REMARKS CONCERNING THE GEOMETRY OF NULL STRINGS

By M. Przanowski

Institute of Physics, Technical University, Łódź*

(Received May 5, 1979)

The geometry of totally null complex 2-surfaces (null strings) in a complex space-time is considered. Some theorems concerning the relationship between algebraic types of the energy-momentum tensor and the existence of null strings in the complex space-time are given.

1. Introduction

A totally null complex 2-surface in a complex space-time is called a null string. The existence of a congruence of null strings in the complex space-time simplifies an analysis of complex Einstein equations and in many cases enables one to obtain solutions of these equations [1–7]. Moreover, null strings are very interesting objects from a geometrical point of view. The geometry of null strings was done recently by Boyer and Plebański [8, 9].

The purpose of this paper is to prove some theorems "connecting" the existence of flat null strings in a given complex space-time with an algebraic type of an energy-momentum tensor [10]. These theorems, we hope, will play a role in the study of complex space-time with the "matter".

2. Induced connection on a null string

Let (M_4^c, ds^2) be a complex space-time [10]. A null string M_2^c of (M_4^c, ds^2) is a 2-dimensional complex imbedded submanifold of $M_4^c(M_2^c \subset M_4^c)$ so that for each point $p \in M_2^c$ and for each vector X tangent to M_2^c at p

$$ds^{2}(X, X) = 0. (2.1)$$

Note: we consider objects of types (p, 0) ([11] Vol. II). Let $(U, \{x^{\mu}\})$, $\mu = 1, 2, 3, 4$ be a local chart and let (e_1, e_2, e_3, e_4) be a local null tetrad (see e.g., [1, 10]) such that (e_2, e_4) are tangent to M_2^c at each $p \in M_2^c \cap U$. Now if ∇ is the connection on M_4^c then ([11] Vol. I)

$$\nabla_{e\tilde{a}}e_{\tilde{b}} = \Gamma^{\tilde{c}}_{\tilde{b}\tilde{a}}e_{\tilde{c}}; \quad \tilde{a}, \tilde{b}, \tilde{c} = 2,4$$
 (2.2)

^{*} Address: Instytut Fizyki, Politechnika Łódzka, Wólczańska 219, 93-005 Łódź, Poland.

on $M_2^c \cap U$, where $\Gamma_{\tilde{b}\tilde{a}}^c$ are connection coefficients. The formula (2.2) follows from the fact that $\Gamma_{\tilde{a}\tilde{b}}^3 = \Gamma_{\tilde{a}\tilde{b}}^1 = 0$ ($\tilde{a}, \tilde{b} = 2,4$) on $M_2^c \cap U$, [12]. From (2.2) one may conclude that there exists the induced connection \tilde{V} on M_2^c locally defined by formula ([11] Vol. II)

$$\tilde{\nabla}_X Y := \nabla_X Y \tag{2.3}$$

for any vector fields X, Y on $M_2^c \cap U$ tangent to M_2^c . Consequently, from (2.2) and (2.3) we find that $\tilde{\nabla}$ is locally defined by the following connection coefficients of ∇ (or the Ricci coefficients):

$$\Gamma^{4}_{22} = \Gamma_{322}, \quad \Gamma^{2}_{22} = \Gamma_{122}, \quad \Gamma^{4}_{24} = \Gamma_{324}, \quad \Gamma^{2}_{24} = \Gamma_{124},$$

$$\Gamma^{4}_{42} = \Gamma_{342}, \quad \Gamma^{2}_{42} = \Gamma_{142}, \quad \Gamma^{4}_{44} = \Gamma_{344}, \quad \Gamma^{2}_{44} = \Gamma_{144}. \tag{2.4}$$

The connection $\tilde{\nabla}$ is symmetric. It defines the curvature tensor \tilde{R} on M_2^c . Locally ([11] Vol. I)

$$\tilde{R}(X, Y)Z := \tilde{\nabla}_X(\tilde{\nabla}_Y Z) - \tilde{\nabla}_Y(\tilde{\nabla}_X Z) - \tilde{\nabla}_{fX,Y}Z, \tag{2.5}$$

where X, Y, Z are arbitrary vector fields on $M_2^c \cap U$ tangent to M_2^c . One can show easily that \tilde{R} is locally determined by the following tetrad components of the curvature tensor R on M_4^c

$$R^{4}_{424} = \frac{1}{2} (C_{42} - C^{(4)}), \quad R^{4}_{224} = \frac{1}{2} C_{22}, \quad R^{2}_{424} = -\frac{1}{2} C_{44},$$

