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Exact fermionic Green'’s function in massless QCD; is obtained by introducing generali-
zed gauge transformations. An explicit, compact expression for the causal fermionic Green's
function is given provided that the gauge potentials satisfy certain conditions. The functional
determinant arising from functional integration over the fermionic fields is calculated. The
results are expressed in terms of path ordered exponentials.

1. Introduction

Two dimensional QCD is a well-established source of ideas and guesses about color
dynamics in the original 4-dimensional QCD. Lack of two spatial dimensions causes
great simplifications of the theory. Parallelly, it is believed that results obtained in such
a restricted space-time can be nevertheless useful in studies of the 4-dimensional theory.
Intensive studies of QCD, have been conducted (for a review, see e.g. Ref. [1]), taking
full advantage of simplifications present in 2-dimensional space-time.

1t is reasonable to expect that, similarly as for many others 2-dimensional models,
one can construct an explicit, exact solution of QCD,, at least for the massless version,
which is expected to be the simplest one. By an analogy with thoroughly investigated
Abelian QED,, the first step in this direction could be obtaining the exact, massless causal
fermionic Green’s function, i.e. exact fermionic propagator. In fact, it was already done
to some extent in papers [2, 3] (but not in completely satisfactory way -— see Sections 3
and 5 below), of which we became aware after the substantial part of this work was complet-
ed. In those papers, apart from an expression for the fermionic propagator, also fermionic
current and axial anomaly relation for massless QCD, were constructed within the frame-
work of functional approach. The gluonic part of QCD, is unsolved as yet. However,
some information about exact gluonic propagator in weak and strong coupling limits is
already available [2, 3]. In particular, it seems that color is not confined in QCD,.

* On leave of absence from Jagellonian University, Cracow. Present address: Instytut Fizyki UJ,
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The results contained in our paper and new in comparison with Refs. [2] and [3] are
the following. We rederive the fermionic propagator by a method different from that
presented in Refs. [2] and [3]. Namely, we introduce a generalized gauge transformation,
in a strict analogy with the approach to QED, [4]. We find factorisation property of the
fermionic propagator. In order to satisfy the causality condition and at the same time to
be able to write an explicit, compact expression (not having the form of a formal perturba-
tive expansion) for the fermionic propagator we are forced to assume that the gauge
potentials satisfy certain conditions explained in Section 3. We argue that for general
gauge potentials, an explicit compact expression for the fermionic propagator is still
not known (see more on this point in Section 5). Under those conditions, the fer-
mionic propagator takes very elegant form, in which the gauge potentials are present
only in the form of path ordered exponentials (generalized phase factors in terminology
of C. N. Yang). Next, we calculate the fermionic functional determinant Det (& —iedy)
for potentials /'iu satisfying the above mentioned -condition. We use the external field
technique which guarantees explicit gauge invariance of the results on each step of calcula-
tions. Thus obtained, compact expression (45) for the determinant contains path ordered
exponentials of the gauge potential. The knowledge of the determinant can be useful, e.g.,
when one wants to perform explicitly integration over fermion fields in the path integral
formula for n-point Green’s functions. In a sense, our paper provides also a comparison
between massless QED, and QCD,.

Our considerations are carried out on the level parallel to the zero-instanton sector
of QED, (i.e. Schwinger’s model). In particular, we do not consider a possible existence
and possible effects of zero-modes connected with topologically nontrivial configurations
(in principle, such configurations in QCD, are possible — they are given by planar cross
sections of nonabelian vortices [5].

Let us mention that while in papers [2, 3], and also Ref. [6], fermionic part of QCD,
is studied mainly with respect to problem of color confinement, our motivation for this work
is quite different. We are interested mainly in getting some insight into structure of the
effective Lagrangian for a model of a nonabelian gauge theory. For example — to what
extent can this structure be expressed in terms of some path ordered exponentials?

