x ~ 1/3, (E6a)

3’ [FP(x) = F5'(x)]dx = 2, (E6b)

where the first formula is a scaling version [23] of Gottfried’s sum rule [24], whereas the
second one follows directly from Eqgs. (32), (36a) and (E6a).

Assuming nt = n}, it = nk (n! (n}) is the number of a-flavour quarks polarized paral-
lelly (antiparallelly) to the nucleon spin, i.e. described by = +1(—1)), or that the “sea”
of quark-antiquark pairs is unpolarized (i.e. nh =t 0k = nf) we get

g [81(x)— g1'(x)]dx =~ —(Ga/Gv), (E7a)

2 Of [87(x)—g7'(x)Jdx = (GA/Gy), (E7b)

where the first sum rule was written previously by Nash [13].
Denoting by S the quark spin contributions to the spin of the nucleon we have

Y ommi =Y (ng—ny) = 2S. (ES)

We get 28 = 1, if gluons give no contribution to the spin of a nucleon and the orbital
angular momentum of partons is zero (see discussion in Refs. [25] and [26]). Denoting by
Sy the similar contribution which comes from valence quarks (Sy = 1/2 when valence
quarks, with L = 0, give the whole spin structure of a nucleon) we may write the new sum
rules

J [2¥P(x)+ gP(x)]dx =~ 28, (E9a)

-

J [g(x)+ ¥ (x)]dx = 28y, (E9b)
where we have used the normalization condition
1
| Af(x)dx = n}—n} (E10)
0

to derive them. Those sum rules are written under the assumption, that n} = n} in the
“sea” (for the first one it is enough to assume that for heavy quarks only).

We present here several sum rules but we are not able to repeat Nash sum rule {13],
which in our notation reads

EHOL gP(x)]dx/x = —6(G,/Gy). (E11)
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T4y t 4
Hs—ng, nt—nt = n;—n; [25] we get

I

Assuming for heavy quark contributions n!—n!

R

6 J [£7°(0) +£7'(x)]dx = 1053, (E12)

which combined with (E3) gives well-known expressions

1
2 | gP(x)dx ~ [10S+3(GA/Gy)]/18 =~ 0.3740.03, (E13a)
0

1
2§ g5°(x)dx ~ [10S—3(GA/Gy)]/18 ~ —0.05+0.03, (E13b)
o

where the experimental figures for S and (G,/Gy) are taken from Sehgal’s paper [25]. Similar
results were derived, using the light-cone algebra technique, by Ellis and Jaffe [27] and in
the QPM by Sehgal [25] and Close [26]. Note that in the SU (6) symmetry limit (S = 1/2,
G4/Gy = 5/3) we get zero for the second integral.

APPENDIX F

In this appendix we give the neutrino (antineutrino)-nucleon scattering cross section.
It is proportional to the leptonic tensor /,, given by
l,uv = 8{21p{v_l{pqw-(q ’ Z)gnv"{"?:ispv(ql)}a (Fl)
where ¢ = +1(—1) for neutrino (antineutrino) induced reactions.
The differential cross section for scattering off polarized target (we sum over final
Particle polarizations) is
d’s G?

s {(MEA+1m?B+1 MQ(s - nC), (F2)

where m, is final lepton mass, whereas spatial part of riap(Fleas = 1) gives the direction
perpendicular to the scattering plane (r occ g x I). The symbols 4, B and C are defined

below
A = xy’F +[(1—y)—xyM2E]JF, —txy(2— y)F;3/2 +txy[y(e - )—2(A - 5)]g:

+2txy[(0 - $)— (4~ 5)]g2—xy*(e " 5)gs+[(1—y)—xyM/2E] (e - 5)g4

+{@2—=y) (A" s)—y(o " s)]gs/2, (F3)
whereas
B = xyF,—Fs+xy(0-s)gs— (0" 5)g;—(¢ " 5)gs> (F4)
and
C = {[(1—y)— Mxy[2E]"*/y} [~ (2~ )g10+Tyg11 +(mI[ME)g,,]. (F3)

Note that the structure functions F, ge, 213, and g4 do not contribute to the cross section
when the sum over final-lepton polarizations is taken.
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The QPM result for double differential cross section is
d*c G*ME

S = o J[2(k - AP =20k A) (k- @)+ xy (k- Q) =y QP 2V
dxdy 2n

+elxy{2(x - D)= y(x )} —nl{20c - ) —y(x - @)} (6~ 4)

+nly{(x - A)—xy} (6 - @) +y{(x - 0)=2x} (G- A)—ty{(x - )—xy} (G- 0)]. (F6)

The asymmetry for scattering off transversely polarized target reads in parton model

JR—— —

d’c d%e 'J G>MQ

(sp)— (—sp) =" X

1 —_ 2 . _ 1 }
z[dxdy dxdy (1—y)"" sign (e Sr)[ 2x{(1__y)2 4q(x)

+2x {(‘ 7 } 4509 +20> {1 ! y} Aq() =24 {1 P } Aq(x)] . @)
where

<y = Y 8apeAf(0)/Y g24fu(x), (F8)

and similarly is defined {fi), the only difference is that we sum antiquark contributions
instead of the quark ones.

Assuming {u) = {fi) = x (this holds for on mass-shell partons with tiny transverse
momenta), we get for the asymmetry from Eq. (F7)

2G*M 0
- ¢ (1-y)*"?sign (o * s7) [{1} Aq(x)— {é} Aa(x)] , (F9)

where in formulae (F7) and (F9) the upper (lower) expressions in curly brackets stand for
neutrino (antineutrino) scattering. From Eq. (F9) we conclude that quarks in transversely
polarized nucleon contribute to the difference of neutrino cross sections only when they
have nonvanishing transverse momentum.
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