$$R^{2}_{224} = -\frac{1}{2} (C_{42} + C^{(4)}), \qquad (2.6)$$

where $C_{\tilde{a}\tilde{b}}$ (\tilde{a} , $\tilde{b}=2,4$) are null tetrad components of the traceless Ricci tensor $C_{\mu\nu}$

$$C_{\mu\nu} := R_{\mu\nu} - \frac{1}{4} \, \mathcal{R} g_{\mu\nu}, \tag{2.7a}$$

$$R_{\mu\nu} := R^{\alpha}_{\ \mu\nu\alpha}; \quad \mathscr{R} := R^{\mu}_{\ \mu},$$
 (2.7b)

and $C^{(4)}$ is one of the null tetrad components of the conformal curvature tensor on M_4^c (see e.g., [1, 10]). When $C_{44} = C_{42} = C_{22} = 0$ on $M_2^c \cap U$, then $C^{(4)} = 0$ on $M_2^c \cap U$. These are generalized Goldberg-Sachs theorems [12]. Therefore, we have:

Proposition 1. The connection $\tilde{\nabla}$ on M_2^c is flat if and only if

$$C_{\mu\nu}X^{\mu}Y^{\nu}=0 \tag{2.8}$$

for each point $p \in M_2^c$ and for arbitrary vectors X, Y tangent to M_2^c at p. \square

The results of this section in terms of fibre bundle and spinor formalisms were given by Boyer and Plebański [8, 9].

3. Theorems concerning null strings with flat connections

The notations used here are defined in [10].

Theorem 1. If the connection $\tilde{\nabla}$ on a null string M_2^c , is flat, then for each point $p \in M_2^c$ (i) tensor $C_{\mu\nu}$ is one of the types $[2N_1-2N]_2$, $[2N_1-2N]_{(1-2)}$, $[2N_1-2N]_4$, $[4N]_1$, (3)[4N]₂, (2)[4N]₂, [4N]₃, [4N]₄,

- (ii) if $C_{\mu\nu}$ is of types $[4N]_3$ or $[4N]_4$, then the null eigenvector of $C_{\mu\nu}$ is tangent to M_2^c at p
- (iii) if $C_{\mu\nu}$ is of the type ⁽²⁾[4N]₂, then at least one eigenvector of $C_{\mu\nu}$ is tangent to M_2^c at p,
- (iv) if $C_{\mu\nu}$ is of the types $[2N_1-2N]_2$ or $[2N_1-2N]_{(1-2)}$ or $[2N_1-2N]_4$, then two null eigenvectors of $C_{\mu\nu}$ are tangent to M_2^c at p,
- (v) if $C_{\mu\nu}$ is of types $[4N]_1$ or $^{(3)}[4N]_2$, then every vector $(\neq 0)$ tangent to M_2^c at p is the null eigenvector of $C_{\mu\nu}$,
- (vi) every vector (\neq 0) tangent to M_2^c at p is a multiple generalized Debever-Penrose vector.

Proof: If $\tilde{\nabla}$ is flat, then for each point $p \in M_2^c$ and for each null tetrad (e_1, e_2, e_3, e_4) at p such that (e_2, e_4) are tangent to M_2^c we have:

$$C_{44} = C_{42} = C_{22} = 0 (3.1)$$

(see Proposition 1).

Then from the eigenvalue equation

$$C_{ab}X^b = \lambda X_a \tag{3.2}$$

and from (3.1) one finds that

$$\lambda = \pm \sqrt{(C_{12})^2 + C_{41} \cdot C_{32}} \,. \tag{3.3}$$

Hence, for each point $p \in M_2^c$, $C_{\mu\nu}$ possess one quadruple or two double eigenvalues and then $C_{\mu\nu}$ is one of types (at p) [10]: $[2N_1-2N]_2$, $[2N_1-2N]_{(1-2)}$, $[2N_1-2N]_4$, $[4N]_1$, (3)[4N]₂, (2)[4N]₂, [4N]₃, [4N]₄. Thus (i) is proved.

Now, for each point $p \in M_2^c$ at least one null eigenvector of $C_{\mu\nu}$ is tangent to M_2^c . Assume that it is not true. Then one can select the null tetrad (e_1, e_2, e_3, e_4) at some $p \in M_2^c$ in such a manner that (e_2, e_4) are tangent to M_2^c and that e_3 is the null eigenvector of $C_{\mu\nu}$ at p. Hence,

$$C_{33} = C_{32} = C_{31} = 0. (3.4)$$

From (3.1) and (3.4) it follows that:

