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A NON-COMPACT GAUGE GROUP FOR THE DIRAC EQUATION
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It is shown that infinitesimal transformations of a Dirac spinor, in which small amounts
of negative energy states are mixed with positive energy states, together with infinitesimal
phase transformations, form the generators of an sl(2,R)-algebra. The global invariance
of the Dirac equation obtained in this way is extended to a local invariance by introducing,
in addition to the electromagnetic potential, another complex potential, which carries nega-
tive energy and is doubly charged. The field equations for the Dirac field coupled to the new
gauge fields are derived and a number of special solutions are given.

1. Introduction

The multiplications of a Dirac spinor by a phase factor form a one parameter contin-
uous group of transformations, which leave the Dirac equation invariant. The only dis-
crete invariance transformation which is not related to a change in the space and time
coordinates is the charge conjugation C:

w(x) = ¥(x) = Y?9¥(x) = po(x). (1.1)
It changes a state of positive energy into a state of negative energy, which follows from
the fact that $.y, = —Py. Since the difference in sign of the energy cannot be declared

to be physically irrelevant, it seems impossible to enlarge the U(1) group of the phase
transformations by adding the discrete transformation (1.1).

However, it is possible to mix infinitesimal phase transformations with infinitesimal
C-transformations

p - ¢ = p+igyp+Py.+ ... (2 real, f complex) 1.2)

such that Py is invariant.

In this paper we want to investigate the consequences of the assumption that for
two states which are connected by the transformation (1.2) all observable effects are the
same.

* Address: Instituut voor Theoretische Fysica, Princetonplein 5, Postbus 80.006, 3508 TA Utrecht,
The Netherlands.
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We will first show that the transformations (1.2) form an invariance algebra sl (2, R)
for the Dirac equation. We will then turn this global gauge invariance into a local one and
introduce gauge fields in the usual way: the electromagnetic fields connected with the phase
transformations and a new complex field, related to the infinitesimal transformations of
charge conjugation. We stress that no probability interpretation of the theory is given
and that the whole discussion is for classical fields. Transformation (1.2) is the infinitesi-
mal form of a transformation discussed by Galindo [']. Because it does not appear to be
well known and because our method of deriving it can be readily generalized, we discuss
this transformation in some detail.

In the remaining part of this section we want to derive the global invariance group

of the Dirac equation (y*d,+m)yp(x) = 0, but in a slightly different way from that indicated
above. We use the convention in which

k~0 —ioy _ 4 _.o0_ (1 0
Y —.(iO’k 0 (k=1,2,3) 9y =iy’ = 0 —1

'yﬂyv“}"'))‘lyp = 2g"v (v, v=0,1,2, 3)

so that

with the metric —g% = g!! = g2 = g33 = +1,
By introducing the 8-component real spinor

_ (Rep(x)
X(x) = (Im w(x))
the Dirac equation can be written as

("o, +m)X(x) = 0 (1.3)

with the real 8 x8 matrices I'* defined by

0 0 iy 1 0 iy 2 (¥ 0 3 0 iy
= = = F = .
r (—iyo o )0 T -yt 0 /)’ r 0 ) —-iy*> 0

These satisfy the usual anti-commutation relations I'*I'"+I"T* = 2g*°. The Lorentz

scalar (y, which we will also keep invariant under our new transformations, can be writ-
ten as

Py = XX = XGX,

where

Consider now all real and linear infinitesimal transformations

Xi(x) = Xi(x) = (0;;+ Y+ ..)X (%), (1.4)
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which do not change the value of XX and are such that X’(x) again satisfies Eq. (1.3).
The latter condition requires that ¥ commute with all I'*: [Y, I'*] = 0. We find for the most
general infinitesimal transformation Y the form

Y = 6L, (1.5)

in which 8° are the infinitesimal real parameters and

»2 0 0 5?2 0 1
L1=<(l) ——}'2)’ L2=<yz g), L3=<__1 O)

are 8 x 8 real matrices. They indeed commute with all I'*: [L,, I'"] = 0.
The matrices 3L, form an algebra

[}f Laa % Lb] = c.cah : %‘Lc
with the structure constants

1
c33= —cC3, = —1, ¢ = —cl; = -1, ¢}, = —c3; = +1, ali others zero.

