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THE PERTURBED SINE-GORDON EQUATION

By M. ZnNomno
Nuclear Physics Institute, Czechoslovak Academy of Sciences*
( Received March 23, 1979)

We discuss some solvable modifications (perturbations) of the sine-Gordon equation
which may be modelled by circular pendula in an outer field. The existence and shape, stabil-
ity and mass formulae for solitons are illustrated by a double-sine-Gordon. A new class
of so-called Jacobi-Gordon equations is introduced.

1. Introduction

The Klein-Gordon equation

Gzp~0ry = &(p) 1)

with &(g) = P¢(@) = @ provides a relativistic description of the scalar field ¢ = ¢(x, t).
For |l¢ll <1, Eq (1) may be interpreted as the first order approximation to its ’more
realistic” nonlinear form with &(¢) # Pxs(g). In the special sine-Gordon (SG) case
P(¢) = Pys(p) = sing, great interest in Eq. (1) was inspired by the existence of soliton
solutions [1] as possible candidates for the description of elementary particles [2].

The SG equation is very exceptional from both the formal and physical point of view
{1]: E. g., introduction of any small perturbation to ®g; admits just the approximate
(numerical) treatment [3, 4] while other known solvable equations differ very sigpificantly
from the SG case [1, 5]. In the present paper, we suggest employing the analytic means
for the investigation of some properties of special (,,Jacobi-Gordon™) perturbed SG
equations using the simplifying ansatz ¢(¢) = f(¢) f'(¢) and the closed shape, mass and
stability formulae.

In Section 2 we start with the pendulum interpretation of SGE [6]. This admits the
periodic perturbation to be added to ¥, preserving the physical (and possibly soliton)
interpretation. The corresponding modification of the mechanical model is obtained just
by a small change in the external forces.
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The double-sine equation (DSE, Eq. (1) with &(¢) = Ppg(g) = sin ¢+ ; sin g)

is investigated in Section 3 as the well known example. The numerical studies [3, 4] of the
two (SG) soliton interaction are shown to reflect just the quasi-two-particle structure of the
single soliton of DSE. The “non-linear” behaviour of the perturbation is stressed.

Finally, in Section 4, the class of the Jacobi-Gordon equations is introduced: Different
doubly periodic f’s are considered and the simplest closed formulae are tabulated comple-
menting the recent soliton list given by Hu [5].

2. Pendulum-Gordon equations

The mechanical model of (1) with ¢ = & has been described by Scott [6]. It is com-
posed of the chain (along the x-coordinate) of pendula (angle ¢ = ¢(x, t)) for which (1)
represents an equation of motion. The kinetic term 82¢ and the elastic connection term
@2p are defined by the geometry of the chain while the form of the potential energy term
(sin @) depends on an outer field (the gravitational one).

Any nonlinear Klein-Gordon equation (1) with periodic ®{(¢) = &(¢p+2n) may be
modelled by the same chain of pendula in an ad hoc constructed outer field corresponding
to the functional form of nonlinearity @. The pendulum model works as an analogon com-
puter, and, via analogy with the sine-Gordon case, it shows how the solitons appear as
a simple consequence of the energy conservation in the model and what they look like.

The pure topological arguments [7] may be complemented by some simple formulae.
The Lagrangian density

2m* 2m*
= T Q=Y @ V() = - [0+ (@)= C] @

defines the one-dimensional Lorentz invariant field theory, the choice of the constant C
helps us to put the vacuum potential energy density ¥~ (vac) equal to zero. Eq. (1) is the
field equation corresponding to the Lagrangian density (2) when &(¢) = f(9)d,f(p) = ff".
This expression is to be inserted into the right-hand side of (1).

Static soliton solutions ¢(x, t) = U(x) are most easily obtained by integrating (1)
once and differentiating the ansatz

T[U(x)] = A exp yx. 3)
We get the explicit form of the unknown function T'in (3)
®
T(p) = expy | de[f*(0)—-C]""%, (4)
Po

which becomes tan (¢/4) in the SG case (fsg{g) = 2 sin ¢/2).
The general mass and stability formulae may also be obtained in close analogy with
the sine-Gordon case. Using the potential energy functional

Vvl = | 1o
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corresponding to Lagrangian density (2), it is usual to define the classical mass of the soli-
ton U as the difference

M = V[U]-V[vac] = 8m®*1 ™ 'y,

U{x)

2 = j SLU]dx = L, Jwau (5)

(for C = 0). When using the “scaling” f(¢) -» af(f¢) in-(2), and hence &(¢) — **BD(Bp)
= Pg(@) in (1) (e.g. to normalize the general period of ds(p) to 2xn), the soliton mass is
multiplied by the factor «/f.