2. Fermionic Green’s function
The equation for the fermionic Green’s function is
Yu(0" —ieT°A™)S(x, y) = 1+ 8(x~y), 1

where 1 is the unit matrix in isospace, T are generators of the fundamental representation
of SU(¥). Conventions are the following:

_,0—1 o —i01—i
)’0—11 0 22 "1 = 10—01’

TV +7v7n = Zguv’ (gpv) = (1’ —1)'
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In order to solve (1), we generalize to the nonabelian case the procedure [4] used in
Schwinger’s model. Gauge transformations of the external potential 4 have the form

oy -_ -~ t —§ A
4, =g 1A”g-+- ;— g ’ng, 2)

where 2“ = T°4;, g € SU(N). We generalize the gauge transformations (2) by assuming
that g has mixed y,—7° character,

L (IZ7(x) O
g('x) - (0 Ill(x)) B (3)
and we look for I, such that
, i ~
yuAu = —;_’ng 1a“g' (4)
We have
(0 —AT
7. A" = a(f 0 )
a -1
0 “‘I+ b‘;’:}‘ l,}.
7.8~ '0"g = 2i s ,
I.—1I1" o
ax~
+ 0 1 it 0 71 6
where x™ = x"+x°, 47 = A"+ 4, 0,17, =25~§.
X
Thus,
ie ie
I,=—A471,, —I_=—A'T_. 5
oxt T 2 8 2 )
These equations can also be written in the form
DI, =0, D_I_=0,
where
ie
D:t = ai“ ?Ai (6)

Their general solutions are

Li(x) = T.(x)ta(x7),  1-(x) = T_(x)r-(x"), M
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where

T.(x) = Pexp| — dx'* A (x'*", x7) |,

T_(x) = Pexp| - dx' A (x*, x'7) . (8)

L. o -

Here P denotes path ordering and 7,(x~), t-(x*) are arbitrary functions of indicated
variables. These functions should be appropriately adjusted in order to satisfy chosen
boundary conditions for S(x, y). Note that the exponentials are the path ordered exponen-
tials

Pexplie | dx,A4"],
Cy,C2
where C,, C, are straight lines from — o0 to x~ or x*, parallel to x~-axis or x*-axis, respecti-
vely. These lines are in fact sides of 2-dimensional light-cone of the past for the point

x = (xt, x).
Now it is possible to factorize ﬁu-dependence of S(x, y). Substitute

S(xa Y) = g_l(x)so(x, }")h()’)s (9)

together with (4) to (1). Here S, is the ,Ziu = 0 Green’s function of (1), and ‘#(y) is to be
determined. Because of the identity

o 8)- G 5

we obtain
(6 7 o)) DrtSet ) = 1G5
Because
Ypaﬂso(xs y) = 5(3“‘}’),
then
1) = (57 T-uy)): an

Thus, the Green’s function has the form (9), with g(x) given by (3), (7) and A(y) given by
(11). We observe that all dependences on the external potential fi,, have factorized out.
Thus, we have obtained the nonabelian generalization of the factorization property of
Schwinger’s model. The solution (9) is equivalent to the solution given in Ref. {3].
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Let us observe that the above derivation of the Green’s function applies without any
changes also to the Schwinger model. The only difference is that the path ordering P is
superficial in that case. This provides us with useful test of our formulae — at least for
gauge potentials ,?lu commuting at different space-time points they should reduce to the
correscponding formulae for the Schwinger’s model. Also this fact makes it possible to
compare between QED, and QCD,.

3. Causality versus explicit solvability

In this Section we show how the original Schwinger [4] expression for the causal
Green’s function in the Abelian case can be recovered from expression (9) for the
Green’s function. This analysis allows us to find a condition for the gauge potentials under
which the fermion propagator is given directly by the path ordered exponentials
(i.e. 14 = 1). Next, we find a generalization of this condition for the nonabelian case.
In that way we have a criterium for picking up a class of gauge potentials distinguished
by the fact that the causal Green’s function has the elegant form (9) with 1, = 1. Moreover,
in general the functions 7.(x¥) are extremely complicated and their explicit form for
QCD, is still unknown (concerning this problem, we have nothing to add to paper [3],
where the rather complicated integral equations for 7; are given). Therefore, the only
case where we can write an explicit expression for the fermionic propagator (apart from
a perturbative expansion given in Ref. [6]) is when the above mentioned condition is satis-
fied. In this sense, the causality requirement is up to now partially at odds with explicit
solvability.

Let us recall that in the original approach [4] to QED, the fermion propagator has
the form

Su(x, y) = exp [ie®(x)] exp [ —ie@(y)]So(x - y), (12)
where
D =&, —sPg; Vs = VoV1> (13)
and
: i
¢, = — 8‘"6,‘Av, ¢, = — 04, (14)

. 1.
where the free scalar Green’s function —[—j is chosen to be the causal one.