A metric in the “charge space” spanned by 6 = (6, 02, 8°) is defined by

1 0 0
Kab = ‘;" cf‘adc'.jbc or K = 0 ] 0
00 -1

and this metric tensor will be used for raising and lowering the group indices a, b, c, ... .
In view of the gauge fields to be introduced later we will call a vector 8 of the electromag-
netic type, of the charged type or a null vector, when its length, defined by

0% = 0,0° = K*0,0, = 07+ 03 03,
is negative, positive or zero respectively. The multiplication rules for the matrices L; are
L.Ly = Kgp+copLis (1.6)
from which follows in particular that
Lly+L,L,=0 for a#b I[A=I5=1 and I4=—1.

L; is a compact generator, L; and L, are non-compact. This is related to the way in which
the original y-field changes under an infinitesimal transformation. For this we find
P(x) = (%) = ()= i0p(x)+ (0’ +i6")p(x)+ ...

with p.(x) = y*9*(x). We see that L, is connected with the change of phase and L, and L,
with the charge conjugation as mentioned in the beginning of this section.
Finite transformations which leave the Dirac equation invariant are given by!

X'(x) = gX (%), a.n

! We prefer this form, since for non-compact groups two exponentiations are generally necessary
to map the algebra onto the group [2].
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with

g =g’1+¢°L, (1.8)
and

(8 —g"e = 1. (1.9)
Using Eq. (1.6) it can be shown that the matrices g are the elements of a group with the
inverse given by

g =e"1-2"L,
In fact they form an eight-dimensional reducible representation of the non-compact group
SL(2, R). The formulas (with T indicating the transposed)

GLL = —L,G and GUI™ = —I'*G (1.10)

are easily proved. With the first of these it then follows that X transforms as
X(x) = X'(x) = X(x)g™ %, (1.11)
from which, combined with equation (1.7), it is seen that X X is indeed invariant, also under
finite transformations. For the y-field these become
Y(x) = (8°~ig”)p(x) +(g" +ig")wu(x).

We see that y’(x) can never be equal to y.(x) and the operation of charge conjugation is
not a gauge transformation. Since |g°—ig3|?> = |g* +ig?|2+1 we also see that an increase
in the amplitude of negative energy components of the wave function is accompanied
by an equal increase in amplitude of the positive energy components. The energy of the
state is invariant; the gauge invariant energy-momentum tensor is given in the next section.

The Dirac equation in the real form Eq. (1.3) can be obtained from the Lagrangian

L = —-X(I"0,+m)X, (1.12)
or in terms of the y-field
L=—% @()’"5y+M)w+% u‘)(y“@—m)zp.

Because of the new gauge group new conserved currents can be derived from this Lagran-
gian. We find

st = XL,I"X, 8, =0. (1.13)

"
In terms of the y-fields they can be written as

* == —ipy'y,

which is the usual current connected with phase changes, and a new current connected with
charge conjugation and given by

i b

S!‘

v

)]

1 _
(si+ish) = — \75 Pyy



and its complex conjugate

u 1
S*:__._

= \/i (slll - ls‘Zt) = \75 @Y“%-
A Lorentz and gauge invariant quantity constructed with these currents is
M5, = — "+ 25 sy,

Without spoiling the new gauge group we can therefore obtain a self-interacting Dirac
field by adding to the Lagrangian (1.12) a current-current term

L, = g, G0y ) Py v)—(B"y) (07 vo)]-
Another invariant interaction term, leading to the Thirring model, is

Ly = Gs('I”p)z
More generally we could extend any field theory and require invariance under continuous
transformations mixing particle and anti-particle states as in Eq. (1.2). We will, however,
not pursue these ideas at the moment, but rather study the interactions introduced by
requiring that the global SL (2, R)-invariance found so far also holds locally. This will
be done in the remaining sections.

We end this section by remarking that Pauli [3] and Giirsey [4] have considered a rather
similar global transformation for quantized fields. In order to satisfy the anti-commutation
relations an extra factor y* had to be introduced [3]. It also was necessary to consider
two fields for the case where the particles were not massless [4]. In contrast we are discussing
one classical Dirac spinor with a mass.