The small linearized perturbations superimposed on the soliton U(x) are governed
by the Schrodinger-like equation [8]

_afyn(x)-*- W(x)xn('x) = wnln(x)'
W(x) = f(O)f (W) +f*U), U = U(x). ()

For most solvable cases, this is reducible to the hypergeometric equation [9]. Nevertheless,
the zero frequency mode is known for all f7s, yo(x) = f{U), we = 0. Provided it is sufficient-
ly smooth and has no zeros for finite x, the oscillation theorem [10] for (6) implies that
7o 18 an eigenstate of homogeneous equation (6) with minimal energy. This eigenstate
corresponds to the translation invariance of (1), w, > 0 for n > 0 and solution U(x)
is therefore stable. This will be satisfied for any input function f(U) which has no “super-
fluous” vacua (minima of f2) i.a. for all ’s in the following sections.

3. Double-sine-Gordon equation

The specific choice of an auxiliary function

fos(@) = ib(aB)™ " +i(a/B)''* cos By )

leads to DSE since
R . a . a 2b
P = fps/ps = bsin fo+ —z-sm 2B = 7:1535 2Bp,— }.
a

The perturbation calculations by Newell {3] are based on the assumption b - O(a = 2,
f = 3). Applying the considerations of Section 1, we may interpret his “synchronization
of solitons™ as follows:

In the pendulum model the outer field which defines & in (8) is similar to the homo-
geneous gravitational one in the limiting case @ — 0(b = f = 1) only. Because of the
discontinuity in the value of the period of @ in the vicinity of b = 0, two entirely different
pendulum models must be used for & = 0 and b # 0, respectively, and the perturbation
of the sine-Gordon case b = 0 must be treated with due care.
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Insertion of (7) into (4) yields the one-soliton solution for all positive values of @, b, .
After simple rearrangement, we get the shape formula

2
U(x) = 3 arcsin z7 %,z = ch? yx—n? sh? yx,

n* =af(a+b), y=1[(a+b)B]'", €)

and see again that the smooth perturbation of the sine-Gordon soliton occurs for n? < 1
only. “Non-perturbative” phenomena emerge even for a > b > 0, i.e. n* > 1/2. Al-
though soliton (9) is still stable (xo(x) # 0, |x| < o0), it becomes localized at two symme-

1
tric points x = + - arch n/n’, 1’2 = 1 —n? that move apart as n — 1. The stability potential
Y

Wps(x) = a+b—2(b+4a)/z+8ajz* to be inserted into (6) exhibits also two-dip structure.
For a non-vacuum field ¢(x) = (2k+ 1)/, the potential energy density ¥ starts to have
a local minimum (f2(f¢)—C)/f = 4b/p approaching zero as n — 1. Therefore, the change
in the period by a jump 27 — 7 at n = | allows us to interpret the distant halves of soliton
(9), for n £ 1, as a system of two weakly bound SG solitons.

This interpretation is consistent with the “synchronized” motion due to the possible
addition of small linear perturbations. We may further support it by giving the mass for-
mula

26\2n 1—n
M = My(1+2n%/34-0(n*)),
M = 2My(1—b In b/4+0(b)) (19

for soliton (9). The sine-Gordon one-soliton mass M, = 8M?3/4 is obtained for a~ 0
(b= B = 1) while for b~ 0(a = 2, f = 1) we get the masses of two solitons minus the
nonpolynomial (!) binding energy correction,

The idea of coupling solitons by shifting the minima (and local minima) in the potential
energy density ¥~ or by adding small “interaction” terms with greater period to & = ff’
leads to interesting model constructions: bound states of the soliton-soliton type may
reflect the clusterization of solitons (e.g. quarks and nucleons in nuclei with ff’ = sin ¢
+g; Sin @f3+£:6, 5in @/12+ ..., 8,6, < 1 etc) in a way similar to the optical coher-
ence phenomena [4].

