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The geometry of totally null complex 2-surfaces (null strings) in a complex space-time
is considered. Some theorems concerning the relationship between algebraic types of the
energy-momentum tensor and the existence of null strings in the complex space-time are
given.

1. Introduction

A totally null complex 2-surface in a complex space-time is called a null string. The
existence of a congruence of null strings in the complex space-time simplifies an analysis
of complex Einstein equations and in many cases enables one to obtain solutions of these
equations [1-7]. Moreover, null strings are very interesting objects from a geometrical
point of view. The geometry of null strings was done recently by Boyer and Plebafiski [8, 9].

The purpose of this paper is to prove some theorems “connecting” the existence
of flat null strings in a given complex space-time with an algebraic type of an energy-
-momentum tensor [10]. These theorems, we hope, will play a role in the study of complex
space-time with the “matter”.

2. Induced connection on a null string

Let (M}, ds?) be a complex space-time {10]. A null string M of (M, ds?) is a 2-dimen-
sional complex imbedded submanifold of MJ(M; = M}) so that for each point p e M3 and
for each vector X tangent to M; at p

ds*(X, X) = 0. 2.1

Note: we consider objects of types (p, 0) ([11] Vol. II). Let (U, {x*}), u =1, 2, 3, 4 be
a local chart and let (ey, e,, €3, €,) be a local null tetrad (see e.g., [1, 10]) such that (e,, e,)
are tangent to M3 at each pe M5 n U. Now if V is the connection on My then ([11] Vol. )

Vaes = Mze;  a,b,8 =24 (2.2)

* Address: Instytut Fizyki, Politechnika E.6dzka, Woélczanska 219, 93-005 Eo6dz, Poland.
(945)



946

on M35 n U, where F;,;; are connection coefficients. The formula (2.2) follows from the
fact that ;5 = 'z = 0 (a, b = 2,4) on M5 n U, [12]. From (2.2) one may conclude
that there exists the induced connection V on M3 locally defined by formula ([11] Vol. II)

VyY := VyY (2.3)

for any vector fields X, ¥ on M3 n U tangent to M;. Consequently, from (2.2) and (2.3)
we find that V is locally defined by the following connection coefficients of V (or the Ricci
coefficients):

1—422 = T332, Fzzz = TI'y22, F424 =T334, F224 = I"y24,
F442 = I'342, F242 =142, F444 = F344’ F244 = I144. (2~4)
The connection V is symmetric. It defines the curvature tensor R on MS.
Locally ([11] Vol. )
R(X, V)Z := Vy(VyZ)—Vy(VxZ)~Vix yZ, (2.5)

where X, Y, Z are arbitrary vector fields on M5 n U tangent to M;. One can show easily
that R is locally determined by the following tetrad components of the curvature tensor
R on M;

R4424 = '21‘(C42“C(4)), R4224 = % Cas R24z4 = “?lz' Cis
Ry = —5(Can+C), (2.6)
where Cz; (a, b = 2,4) are null tetrad components of the traceless Ricci tensor Cu
C,:=R,,—% &g, (2.7a)
R, :=R%.; #:=R", (2.7b)

and C* is one of the null tetrad components of the conformal curvature tensor on My
(see e.g., [1, 10]). When Cyy = C,, = C,, = 0 on M5 U, then C* =0 on M5 U.
These are generalized Goldberg-Sachs theorems [12]. Therefore, we have:

Proposition 1. The connection V on M} is flat if and only if

C XY =0 (2.8)

for each point p e M; and for arbitrary vectors X, Y tangent to M; at p. [
The results of this section in terms of fibre bundle and spinor formalisms were given
by Boyer and Plebanski [8, 9].

3. Theorems concerning null strings with flat connections

The notations used here are defined in [10].
Theorem 1. If the connection V on a null string M3, is flat, then for each point p € M}
(7) tensor C,, is one of the types [2N;—2N1,, [2N; —2N] -5, [2N;—2N1,, [4N],,
3[4N],, ‘P[4N],, [4N]s, [4N],,
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(i) if C,, is of types [4N]; or [4N],, then the null eigenvector of C,, is tangent to
M3 at p

(iii) if C,, is of the type (2)[4N],, then at least one eigenvector of C,, is tangent to
M; at p,

@) if C,, is of the types [2N;—2N], or [2N;—2N] -, or [2N,—2N],, then two
null eigenvectors of C,, are tangent to M; at p,

(v) if C,, is of types [4N], or (3)[4N1,, then every vector (% 0) tangent to M5 at p is
the null eigenvector of C,,,

(vi) every vector (# 0) tangent to M at p is a multiple generalized Debever-Penrose
vector.
Proof: If V is flat, then for each point p € M; and for each null tetrad (e, ¢,, 3, €,) at
p such that (e,, e,) are tangent to M; we have:

Cia =Caa=0Cpn =0 (3.1)

(see Proposition 1).
Then from the eigenvalue equation

CabXb = ;‘*Xa (32)
and from (3.1) one finds that

= i\/(Clz)z‘}'C« *Csy . 3.3

Hence, for each point p € M3, C,, possess one quadruple or two double eigenvalues and
then C,, is one of types (at p) [10]: [2N,—2N1,, [2N,—2N]) -3y, [2N,—2N],, [4N],,
®)N4N],, P[4N],, [4N1s, [4N],. Thus (i) is proved.