$$C_{22} = C_{24} = C_{23} = 0. (3.5)$$

This means that e_2 is the null eigenvector of $C_{\mu\nu}$ at p. Therefore, for each point $p \in M_2^c$ at least one null eigenvector of $C_{\mu\nu}$ is tangent to M_2^c and hence (ii) and (iii) hold. We assert that if $C_{\mu\nu}$ possess at least three null eigenvectors at $p \in M_2^c$ then two of them are tangent to M_2^c . Let (e_1, e_2, e_3, e_4) be any null tetrad at $p \in M_2^c$ so that (e_2, e_4) are tangent to M_2^c and (e_2, e_3) are null eigenvectors of $C_{\mu\nu}$ at p. Let E_1 be the third null eigenvector of $C_{\mu\nu}$ at p. One can select the null tetrad (e_1, e_2, e_3, e_4) so that

$$ds^{2}(E_{1}, e_{3}) = 0$$
 and $ds^{2}(E_{1}, e_{2}) = 1$, (3.6a)

or

$$ds^{2}(E_{1}, e_{3}) = 1$$
 and $ds^{2}(E_{1}, e_{2}) = 0.$ (3.6b)

Suppose (3.6a). Then,

$$E_1 = e_1 + ze_3, (3.7)$$

where z is the complex number. Define the null tetrad (e'_1, e'_2, e'_3, e'_4) at p by the formulae

$$e'_1 := E_1; \quad e'_2 := e_2; \quad e'_3 := e_3; \quad e'_4 := e_4 - z e_2.$$
 (3.8)

One easily finds that

$$C_{\mu\nu}e_4^{\prime\mu}e_4^{\prime\nu} = C_{\mu\nu}e_4^{\prime\mu}e_2^{\prime\nu} = C_{\mu\nu}e_4^{\prime\mu}e_1^{\prime\nu} = 0.$$
 (3.9)

Consequently, the null vector e'_4 tangent to M_2^c at p is the null eigenvector of $C_{\mu\nu}$ at p. Now assume (3.6b). This implies

$$E_1 = e_4 + z'e_2, (3.10)$$

and E_1 is tangent to M_2^c at p.

Thus, we have proved that if $C_{\mu\nu}$ possess at least three null eigenvectors at $p \in M_2^c$, then two of them are tangent to M_2^c . Hence, one concludes that (iv) for types $[2N_1-2N]_2$, $[2N_1-2N]_{(1-2)}$ and (v) hold. Notice that for types $[4N]_1$, $^{(3)}[4N]_2$ all eigenvalues of $C_{\mu\nu}$ vanish.

Finally, let $C_{\mu\nu}$ be of type $[2N_1-2N]_4$ at the point $p \in M_2^c$. Suppose only one null eigenvector of $C_{\mu\nu}$ at p is tangent to M_2^c . Choose the null tetrad (e_1, e_2, e_3, e_4) at p so that (e_2, e_3) are null eigenvectors of $C_{\mu\nu}$ at p, (e_2, e_4) are tangent to M_2^c and [10]

$$C_{\mu\nu} = N(e_{4\mu}e_{3\nu} + e_{3\mu}e_{4\nu} - e_{1\mu}e_{2\nu} - e_{2\mu}e_{1\nu}) + 2Nz(e_{3\mu}e_{2\nu} + e_{2\mu}e_{3\nu}) + e_{2\mu}e_{2\nu} + e_{3\mu}e_{3\nu}, \quad (3.11)$$

where (-N, N) are eigenvalues of $C_{\mu\nu}$ at p, z is some complex number (in [10] z = 0 and $e_3 \to E_4$, $e_4 \to E_3$, $e_1 \to E_1$, $e_2 \to E_2$). From (3.11) one finds that

$$C_{44} := C_{\mu\nu} e_4^{\ \mu} e_4^{\ \nu} = 1 \neq 0, \tag{3.12}$$

but this formula contradicts (3.1).

Consequently, two eigenvectors of $C_{\mu\nu}$ are tangent to M_2^c at p. Finally (i-v) have been proved. Now $C^{(5)}=0$ and $C^{(4)}=0$ on M_2^c . Hence, (vi) holds and the proof of Theorem 1 is completed. \square

An intermediate consequence of Theorem 1 is:

Corollary 1. If $\tilde{\nabla}$ is flat, then for each point $p \in M_2^c$ at least one eigenvector of $C_{\mu\nu}$ is tangent to M_2^c and every eigenvector of $C_{\mu\nu}$ tangent to M_2^c is a multiple generalized Debever-Penrose vector. \square

Now we prove the theorem which is in some sense reciprocal to Theorem 1. Theorem 2. Let M_2^c be a null string and let for each point $p \in M_2^c$ $C_{\mu\nu}$ be one of the types: $[2N_1-2N]_2$, $[4N]_3$, $[4N]_1$. If for each point $p \in M_2^c$ at least one null eigenvector of $C_{\mu\nu}$ is tangent to M_2^c , then the connection \tilde{V} on M_2^c is flat.