2. Local gauge invariance

Local gauge invariance can be obtained in the standard way [5] by introducing twelve
real gauge potentials Z;(x) and replacing d,X(x) in the Lagrangian by the covariant deriv-
ative

D, X(x) = (0,+Z,(x)X

in which Z,(x) = eZ;(x)L, is an 8 x 8 matrix. Gauge transformations of the X-field are
again given by the formulas (1.7-9), but now with g°(x) and g“(x) functions of x. For the
Lagrangian to be invariant the gauge potentials should transform as

1

Z(x) = gZ,8 ' +gd,8™".
The fields F,(x) and their matrix forms are defined by

F,, = eF, L,
and

Fu = 8,Z,—0,Z,+[Z,, Z,]- (2.1)
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Under gauge transformations the latter behaves as
Fl(x) = g(0)F(x)g™ ' (x).
Adding an invariant term for the free gauge fields, the Lagrangian becomes
L= —X(I'"D,+m)X +% Fj,Fy.

The field equations derived from this Lagrangian read:

(r*D,+m)X(x) =0 2.2)

and
0,F(x) = —esg(x) (2.3)

with
sh(x) = XI'"L, X +2cFZ,,, (2.4)

which are the new conserved currents, taking the place of Eq. (1.13). For future use we
have also calculated the symmetric energy-momentum tensor and found

T = —FI*F'y+5 ¢"F3,F." +5 X(g"T"+ g°T")D,X. (2.5)

It is easily checked that this is invariant under local gauge transformations. It is also con-
served, i.e., 9,T*"(x) = 0 and its trace is

g, T"(x) = —mXX = —mpy. (2.6)

In order to display the electric charge of the new gauge potentials, we consider a special
infinitesimal gauge transformation for which only 8 = 0 is nonvanishing and 6! = 62 = 0.

1
The fields 4, = Z) and W, = 75 (Z,+iZ2) and the electron field y transform as follows
\

1
Ay(x) = A, (x)— - 0,0,  Wix) = W(x)=2i0(x)W,(x), v'(x) = p(x)—ib(x)p(x).

This shows that A4,(x) transforms like the electromagnetic field, whereas W ,(x) transforms
like a field carrying a charge which is twice as large as that of the y-field. Another uncom-
mon feature of the W,-field shows up when the energy-momentum tensor for a pure gauge
field is written in terms of

F,, = F), = 0,A,—0,A,+2ie(WW}—WIW,)
and
1
G,, = 7 (FL,+iFL) = 0,W,—0,W,+2ie(W,A,— W,A,).

We find
TIW — T;v+ Tgv,
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with
TP = F*eF’,— 4 g"'F, F* 2.7

and
TE = —G'G™*,— G"*G",+4% ¢"'G},G™. (2.8)

In the same way as for the Maxwell field it can be shown that the energy density T8°(x) = 0.
It is also true however, that the W -field carries a negative energy T%O(x) < 0. This is, of
course, connected with the fact that the W,-field mediates between positive and negative
energy states. For this reason it must not be excluded that upon second quantization,
when the positron acquires positive energy, also the W-boson will be of positive energy.
It will keep its double charge, however.

Returning to the classical case we should like to remark that, because of the existence
of negative energy states, there is probably no stable solution of the Dirac-Maxwell equa-
tions, describing an electron bound to its own electromagnetic field. The motto being:
“If radiation can occur, it will occur”. In the present case, however, the existence of a seif
binding et — W~ state should not be excluded a priori, because the radiation argument
appilies for the negative as well as for the positive energy states. Some aspects of this possi-
bility will be discussed in the next section, where a number of exact special solutions of
the field equations will be given.