Now, for each point p € M; at least one null eigenvector of C,, is tangent to M.
Assume that it is not true. Then one can select the null tetrad (e,, e,, €3, €,) at some p e M3
in such a manner that (e,, ¢,) are tangent to M and that e¢; is the null eigenvector of

C,, at p. Hence,

C33 = C32 = C31 = 0- (3.4)
From (3.1) and (3.4) it follows that:
C22 = C24 = C23 = 0. (3.5)

This means that e, is the null eigenvector of C,, at p. Therefore, for each point p € M;
at least one null eigenvector of C,, is tangent to M and hence (i) and (iii) hold. We assert
that if C,, possess at least three null eigenvectors at p € M3 then two of them are tangent
to M3. Let (e, e,, €3, €,) be any null tetrad at p € M; so that (e,, e,) are tangent to M3
and (e;, e,) are null eigenvectors of C,, at p. Let E; be the third null eigenvector of C,, at p.
One can select the null tetrad (eq, e,, e5, ¢,) so that

ds’(E;,e3) =0 and ds*(E,, e;) = 1, (3.62)
or

ds*(E;,e3) =1 and ds¥E,, e;) = 0. (3.6b)
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Suppose (3.6a). Then,
E, = e +ze;, 3.7

where z is the complex number. Define the null tetrad (e, €5, 3, €4) at p by the formulae
ey :=E; eyime,; eyi=ey e,i= e —ze,. (3.8)

One easily finds that
Cueile” = Cyeiley” = Ceiel” = 0. (3.9

Consequently, the null vector e, tangent to M at p is the null eigenvector of C,, at p.
Now assume (3.6b). This implies

El = e4+Z’€2, (3-10)

and E; is tangent to M; at p.

Thus, we have proved that if C,, possess at least three null eigenvectors at p e M3,
then two of them are tangent to M3. Hence, one concludes that (iv) for types [2N; —2N1,,
[2N;~2NJ1-2) and (v) hold. Notice that for types [4N],, (M4N1, all eigenvalues of C.
vanish.

Finally, let C,, be of type [2N,—2N], at the point p € M;. Suppose only one null
eigenvector of C,, at p is tangent to M. Choose the null tetrad (e,, e,, 3, €,) at p so that
(e2, e3) are null eigenvectors of C,, at p, (e,, e4) are tangent to M3 and [10]

Cuv = N(e4ue3v + e3ue4v - elueZ\’ - eZuelv) + 2Nz(e3‘482v + eZue3v) + e2ue2v + eSue3v’ (3 1 1)

where (— N, N) are eigenvalues of C,, at p, z is some complex number (in {10] z =0
and e3 — Ey, ey — FE;, e, » E{, e; > E;). From (3.11) one finds that

C44 = C‘",e4“e4v =13 0, (3.12)

but this formula contradicts (3.1).

Consequently, two eigenvectors of C,, are tangent to M; at p. Finally (i—v) have
been proved. Now C®® = 0and C* = 0 on M3. Hence, (vi) holds and the proof of Theorem
1 is completed. 0O

An intermediate consequence of Theorem 1 is:

Corollary 1. If V is flat, then for each point p € M3 at least one eigenvector of C,,, is tangent
to M; and every eigenvector of C,, tangent to M; is a multiple generalized Debever—
-~Penrose vector. [

Now we prove the theorem which is in some sense reciprocal to Theorem 1.
Theorem 2. Let M; be a null string and let for each point p € M5 C,, be one of the types:
[2N, —2N],, [4N]s, [4N];. If for ecach point p € M3 at least one null eigenvector of C,,
is tangent to M3, then the connection V on Mj is flat.
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Proof: Let C,,, be of type [2N, —2N], at some point p € M. Hence, there exists the null
tetrad (ey, ¢,, €3, €4) at p so that [10]

Cuv = N(e4ue3v+e3ue4v—eZuelv"elueZV) (313)
and e, is tangent to M;.
Then we conclude that ¢, or e, is tangent to M35 and from (3.13) it follows that

C,X*Y' =0 (3.14)

for arbitrary vectors X, Y tangent to M; at p. Now assume that C,, is of type [4N]; at p.
So there exists the null tetrad (ey, e,, €3, €5) at p such that [10]
J2 |
C;;v = 7 i[e-iu(elv—e2v)+(e}u—eZg)elt-v} (315)

and e, is tangent to M. Hence ¢, or e, is tangent to M3 and using (3.15) one finds
C. X"V =0 (3.16)

for arbitrary vectors X, Y tangent to M at p.
If C,, is of type [4N], at p then obviously

CX"Y" =0 (3.17)

for every vectors X, Y tangent to M; at p. Therefore using results of Proposition 1 one
easily deduces that V is flat. [

It is well known that the energy-momentum tensor of the complex electromagnetic
field (linear or non-linear) belongs to one of the types [10]: [2N; —2N], (general field),
®N4N], (null field), P’[4N], (one-sidedly null field). Consequently, using the results of
our theorems one finds: 1° If (M, ds?) is the complex space-time with the electromagnetic
field and M3 is a flat null string (= V = 0) of M then for each point p € M} one (at least)
null eigenvector of the energy-momentum tensor is tangent to M3 ; for types [2N, —2N1,,
(3[4N], two null eigenvectors are tangent to M. Moreover, for each point p e M3 each
null eigenvector of the energy-momentum tensor tangent to M3 is a generalized Debever—
~Penrose vector; 2° If (M}, ds®) is the complex space-time with the general electromagnetic
field and M3 is a null string of M such that for each point p € M; one of null eigenvectors
of the energy-momentum tensor is tangent to M; then M; is flat.

The author is indebted to Professor J. F. Plebafski for his interest in this work and
to Dr J. Kalina for many useful discussions.
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