Proof: Let $C_{\mu\nu}$ be of type $[2N_1 - 2N]_2$ at some point $p \in M_2^c$. Hence, there exists the null tetrad (e_1, e_2, e_3, e_4) at p so that [10]

$$C_{\mu\nu} = N(e_{4\mu}e_{3\nu} + e_{3\mu}e_{4\nu} - e_{2\mu}e_{1\nu} - e_{1\mu}e_{2\nu})$$
 (3.13)

and e_4 is tangent to M_2^c .

Then we conclude that e_1 or e_2 is tangent to M_2^c and from (3.13) it follows that

$$C_{\mu\nu}X^{\mu}Y^{\nu} = 0 \tag{3.14}$$

for arbitrary vectors X, Y tangent to M_2^c at p. Now assume that $C_{\mu\nu}$ is of type $[4N]_3$ at p. So there exists the null tetrad (e_1, e_2, e_3, e_4) at p such that [10]

$$C_{\mu\nu} = \frac{\sqrt{2}}{2} i \left[e_{4\mu} (e_{1\nu} - e_{2\nu}) + (e_{1\mu} - e_{2\mu}) e_{4\nu} \right]$$
 (3.15)

and e_4 is tangent to M_2^c . Hence e_1 or e_2 is tangent to M_2^c and using (3.15) one finds

$$C_{\mu\nu}X^{\mu}Y^{\nu} = 0 \tag{3.16}$$

for arbitrary vectors X, Y tangent to M_2^c at p.

If $C_{\mu\nu}$ is of type $[4N]_1$ at p then obviously

$$C_{\mu\nu}X^{\mu}Y^{\nu} = 0 \tag{3.17}$$

for every vectors X, Y tangent to M_2^c at p. Therefore using results of Proposition 1 one easily deduces that $\tilde{\nabla}$ is flat. \square

It is well known that the energy-momentum tensor of the complex electromagnetic field (linear or non-linear) belongs to one of the types [10]: $[2N_1-2N]_2$ (general field), ${}^{(3)}[4N]_2$ (null field), ${}^{(2)}[4N]_2$ (one-sidedly null field). Consequently, using the results of our theorems one finds: 1° If (M_4^c, ds^2) is the complex space-time with the electromagnetic field and M_2^c is a flat null string ($\equiv \tilde{\nabla} = 0$) of M_4^c then for each point $p \in M_2^c$ one (at least) null eigenvector of the energy-momentum tensor is tangent to M_2^c ; for types $[2N_1-2N]_2$, ${}^{(3)}[4N]_2$ two null eigenvectors are tangent to M_2^c . Moreover, for each point $p \in M_2^c$ each null eigenvector of the energy-momentum tensor tangent to M_2^c is a generalized Debever-Penrose vector; 2° If (M_4^c, ds^2) is the complex space-time with the general electromagnetic field and M_2^c is a null string of M_4^c such that for each point $p \in M_2^c$ one of null eigenvectors of the energy-momentum tensor is tangent to M_2^c then M_2^c is flat.

The author is indebted to Professor J. F. Plebański for his interest in this work and to Dr J. Kalina for many useful discussions.

REFERENCES

- [1] J. F. Plebański, J. Math. Phys. 16, 2395 (1975).
- [2] J. D. Finley, III, J. F. Plebański, J. Math. Phys. 17, 585 (1976).
- [3] J. F. Plebański, I. Robinson, Phys. Rev. Lett. 37, 493 (1976).
- [4] C. P. Boyer, J. F. Plebański, J. Math. Phys. 18, 1022 (1977).
- [5] A. Garcia, J. F. Plebański, I. Robinson, Gen. Relativ. Gravitation 8, 841 (1977).
- [6] A. Garcia, J. F. Plebański, Nouvo Cimento 40B, 224 (1977).

- [7] J. D. Finley, III, J. F. Plebański, J. Math. Phys. 18, 1662 (1977).
- [8] C. P. Boyer, J. F. Plebański, Rep. Math. Phys. 14, 111 (1978).
- [9] C. P. Boyer, J. F. Plebański, Complex General Relativity, & and & & Spaces -- A Survey, Com. Tec. Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas. Universidad Nacional Autonoma de Mexico, Mexico 20, D. F. 9, No 174 (1978).
- [10] M. Przanowski, J. F. Plebański, Acta Phys. Pol. B10, 485 (part I) (1979).
- [11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York — London, Vol. I, 1963, Vol. II, 1969.
- [12] J. F. Plebański, S. Hacyan, J. Math. Phys. 16, 2403 (1975).