3. Special solutions of the field equations

A. As a first example we take the equations (2.3) and (2.4) for the gauge fields and
consider the currents

o'(x) = XI'*L X 3.1

as given external sources, independent of time. We now try to find a static solution for
the gauge fields by making the Ansatz

3x) = ¢'%) and Zi(x) =0 (i=xy,2).
The equations then become

A, (X) = ed(x) and  2e.:9°0:9° = 0u(X),
which shows that the current densities o!(X) are completely determined by the charge
densities 2(x). The contribution of the gauge fields to the total energy [T%(x)dx can be
calculated from Eqs. (2.7) and (2.8) and gives

2 [+ Paes PN - Tants
g 4+ o f 0a(0e) 1o (.2)
[x—x
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(Notice the position of all indices; summation over a is implied). A special case occurs
for gi,(?) = 0. This happens if and only if 0J(x) = x,0(x), where the «, are the components
of an arbitrary real gauge vector. In this case the energy becomes

2
6= fD)I (3.3)
8

with
- [o(x)o(x) - -
flay = —a'a, and 1 =] ——=~ dxdx' > 0.
J fx—x'|
The force between the charges in two different regions can be calculated from Eq. (3.2)
or (3.3). In the latter case it is seen that this force is repulsive if f(z) is positive and attractive
if it is negative. In the repulsive case it is possible to find a global gauge transformation
which makes a; = ¢, = 0 and the field has become purely electromagnetic
An interesting situation arises if ¢2(x) is a null vector for all X, i.e.,

00(x)e*(x) =
which happens for instance if
2R = cos 7(¥)2(¥) and  @UF) = sin 1(H)eX).

Since we want to keep Z7(x) = 0 and have a static solution, only global gauge transforma-
tions are allowed and with such a transformation it will in general be impossible to make
o) vanish for all X and ¢9(x) equal to ¢ 03(x) everywhere. The total electric charge may
thus be non zero, whereas the total W- charge

0,+i0, = [[2(D) +i0d(M)]d5 = | *PeY(F)dx

may vanish if x(;) behaves appropriately, so that asymptotically there is only an electro-
magnetic field. In any case the force of a volume element dx’ on a volume element dx
becomes

><&
><L

Qs(")@a(x )
X —

dxdx’.

[ —cos (-] - S22

><8
AL

For x and X' close together it is seen that this force is not singular anymore. The integral
of X' over a small sphere around X is equal to zero. This may be called asymptotic freedom.
It means that in principle a charge distribution can be stable, which is impossible for the
electromagnetic and probably also for the Yang-Mills case, because for these theories no
null-vectors exist in the charge space.

It should be emphasized that this conclusion is a consequence of the assumption
that 02(x) is a null-vector. Whether this is really the case can only be established by solving
the equation for X(x) and calculating oJ(x) using Eq. (3.1). So far we have not succeeded
in solving this problem, except for a special case to be discussed in Section 3E.
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B. If the fields inside a particle are not singular one may perhaps get some idea of the
magnitude and type of these fields by looking for solutions of the field equations which
are constant throughout all space and time. For the Dirac-Maxwell equations only the
trivial solution y = 0 of this type exists. In the present case, however, a nonvanishing
p of the form y = (v, 0, 0, 0) can be found. A complete solution is given by

8m? m
o, =Zl=2}=2)=—,
V1= 572 Y * T 3e
as can be verified by substitution into the equations (2.2)-(2.4). For the energy-momentum
tensor as given by Eq. (2.5) we find

™ = ,
0 0 -3x 0
0 0 0 —3x]
with x = 2m*/81e2. The trace of T% is equal to —12x = —mipy, which is in agreement

with Eq. (2.6). The total energy density is

T = 3x = 2m” (3.4)
27¢*° :
of which a part T2° = x can be assigned to the electromagnetic field, Eq. (2.7) and a part
T2 = —2x is residing in the other gauge fields, Eq. (2.8). From Eq. (3.4) we can calculate
that the total energy contained in a cube with a side equal to the Compton wavelength
1/m of the particle is equal to 0.8 m, when e?/4n = 1/137. If a localized solution with finite
energy exists and has a similar energy density, we obtain an equation for the electric charge
by identifying this energy with the input mass of the particle | 7°°(x)dx = m. For dimension-
al reason the charge obtained from this equation cannot depend on m and e? is a truly
universal constant, if not of nature, at least of this theory.
C. In this section we will consider pure gauge fields, v = 0, and look for solutions
which are constant in space and time. From Eq. (2.1) follows that the fields can be written as

Fi, = 2ec®, Z)Z:, (3.5)

which should be substituted into the expression Eq. (2.4) for s*. The field equations (2.3)
are simply s4 = 0, which becomes

M!Z! = kZ, (3.6)

where we have introduced M4 = Z4Z; and x = M%. Multiplying Eq. (3.6) by Z* and
summing over a gives