4. Jacobi-Gordon equations

Perturbation of the sine-Gordon equation by higher harmonics is a problem to be
solved on the computer. The Jacobi doubly-periodic functions are another and more natu-
ral means of smoothly deforming the sine term (sin ¢ = sn (g, k) + O(k?)). The advantage
of using Jacobi functions lies in the existence of useful functional relations, relatively simple
analyticity properties and symmetries [11].
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To obtain a large variety of pendulum-Gordon equations with exact soliton solutjons,
we use directly (4), (5) and employ the Jacobi functions in place of . Performing the scaling
@ — @/2 = u we eliminate the redundant numerical factors (fsg(#) = sin u) and obtain
the list of the fundamental solvable perturbed SG equations given in Table I, where
the following abbreviations are used: s =sn(u, k), c =cn(u, k), d =dn(u, k), S =
sn (uf2, k), C = cn (uf2, k), D = dn (u/2, k), k¥* = 1—-k'2 The one-soliton solutions U =

TABLE I

The alternatives of the Jacobi-Gordon equation and corresponding one-soliton solutions and their masses

7

Equation Soliton i Mass
mo D10) ; f@y v Tt s Hm
: ; . e i S -

: .

1 sejd? sfd +1 { sfc+1) = SD/C 2y/sin 2y
2 sed s +1 } s/(c+d) = S(CD) ofth o
3 ' -scd c lsk | kst e ¥ y/sin
4 : —k'%scld® i ocd | &1 ' (1+5)c ! o/th o
5 : (3 —2/dscld? b sjd? ! +1 | si(ct+dXd—ko®) ) 1/cos® ¢

U,(x) for different right-hand sides ¢ = ¢,(U) of (1) are defined by T = T,(U) and (3)
with 4 = | in an implicit way. The masses are given by {5) in terms of the hypergeometric
functions p, of the parameter k? = th?¢ = sin? . Using definition [11] of the elliptic
integral of the first kind F(r, k) we get the explicit forms

U (x) = F(2 arctan ¢”, k),

U,(x) = 2(14+ k)" *F(arctan &, 2k ?(1 + k)™ 1),
U,(x) = F(arccos th k'x, k)+ F(n/2, k),

Uy(x) = F(arcsinth x, k), ...

of one soliton solutions. Table | may be continued arbitrarily by halving arguments, insert-
ing dn’s etc. but starting with the fifth row, the inverse 7-* becomes a complicated function.
Let us consider the first row (m = 1) and specify the Jacobi-Gordon (JG) equation as

%u(x, t)—fu(x, ) = a*&,clu(x, 1)],

®,(u) = sn (u, k) en (u, k)/dn® (u, k) (11)
(@ = 1). It “interpolates” between the sine-Gordon (k = 0) and another standard (sinh-
-Gordon, k = 1) equation. For u < 1, very close approximation of the polynomial A¢®
and Ag* field theories by (11) may be achieved by the special choice k(z(,, = 1/2, ky,
= (143/,/17)/2 of the value of modulus which corresponds to the elimination of the O(*)
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and O(u®) terms, respectively, in the Taylor expansion of ®,5(u). We may also find the

connection between (11) and DSE since
2

k
Dy6(u) = sin p— > sin 2+ O(k™).

Thus, the transition from (11) to (8) (for b = 1, @ = —k? and § = 2) and to the SG equa-
tion is smooth for smail k. Moreover, the stability potential

Wig(x) = 1 —2(1 =2k%)jz = 3k*(1 —k?)/z%, z = ch? x—k?

to be used in (6) has the structure of Wpg(x). It seems that both JG and DS cases have
the same level of mathematical complexity.

The different forms of @(u) given in Table I are not independent. By analytic continua-
tion and using the identities valid for Jacobi functions we get

@,6(u) = sn (u, k) cn (u, k)/dn’ (u, k)
= —k'"*sn(u,, kycn (u, k) dn (u,, k)
= + k"7 sn (uy, ky) on (usy, ky) dn (uy, k),
u, = u—F(nf2, k), u,=ku, k,=iklk, k?*=1=k?

which renders it possible to identify the first four items in Table I by means of simple
re-interpretation of the corresponding pendulum model. Yet, they are physically distin-
guishable for @®> = 1 in (11) due to the different outer fields needed to define different
@’s in the pendulum model. E.g. after m-normalization of the period we get increasing or
decreasing k-dependence of soliton mass for m = | or 3 in Table I, respectively.

