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Different anholonomic subspaces of the general relativistic u-space (space of states
of a free particle in the gravitational field; i.e. the tangent bundle ¥ = T(V,) on the space
time V) are introduced which, respectively, represent relativistic analoga of the classical
phase space or the space on which the classical theory of radiation defines the distribution
function of spectral intensity. These subspaces of ¥ prove to be holonomic, if the 4-velocity
field in ¥, the extensions (prolongations) of which are involved in their defining multivector
fields is submitted to certain conditions. In this case, from local equations holding for the
mapping of sets of points of the subspaces of Vg and describing the development in time of
states of particles, laws of conservation in integral form can be derived.

1. Introduction

According to [8] and adapting the notation applied in [1], the general relativistic
u-space, or, as can be said, the “‘state space” of a test particle freely moving in the space-
-time V, is a tangent bundle ) E,(x) on V,. In [1] this tangent bundle has been investi-

xeVa4

gated as a special Riemannian space Vg with the methods of Ricci-calculus?.

Due to the principles outlined in (1.1) each statistical theory should apply to its proper
state space. The state space of statistical thermodynamics on the basis of classical mechanics
or quantum mechanics is called phase space. One should only call a space “relativistic
phase space” if it is correspondingly connected with the phase space of these theories
(cp. [2, 8])2. In the following, after having generally investigated the question of the existence
of holonomic subspaces of Vg, defined by the fields introduced in {1], it will be regarded

* Address: Sektion Physik, Friedrich-Schiller-Universitit, DDR-69 Jena, Max-Wien-Platz 1.

! In the following we quote paragraphs, formulae and theorems of (1] as (I. ...).

2 In [9, 10] the term *“phase space” has been connected with the existence of a canonical formalism
and applied to Vs, since locally the equations (I. 1.1) may be written in canonical form. Notwithstanding
the application of a canonical formalism the same notation as here has been chosen in [11].
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as different (holonomic or anholonomic) relativistic analoga of the classical phase space
and analyzed laws of conservation for a projection of sets of points within them, which
is induced by the development in the time of possible states of particles.

2. Holonomic subspaces of the relativistic state space

An m-vector field o = ¢lft .- il (k = 1,..,n) in a Riemannian space V,
defines m-dimensional subspaces E, in the local pseudo-Euclidian tangent spaces E,
of V,, i.e., it defines an E,-field in V,, or as is said, an anholonomic Riemannian space V7
[7, 13-15]. Accordingly, the (n—n1)-pseudovector field

* (= 1y =

=" e pKi 2.1)

Ki o KK K
m' 1 mim+1 n

dual o 0y, = ()18, . 8l 8 = 0, Det (g,) = IDet (g, 0, = 1
according to the signature of V,; o, = 0, a,,_;, = n—1forp = 1,2, ...) defines an E,_,,
field in V, ora ¥,” ™. The necessary and sufficient condition for the E,-field in ¥, to be
tangent to a family of c0"™™ ¥V, (or: to have enveloping V,,, to be V,-forming; cp. [7],
p- 81) can be expressed, equivalently, by

*

NI MNP PR . . -
v v =0, per o mutlis dimez e 2n = O (2.2)

u
In this form written with the covariant derivative these conditions hold also with respect
to anholonomic coordinates. With the second of the criteria (2.2), the theorems (1.4.A.,
B., E.) and (1.4.10) it follows for the fields ™u*, Vu*, ®p* Mp* (cp. 1.3.3, 4.1):

A. In Vg the field ®u* is V,-normal if and only if the 4-velocity field «* in ¥V, is
Vynormal, ie. Uil =0 OF Upm = —Uplly; 4 is Viy-normal if and only
if «* in V, is covariantly constant, i.e. u, = 0; V'p* is always V;-normal and ®p*
never.

To investigate the properties of the fields (I1.4.27, 28) it is advantageous to apply
the following criteria, which may be proved easily,? instead of calculation with the condi-
tions (2.2) themselves and (1.4.9, 10, 29-32):

1

m

Corollary I. An m-vector field a,, ., = @y, ... a.yin a V, is V,-normal if and only
b

if the covariant derivative of the a, (h = 1, ..., m) may be represented as

h m  hi i i hi n hss s
ax;i. = Z ((pxal+axw1)+ Z “bxb}.’ (23)
i=1 s=m+1

hi  hi s
where @, v, {(h, i =1, ..., m) are arbitrary vectors, b (s = m+1, ..., n) arbitrary vectors

s i i hs
with b,a" = 0 and completing the g, to an n-leg, and the « (h = 1, ..., m;s = m+1, ..., n)
are arbitrary scalar functions.

8 & ¢
3 Apply (2.2) and an expansion of ’(lz,(; 2 in terms of cg,cé;,, c‘szg, byb;, or, for the proof of (2.4),
the definition of the Lie-derivative (cp. footnote 12 to 1.4.F.).
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Corollary II. An m-vector field a***" = o' . & in a V, is V,-tangent if and

1 m
only if the Lie-derivatives of the a* (i = 1, ..., m) after each other may be represented as
i

m h
Fa* = Y ad*, (i,j=1,..,m), (2.4)
(?j h=1ijh

h
where a (h = 1, ..., m) are arbitrary scalar functions.