MAM™ = xM*, 3.7
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Before solving Eq. (3.6) we first substitute the fields of Eq. (3.5) into the expression (2.5)
for the energy-momentum tensor to obtain

T = —4[MAM® —kM™ ]+’ g [MEMS — ]

From Eq. (3.7) we see immediately that 7% = 0. In the case of a compact gauge group this
would imply that the fields F,, are also zero. This is not so in the present case. Indeed it
can be shown from Eq. (3.6) that all Z; for which the corresponding F}, do not necessarily
vanish, must satisfy the relations

23—\/:-“ Zl-f-\/-zzz (3.8
2 a+b u a+b 4 )

ziz** = Jab, (3.9)

and

where ¢ and b must have the same sign and are defined by
a=2Z" and b=22" (3.10)

Using these relations the fields become

3 12 5241 a 3 2 b 3
F),=2dZ2,Z;-2;Z,), F,, = mi‘m, Fi, = s F,.,

from which follows immediately that
(F;v)2+(Fiv)2_(F3v)2 = 0.

So for each p, v-pair F,, is a null-vector in the charge space, which cannot be made to
vanish by a gauge transformation and therefore is a non-trivial solution of the field equa-
tions. We still have to show that the Egs. (3.8-10) allow solutions which give a non-vanish-
ing Fj,. This can be done by writing Z, = [V;, R,] and Z? = [V, R,]. Substitution into
Eq. (3.9) and using Eq. (3.10) gives

al =2 watvi4oi—1 =0, (3.11)
where
R1 : jéz vy V2
= - , vy=-— and v, =-—".
R1R2 Rl R2

Eq. (3.11) has a solution with —1 < a < lifand onlyif —1 <v, <land —1 < v, < 1.

b
From Eq. (3.10) we then find that R? = —1—‘—1,.-7 and R} = Ep which means that a
—U; —02
and b must both be positive, i.e., Z, and Z? are both space-like. For arbitrary a, b, v, and v,
satisfying the above conditions the vectors Z} and Z2 and hence Z_ can be constructed, such
that Eqs. (3.8-10) hold. An example with F}, # 0 is then easily given. Two solutions will
be called equivalent if one can be obtained from the other by a gauge transformation.
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This happens only if the quantity [Z,ﬁ]"'+[Zﬁ]2—[Zi]2 is the same for the two solutions
and for each u.

Now, in a classical field theory any state for which T"* vanishes, cannot be distinguished
from the vacuum. The above construction of a large class of non-equivalent solutions
with T"* = 0 therefore means that there are many different vacuum states. This is very
similar to the different vacua known to exist for the Yang-Mills theory. The difference
is, however, that here we work in Minkowski space and not in Euclidean space and with
a non-compact group instead of with SU(2). It seems likely that there exist finite energy
solutions which interpolate between different vacua. So far, however, we have not been
able to construct them explicitly.

D. For the Yang-Mills equations Coleman [6] has found non-abelian plane wave
solutions. Also in our case they exist and are given by

1=Z5=0 and Z{=1Z3=3xf"+3y8"+7 1"

where f*(u), g“(v) and h%(u) are arbitrary functions of the variable ¥ = z+¢f. The only
non-vanishing components of the fields and of the energy-momentum tensor are Fg, = F5,
= —3f°andFg, = Fi, = —4g", and T% =T% = —T% = _T% = _Lf% Lo
which are all functions of u = z-+¢. The functions f“(v) and g°(u) can be chosen in such
a way that 7°°(y) is positive for some u and negative for other u-values. Such a choice
therefore gives on observable difference with an electromagnetic plane wave, whereas for
the Yang-Mills case this difference did not exist.

We obtain again a vacuum state by choosing /(1) and g“(u) to be null-vectors in the
charge space. Then also the fields F;,(#) are null-vectors and this shows that the class
of constant vacuum fields, found in the preceding subsection, was not a complete characteri-
zation of all possible non-equivalent vacua.

E. In the preceding subsections we have seen that null-vectors in the charge space
can give rise to interesting solutions of the field equations. Another example will now be
constructed for the case where the X field does not vanish identically.