In order to recover (12) from (9), we observe first that it is always possible to write that
AT =07y, AT =0 ), (15)

where y,, x, are some functions. These formulae reflect the trivial fact that any locally

‘integrable function (and we'assume this property for 4,) can be written as a derivative of
ie

another function. They also follow from Egs. (5) after the substitution 7, = exp [— D) xl,z:l
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which is possible because we assume that I, # 0 (as follows from the assumed existence
of g in Eq. (3)). What is nontrivial in (15) is that specifically in 2-dimensional space-
-time y,, x, are Lorentz scalars. Formulae (15) allow us to perform the x*, x~ integrations
in (8). For instance,

ie ie +
T_(x) = exp [2‘ X1(x)] exp [‘ Y xlx", — 00)-]- (16)
From (16) it is clear that if we can construct the functions yx,, y, such that they contain
only positive frequencies for x, — +oo and only negative frequencies for x, - —oc (we
shall refer to this condition as to the positive-negative frequency condition), then the
Green’s function will be the causal one, provided that the last factor in (16) and the 7 . (x¥)

ie
functions are somehow removed. By choosing t_(x*) = exp [—E 71 (xt, —oo)] (and simi-

larly for 7,(x7)) one can make these factors to cancel each other.
The construction of causal y,, x, is the following. From (15) we have

407AT =y, 4074~ = Oy, an

As the boundary conditions for y;, ¥, we choose the positive-negative frequency condition.
Then, Egs. (17) have unique solutions of the form

4 _ . 4 . -
11=E;(?A, x2=—iaA . (18)
However, the fact that Egs. (17) were obtained from (15) does not immediately mean that
(18) also satisfies Egs. (15). For instance, if (15) have had the form

A* = 6iX1,2+5if1,2 (15)

with some fixed functions f, f, satisfying (], , = 0 we would obtain also Egs. (17)
with the same causal solution (18), and, of course, it cannot satisfy both (15) and (15").
Thus we still have to check whether 4% satisfy the identities

"4
ot [v aiAi] = A% (19)

[

For potentials which do not vanish within an infinite domain in space-time, it is necessary
to assume that they satisfy the positive-negative frequency condition in order to have
(19) [7]. However, for fields with a restricted space-time domain, (19) is satisfied identically,
as it can be easily verified by using the second part of the formula (21) below.

The expression (12) is obtained after introducing %y, @, by ) = 2(P;— D),
X2 = 2Py + Po).

In the original approach [4] the condition (19) is obtained when one inserts (12) as
an ansatz in the Dirac equation (1), as the condition for cancellation of the A"y, term
present in (1).
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For future use in the nonabelian case, let us notice that if we want to put 7, = 1,
then for causality it is necessary to have y,(x*, —o0) = y,(—c0, x7) = 0. These conditions
for y;, y, are satisfied when

+ 0 + o0

[ ATdx™ = [ A7dx* =0, (20)

as it can be easily seen from the formula

4 i 1
Xl,z = '**aq:A‘ = - P.V. x_i

E
c n —z

A*(2)d*z + J 8(x™ —z%) sign (xF —zF)A*(2)d*z.

ey

The second part of this formula is easily derived from the formula [7]

i

E’llc f(x) = 4;1 j In [p?(x ~2)*+ 0] f(2)d*z,

where y is a dimensional parameter.

The conditions (20) can always be satisfied formally after performing a suitable gauge
transformation. However, such a gauge transformation does not vanish at infinity and the
gauge transformed potential can be easily shown not to vanish at infinity. But then, on the
whole, our consideration does not apply to it (in particular, the condition (19) becomes
difficult to satisfy). Thus, the gauge transformations are no remedy for the conditions (20).

Unfortunately, it is difficult to generalize the above recipe (15-19) for obtaining the
causal Green’s function to the nonabelian case. The difference between the two cases comes
from nontriviality of the path ordering operation P in (8) in the nonabelian case. This
causes that the integrations in the exponents cannot be performed directly by repeating
the QED, trick with y’s. In particular, it is difficult to find explicitly the correct 7. for
arbitrary potentials 4*.