Since the non-elementary Jacobi functions are obtained even when solving the simple
SG equation (Hu [5]), it is interesting to note that now the class of necessary functions
is closed. Really, the ansatz for the one-dimensional static field u = u(x)

sn(u, k) = fpq(x, 1), (12)

where pq represents any Jacobi function (sn, en or dn) and x € (~ o0, o), leads to the same
type of equation (11) satisfied by u(x) provided that we specify @2, f and pq according

to Table 1I. This may be verified by direct insertion.
TABLE 11

The static “soliton-lattice” solutions Eq. (12), u(x) = F(arcsin 8 pg(x, ), k), to Jacobi—-Gordon equation
k2 = 1=k2 12 = 1-1?)

pa(x, D B a? m
en (x, ) 1 1—k212 1
cn (x, Dy I/ —1+ 1%k
dn(x,/) 1 1-k317 1
dn{x, D) W k=1
sn (x, ) 1 —124k2 4
sn (x, /) 4 —1+k212 4
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The general static sofution given by (12) is not stable. Let us again consider the first
row of Table 11 only. The solution (12) with / # 1 may be visualized as an infinite number
of coils of the elastic connection of pendula. For £ = 0 it becomes identical with the SG
soliton lattice described by Hu [5]. For any k > 0, the finite energy per coil may be defined
by the integral along one period (C = 0)

M= f [0 417w ]dx

and evaluated in a closed form. In our case we have

M o= 1M an
R %

Ao(p, D=1"*F <g k)] My = 8m?/i, sinwy = kja, (13)

where A, denotes Heumann’s lambda function [11].

Because of the repulsion of the coils (M, > M), the boundary conditions must be
fixed by some additional external force in the mechanical model. Removal of this force
either entails the time dependence of the solution or corresponds to the limit/ - 1, x, —
—00, x; — 0. Only one static coil (= one soliton) pertains and the energy (13) decreases
to the one soliton mass M = M, - 2y/sin 2 y. Further, the sine-Gordon limit (/ = 1,
k — 0) of the mass M is equal to M, so that the transition to k¥ # 0 is continuous and the
free parameter k enables us to vary the nonlinearity in a smooth though nontrivial way.

Similar conclusions hold for other items in the Tables (the fifth row in Table I inter-
polates between SGcase k = 0and DSEfork = 1,a = —1/2,b = 1, ¢ = pure imaginary,
it provides similar approximations of the Ag® and ig* theories with k(zs) =1/5 and
kl,y = (3+./113)/26, respectively, etc.). Unfortunately, it is not yet clear whether also
the breather and/or the N-soliton solutions will be found in a closed analytic form in the
near future. Nevertheless, the N = 1 and N = co soliton solutions given here might also
be of considerable help in numerical analysis of N > 1 cases.

5. Concluding remarks

Soliton is a new phenomenon in the field theory being an essentially non-perturbative
solution of (nonlinear) field equations. The most popular sine-Gordon case underlying
many speculations is exceptional in its simplicity (from many points of view). We have
discussed here, on the classical level, some examples of the influence of the finite periodic
perturbation on the sine-Gordon equation. They may help elucidate the role of perturba-
tion in the nonlinear (non-polynomial) context. Many questions remain open, and not
only formal ones (possibility to generalize the Backlund or inverse scattering transforma-
tions) but especially those concerning the quantization (through WKB and equation (6)
related to the “next to solvable” class of Fuchs differential equations with four singularities
[12]) and non-perturbative renormalizability.



958

APPENDIX

Reduced form of the JG equation

We perform the change of independent variable u(x,?) = v(x,t) = sn(u/2, k)
dn (u/2, k)jen(uf2, k) and express 62u, 87u, ®ys(u) in terms of d2v, 82v, (8,0)2, (B0)3, v.
JG equation (11) with ¢* = 1 then becomes

K y(v)— k' *y(iv) = 0,
9(0) = v(1~2%) [(1 ~0%) (20— 870)+20((8,)° — (6,)") — v(1 +07)]. (A1)

We note that this is the common reduced form of the JG, SG and sinh-Gordon equations
for k2 # 0,1,k* = 0 and k% = 1, respectively. Unfortunately, we have not found the
multisoliton solutions for k% # 0, 1. E.g. the method of Osborne and Stuart [13] (separable
ansatz for v) gives only the one-soliton solution again.

It is worth mentioning that the mixing of solutions of SG and sinh-Gordon equation
in (Al) resembles the Backlund transformation formulas obtained for the 2+1 and 341
dimensional versions of the SG equation [14].
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