Let Xy(x) be a solution of the free field equation

(I'o,+m)Xo(x) =0
and define

X(x) = a®L.Xo(x) (3.12)

with «® a constant null-vector, i.e., a’x, = 0. Eq. (3.12) is not a gauge transformation
of Xo(x). Using Eq. (1.6) it is easy to see that

oL, X(x) = 0. (3.13)
For the gauge potentials we try a solution of the form
Zy(x) = o’A,(x). (3.19)
The fields calculated from Eq. (2.1) then become
F;

_— a
o = CF
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with F,, = 0,4,—0,4,. The second term in the right hand side of Eq. (2.4) for the current
is zero. With the help of X,I™X, = 0, which can be proved with Eq. (1.10), we then obtain
for the current of Eq. (2.4)

sH(x) = =0, XML, X o = a,5"(x).

By substitution of Eq. (3.14) into Eq. (2.2) and using Eq. (3.13) it follows immediately
that X(x) satisfies the field equation (2.2). The remaining Eq. (2.3) for the gauge fields
becomes

O, F(x) = —es"(x),

which 1s now decoupled from the Dirac equation and which, for a given Xy(x), i.e., for
a given s"(x), can always be solved.

Since Fj, is a null-field its contribution to the energy-momentum tensor is zero. It
can even be shown, in the same way as

XX = —a°o"X oL, L, X, = —a’a, XX, = 0,

that the total energy-momentum tensor Eq. (2.5) vanishes: T7"'(x) = 0. We therefore have
found a new vacuum solution for which the Dirac field does not vanish. Quantummechani-
cally one may speak of vacuum fluctuations. These fluctuations radiate a gauge field, which
however carries neither energy nor momentum. There are again many inequivalent vacuum
states of this type. Two functions X §" and X{?, for instance, which are connected by a Lo-
rentz-transformation, cannot give two vacuum states X’ and X®, which are related by
a gauge transformation. Also here there are probably finite energy solutions mediating
between different vacua and possibly describing stable single particle states. However,
an attempt to construct these states has not been made.

F. For the source free Yang-Mills equations Wu and Yang [7] have found a time-
-independent solution in which the indices for space-time are mixed with those for the
isospin. Since, however, the metric of our gauge group differs from the SU(2) metric, their
solution cannot just be copied to get a solution of our equations. Nevertheless it is possible
to construct a similar solution. This is done by looking for a z-independent solution of the
following form

Z;= =2, =1tgu), Z}= -2/ = -ygw), Z]= -Z]=xg),
all other components equal to zero, where ¥ = + NITRC y* and g(u) is to be determined
from the field equations. For a fixed 7 we thus consider the fields inside a cylinder, which
is centered around the z-axis and has a radius equal to z. With the above potentials the
currents s; and the fields F5” can be calculated and we find the following

= —sh= ~4yB), 3= —st=4xB), sb= —si= 4B
and
FJ' = —yC(u) (x, y, +1)=~D(w) (0, 1, 0),

F%% = xC(u) (x, y, +1)+D(u) (1, 0, 0),
F}? = tC(u) (x, y, + )+ D) (0,0, —1), (3.15)
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all other components equal zero. We have used the abbreviations

1 d 5 d
B(u) = g*+eu’g’, Cu) = — 8 —2eg”, D(u) = 2g+u »E.
u du du

The field equations (2.3) reduce to the single equation
1 d
C(u)—4eBu)+ — — D(u) = 0,
u du

which, with the substitution f(u) = 2eug(u), becomes
’ f  f?
[+ f—-(1+ f)( —) 0.

This is identical to Eq. {6] of Wu and Yang [7], who discuss the solutions in some detail.
One rather trivial solution, characterized by D(u) = 0, is

1
f(u) =y,
u
for which

1
B(u) = ~—5— and C{u) = _—.
() 8e°u* () 2eu*
For this, as well as for the other solutions found by Wu and Yang, the fields become sin-
gular near the front of the expanding cylindrical wave.
For the solution with D(u) = 0 the relation

(P +(F8) —(FF) <

is satisfied in each space-time point and for all u and v. In this case it is seen from Eq.
(3.15) that all F*” have the same direction in the charge space. There exists therefore a gauge
transformation such that all F{* and all F4’ become zero in each space-time point. This
transformation is given by

o, t+u v , —-X s
x) = ——, ()= o, gx)=0.
e 2u £x \/2u(t+u) g \X/Zu(t+u)