Therefore we set 7. = 1. Then we expand the exponentials T,

- ie \*
Ti(x) = z (3) X (), (22)

k=0

where, for instance,

x Xk-1"

X, xtxT)y= [ axi ATt xy) [ dxz AT(xt,x3) . | dxg AT, x0),  (23)

i.e.:

Xina(x®,x7) = [ dx{ AT (T, xD) X (67, x7). (24)
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Substituting (22) into Eq. (5), which 7', satisfy, one gets

d R
o XE, = ATXE. (25)

These formulae form the nonabelian generalization of (15) (X;° correspond to ¥, ,). An
analogon of (17) is

-~

1 + o iTyt
20Xy = é;c (4 Xk )s (26)
which has unique causal solution

4 ¢
Xy = O 5x—;-(A*in)' 27

[

The assumption (19) has now the form

A*XF = o* (i a*(fiix,f)). (28)
O
For k = 0, (28) takes exactly the form (19). For 4¥ with bounded support, (28) is satisfied
identically.

However, we still face one problem, namely compatibility of the two recursive relations
(24) and (27). Using the formula (21) with 4* replaced by A¥ X it is easy to see that (24)
and (27) are compatible if

+ oo
[ dxFA*XF =0 (29)
for ail k. This condition is equivalent to
T_(x*,x" = 4+0) = T,(x" = +0,x7) = L. (30)

Conditions (29) are the nonabelian analogon of the condition (20).

When the condition (30) is not satisfied, it is necessary to have 7. $ L. In this case
one can approach the problem of obtaining the fermion propagator in two ways. One
can try to preserve structure (7) of the I, by keeping factors T, and calculating the needed
for causality 7.. [3]. Then one obtains a rather complicated integral equations for t.. Their
solution is not known. The other approach is based on a formal perturbative solution
of Egs. (5) for 1. without any reference to path ordered exponentials. The result is written
as an oo, formal series in powers of the coupling constant e¢ [6]. Both approaches can
turn out to be useful in discussing particular problems, but nevertheless they do not yield
an explicit compact expression for 7. Therefore we take the point of view that unless (30)
is satisfied, an explicit solution for the fermionic, causal Green’s function in QCD, is still
not known (apart from a formal perturbative expansion).
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Let us summarize the results of Sections 2 and 3. The fermionic (massless) causal
Green’s function has the form

S, y)=(§“(") (;+(x)> Solx—) (g ») (}_.l(y)>, (31

where T, (x) are given by (8), provided that the gauge potentials 4¥ satisfy the conditions
(30). For A* which do not satisfy (30), an explicit expression for the Green’s function
is still not known (apart from a formal perturbative expansion).

4. Calculation of the fermionic determinant

It is well-known that in order to obtain a gauge-invariant effective Lagrangian for
gluon fields one can use the background field method [8]. We shall find that a slight modifi-
cation of this method is also useful in obtaining the gauge invariant effective Lagrangian
for fermions, provided that one knows the fermionic Green’s function.

The method consists of splitting off the gauge potential on two parts

ed, = ed,,+e Ayqu (32)
called, correspondingly, classical and quantum. A a1 €an be regarded as normalized vacuum
expectation value of the operator gluon field in the presence of external sources j,.,, for
gauge fields {9]. The external sources are introduced into the Lagrangian in order to generate
gluonic n-point Green’s functions. flucl vanishes in absence of the external sources. ﬁ,‘qu
describes quantum fluctuating part of the gauge field with the vanishing vacuum expectation
value. For future use we have slightly generalized the standard approach by introducing
intermediate (auxiliary) independent coupling constants e, e’ for 4,,.; and /i,m, respectively.
The case of interest is, of course, ¢ = ¢’. The gauge transformations of these fields have
the following form

" P i
Aucl =g 1"4m:lg+ "e" g 1aug9 (333)

Ay = 27 A8 (33b)

Then, the full gauge potential ﬁ“, given by (32), has the correct gauge transformation (2).

We want to calculate Det (& —iedy) (= exp (—iS,), Where S, is effective fermionic
action). To this end we shall use the following generalization of the well-known [10] Pauli’s
formula (derived in Appendix A)

log Det (8 —iedy) = log Det (8 —ied,y)—i [ de' Tr [S.(; edy+e' A )Ay] (34
o

The first term on the right-hand side does not need to be calculated because it is constant
with respect to the quantum gluonic field fl,‘qu. The second term contains the causal
fermionic Green’s function calculated in Sections 2 and 3. The trace refers to the trace
over Lorentz and isospin matrix indices and also to the trace over “space-time indices” x, y
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in S.(x, y; eA). This latter trace means fd?xSy(x, x; eA). This requires some special treat-
ment because the integrand is not well-defined (the limit x — y is singular). The most
convenient approach consists of use of the standard point-splitting technique.

From Egq. (1) it follows that under gauge transformation (2)

S(x, y; ed’) = g7 '(x)S(x, y; ed)g(y). (35)

This, together with (33b), ensures formal gauge invariance of the effective action (34).
Thus, we want to calculate

Tr[S.(; edg+e A )Agy] = [ dPx lim Tr [S(x", x'; ed)d,,y]. (36)

The trace on the right-hand side is taken with respect to Lorentz and color indices, and
for S, we take (31), where

] xll_x/ "
So(x' —x') = — Fu(x" =)

T 37
2n (X"~ x')2+i0 (37

g 3
We set x’ = x— 5 x" = x+ > and we consider the limit ¢ — 0. It is known [11] that

when taking this limit, one should approach the singularity in S, from a space-like direction.
Thus, we first take g5 — 0 and then ¢, — 0. In the light-cone coordinates it means that
gt = —g= - 0. In order to ensure that the limiting procedure will yield a gauge and Lorentz
invariant result, it is necessary to perform the parallel transport of S.(x”', x) from points
x", x' to point x [11]. This amounts to multiplying S(x”, x") by

- ie _ . .
Pexp [iefdx”A”] > 1-— 7(8 At +etdT) (38)

from the right, and by

X

P exp [ie j‘ dx“‘/i,,] ~1- %e (A 4674 (39)

%'’

from the left. The identity (10) applied to y’s present in S, allows us to write S.(x"’, x'; eA)
in the form

.. T_(X)YT-'(x) 0 P
S(xua x 3 eA) = (0 (Y ) (x) T+(x")T: l(xl)) SO(x , X )9 (40)

where

-~

[

T, (x)T;'(x) = 1+¢” ( - Ti(x)) T, () +¢&* (axi* Ti(x)) T Y(x).  (41)

ox
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Inserting (40), (41) in (36), multiplying the integrand in (36) by factors (38), (39) and cal-

culating the trace with respect to spinor indices one obtains in the ¢* = —&~ — 0 limit
- 1 1 P
Tr [SA,y] = > f dx Tr [(D_T)Ty 'A,+(D,. T-)T- 4], (42)

where D, D_ are given by (6) and eﬁ“ is splitted according to (32). The trace is only with
respect to color indices. In obtaining (42) we have used Eqgs. (5) which hold also for T’y and
the fact that Tr/i;tq“ = 0 (because flu = A,T* and the SU(N) generators T* are traceless).
The quantities T, are Lorentz scalars despite their indices ““+”°, as it can be easily seen
from (8). Under gauge transformation (2) they transform like

To(4) = g7 ()Te(Ag(x* = ~ ). (43)

In the nonabelian gauge theories one usually assumes that the gauge transformations
satisfy condition g(c0) = 1. Therefore the last factor in (43) is equal to 1 and

To(4) = g7 () TL(A). 44

Observe that the condition (30) as well as the basic requirement of vanishing of A* at oo,
are gauge invariant under the above class of gauge transformations. The Lorentz and gauge
invariance of (42) is now obvious. The covariant derivatives DT can be calculated expli-
citly, i.e. expressed by the gauge potential and some path ordered exponentials. We present
this calculation in the Appendix B.

Thus, the effective action generated by fermions has the form

R 1 i 1 oa
S = ilog Det (& ~ied,y)+ 5;fde/ J AxTr[(D_T)T; Ay +(D.T)TZ'4;,],  (45)
0

where the trace is taken with respect to color indices. The potential /iu present in T4 and
D, is decomposed according to (32). The formula (45) contains only c-numbers and
matrices T°. Therefore we hope that it will be possible to analyse in detail the dependence
of S On fluqu in order to gain some information about dynamical properties of gluons
in QCD,. Certainly this effective Lagrangian is not simply quadratic in 4 as it is the
case in QED,.