The resulting field is purely electromagnetic and has the following non-vanishing compo-
nents

+y - —t
M Fed ——-—~3-, Bz=-

2eu®’ 7 2eu 2eu’

The energy-momentum tensor can be written in terms of the functions C(u) and D(x). In
particular we find for the energy density

T°%x) = $ (22 —~u*) (u*C*-2CD)~1 D?



or

8eu? u

2t2 . u2 ¢2 -1 2 t2 ,
T°(x) = ( . > e €% (3.16)
with ®(u) = 1+uf(u). From Eq. (3.16) it is seen that T°(x) is certainly positive if

2 2
(*- {) > 2p) (3.17)
We have not been able to prove this for all w < ¢. 1t seems, however, from the tabulation
of ¢ in the paper by Wu and Yang, that Eq. (3.17) is satisfied, at least for points not too
close to the wavefront. But even for points where the energy density is positive the field is
certainly not of the purely electromagnetic type. This is shown directly by the form (3.15),
but can also be proved from the following observation. It is known [8] that, when the
energy-momentum tensor is constructed from a single skew symmetric field, like the Max-
well field, the 4 x 4 matrix T**T’} is a multiple of the metric tensor g"*. A direct calculation
of this matrix shows that for D{u) # O there are non-vanishing off-diagonal elements,
which proves that the above mentioned property of 7*'T} in general does not hold for
non-abelian gauge fields and in particular that the field of Eq. (3.15) cannot be purely
electromagnetic.

4. Final remarks and conclusions

In the first section of this paper we have observed that the Dirac equation is invariant
under mixing of states with positive energy with certain amounts of negative energy states.
Therefore, the differentiation between an electron and a positron is, to a certain extent,
an arbitrary choice. We have shown that this invariance is true, not only for the free Dirac
equation, but also when certain interactions are introduced. For the Thirring model the
invariance group remains the same, whereas for other interactions it may change. In trying
to make this invariance hold also locally we can say, quoting the paper by Yang and Mills,
mutatis mutandis, that ““... we wish to explore the possibility of requiring all interactions
to be invariant under arbitrary but equal changes in the positive and negative energy den-
sities at all space-time points, so that a change in these densities from one point to another
becomes physically meaningless (the weak interactions being neglected)”.

In the present paper this exploration was limited to the Dirac equation. We showed
that, after the introduction of gauge fields in the usual way, a mathematically consistent
classical field theory resulted, which is invariant under transformations forming the non-
-compact group SL(2, R). At first sight it seemed that the physical consistency was lost,
because two of the three gauge fields carry negative energy. This, however, could turn
into an advantage, because it may invalidate the heuristic argument why a classical Dirac
field cannot be stable. This argument is a variation of one of Murphy’s rules and says:
“if radiation can occur, it will occur”. With the presence of the negative energy gauge
fields, however, an electron may make transitions to states of higher and lower energy
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with equal ease. Indeed we showed by explicit construction that many non-trivial vacuum
states exist, which at most radiate a null-field. We would like to classify all these vacua
by finding a topologically invariant quantity, which could differentiate between them in
the same way as this is done by Pontryagin’s winding number for the Yang-Mills equations
in Euclidean space. However, the source of the topological current, defined by

é,J" = 8’ FXF

uv?

turns out to be zero for all our vacuum solutions and can therefore not serve as characte-
ristic quantity. We have not been able to find another classification and therefore cannot
draw firm conclusions from the existence of inequivalent vacua about the reality of inter-
polating fields with finite energy. The search for fields is complicated by the fact that in
a Minkowski space no self-dual fields exist. Seif-binding gauge fields (glueballs) are not
ruled out by Coleman’s argument {9], because his proof is valid for a compact group, but
not for the group SL (2, R).

We therefore consider the existence of the many gauge-inequivalent vacua, as found
in Sections 3C and 3E, as an indication that stable field configurations with finite energy
may exist.

We believe that our model is an example of a classical field theory, which is free of
internal inconsistencies and may have interesting solutions, in addition to the ones we
have given, relevant to the description of elementary particles and their interactions.
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