The above derivation of the effective Lagrangian holds also in the general case when
the assumption (30) is not satisfied. The result still has the form (45), with T, replaced by
1., respectively.

nqu>

5. Final remarks

Here we want to stress once more that in our opinion the condition (30) is up to now
necessary in order to have an explicit and causal expression for the Green’s function,
not having the form of a formal perturbative expansion. In particular, Ref. [3], where such
assumption is not made, does not give an explicit expression. The procedure chosen there
ensures causality, but the constructed Green’s function still contains unknown functions
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(likely with a very complicated dependence on the potential A4y), for which only integral
equations are given. On the other hand, expression given in Ref. [2] is explicit, equivalent
to our (31), but it should be completed with an assumption of type (30) in order to ensure
causality (the fact that the solution given in Ref. [2] in general is not causal was noticed
already in Refs. [3] and {6]). In our opinion, the expression which is causal and does not
assume anything of type (30) about 4 , 18 still not known (apart from a formal perturbative
expansion). When the condition (30) is satisfied, the fermionic propagator has the very
simple and elegant form (31).

We also want to point out that path ordered exponentials, present in the effective
Lagrangian (45), in the nonabelian case in general cannot be reduced to a simpler form
by introducing some analogons of the y's from QED,. The presence of such path ordered
exponentials in the effective Lagrangian (45) is very interesting because it is a confirmation
of the point of view that dynamics of the nonabelian gauge theory should be formulated
in terms of objects containing explicitly such generalized phase factors. Just such path
ordered exponentials recently were used to recover string model from QCD in four dimen-
sional space-time [12]. It would be very desirable to carry out a mathematical study of the
path ordered exponentials regarded as a kind of primary mathematical objects in nonabe-
lian gauge theories.

The author wishes to thank: J. Ambjern for many discussions, for informing him
about Pauli’s formula and for telling him about the paper [2]; N. K. Nielsen for introducing
him into the problem, for many discussions especially on the causality requirement, and
for telling him about the paper [3]; H. B. Nielsen for a very valuable discussion. The author
also thanks the Danish Research Council and the Niels Bohr Institute for support and
hospitality.

APPENDIX A

Here we present the derivation of the formula (34). We have

1
SG ed,) = . = (1—i¢'S d,y) 'S,
G edy) y0—ied,y—ie Ay ( 1Aa?) !
where
1
Saq= "%,
y0—iedy
and
Det S~ = Det S* - Det (1—¢'X), (A1)
where X = iSyA,y. On the other hand,
pet1- %% ) _
et{1— _
d , . 1—-e'X X
-log Det (1—¢'X) = lim - = —Tr y
de de’ =0 de 1—-e'X

= —iTr [S(’ eAcl+e,Aqu)Aquy];
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from which

log Det (1—e'X) = —i [ de” Tr[S(; ed,+e" Ay Ayl (A2)
0

Thus, setting ¢’ = e in (A2) and substituting it to logarithm of (A1) one obtains the for-
mula (34).

APPENDIX B

In this Appendix we present the calculation of D.T_. Let us concentrate on D-T..
D_ is defined by (6). We have

o : T.(x*, x™ +dx )Ty (x)~1
(-r: T+)TI“- fjm X F T 9= (B1)

ox dx= -0 dx”

Further,

T.(x",x +dx") = Pexp [l—; f dx’*zf‘(x’*,x_+dx"):|
ie 1+ g4 0+ - -
= I I exp[de AT (X7, x7 +dx )J

— &0

ie r+ Fer 1 F - ie g - a =7+ -
= 1+—-2—dx A (x ,x)—}——z—dx dx” — A7 (x'7,x7)
X

ox”
x t=x+
+ ie | 4+ F— t+ - ie - a i + -
= do"Pexp|— | dx'""A (x'"",x )| —dx” — A (67,x7)
2 2 0x y

a+

ie ” _ -
x P exp [7 J‘ dx' A (x'", x )] +To(x*, x7).
Substituting this to (B1) we obtain
0 - ie . 0 4 i

— T, )T, (x) = — do T, (x;06) == A (6", x )T, (x;0), (B2)

0x 2 ox
where we have introduced the notation

ie - -
T.(x;0) = T,(x", x )Ty (6%, x™) = Pexp [5— j dx'TA~(x' ", x )] .

ot
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Similarly, introducing
T (x;0) = T_(x*,x )T '(x",67) = Pexp [1-25 J dx' “A*(x*, x")_J ,

-

one obtains

0 -1 ie _ 0 . 4
5-x—+T_ T (%) = £y do T_(x;a)a~x—+A (x", 0 )T (x;0).
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