Thg results of the application of (2.3, 4) on (1.4.27, 28) with regard to (1.4.9, 4.10,
4.F. — i.e. Table I) are the following theorems:

B. In V; the E,-fields defined by p**, r**, v** are always tangent to a family of V,;
u** is V,-forming if and only if u* = 0 holds for the field «* in V,; w** is V,-forming if
and only if u,, = 0; ¢** cannot be V,-forming.

C. In V; the Eq-field defined by ** is tangent to a family of Vg if and only if the field
u* in V, is Vs-normal; u** is V-normal if and only if u,, = —u,u holds in V,; r** is
Ve-normal if and only if w,, = 0: the fields p**, ¢**, w** cannot be Vg-normal.

D. In Vg the E;-field defined by u*** is tangent to a family of ¥, if and only if u* = 0
holds for the field u* in ¥, ¢** and ¢*** are V,-forming if and only if u,,, = 0; p*** cannot
be ¥F;-forming.

E. In Vg the Es-field defined by «*** is tangent to a family of Vs if and only if
Uy = —uy holds for the field * in V,: p™* ¢** and v*** cannot be Vs-normal.

3. Relativistic analoga of the classical phase space

We apply the notation
Ve = U {Va}s®Ea(x) @3.D

for the characterization of the relativistic state space as a tangent bundle Vy = kU E(x5
xkeV 4

on the space-time [8]. At (3.1) it is seen that, locally, the V3 may be regarded as a direct
product of a coordinate neighbourhood {¥,}, of points x* of ¥, and the local tangent
spaces (physically, the 4-momentum spaces) E,(x) at these points.

The anholonomic subspaces defined by the fields (1.3.3, 4.1, 4.27, 4.28) may be
characterized with the same notation as in (3.1). In the following, we are going to regard
the spaces

v

Vpe © Vilo) = U {Va}:@Vi(x; m), (3.2)

H
Py o Vi) = U {V@5LOE(), (3.3)

X



1012

HY
v o Va(r,0) = U (V@)L Vi(x; m), (3.4)
H V
ux). > V86(T’ ‘f) = U {VS(t)}x®E3(x;g)3 (35)
HYV Y
Uy © Ve(1,7,0) = VDL Vax; e, m). (3.6)

In (3.2-6) the parameters I‘:(’t), ;/(e), c\x’(m) run through all their values and are indicated to
symbolize the fields (and their basic congruences) with which the spaces are connected.
The V2(r) is the anholonomic 3-space orthogonal to the 4-velocity field #* in V,. The
V 3(7) represents the relativistic analogue of the configuration 3-space of classical mechanics.
In (3.3-6) for constant values of the parameters one gets sets of patches of the anholonomic
spaces, which we call ““layers” of these spaces. The above theorems (2.A.~E.) give conditions
for the anholonomic spaces to be families of Riemannian subspaces of V.

In (3.2) Vs(x; m) symbolizes the family of hypersurfaces with constant rest mass m in

v

the local tangent E, at the point x* of V,. The V; (o) represents a family of Riemannian

v
spaces the members o(m) = const of which have the structure of tangent sphere bundles
on V, (cp. [3, 4)) and are equivalent to isotropic Finslerian spaces (cp. [3, 6]). The develop-

v
ment in time of the states of a particle with constant rest mass m can be described in a V(o)
v
with o(m) = const.

H H H
The V4(r) in (3.3) turns out to be a parametrized by t family ¥,(zr) of “state hyper-
surfaces” in ¥V if the field «* in ¥, is tangent to a normal to hypersurfaces t = const
congruence {cp. 2.A)).
HV

The V§(1, 6) in (3.4) is a first relativistic analogue of the classical phase space which
may be called “general relativistic phase space of particles with constant rest mass”. Pro-

viding the field #* is normal to hypersurfaces T = const in V,, the Vg(l'-r[, ;) goes over into
a family V(,(}tl, ;) = Vi(r) @ Vai(m) of «0? holonomic subspaces in ¥ (cp.2.C.). For flat
V, and covariantly constant fields u* the Vg(?, t;l) obtains the form of a 2-parameter family
Vele, 0) = Ex(t) ® Va(m)

H V
The V§(z, 1) in (3.5) represents a second relativistic analogue of the classical phase
space. Since only those changes of ®™p*, V)p* (caused by interactions of a particle with

an initially given 4-momentum p* with other ones) lie within Vg(?, :) for whiche = —p*u,

and ’:.y(e) remain constant, the space Vg(::{,:) may be called “general relativistic phase

space of particles with constant relative energy”. The Vg(lz, Z) goes over into a family

Vé(-}c], ;,) = U {V3(0)}x ® Es(x;¢), if u* is tangent to a rigid and non-twisting congruence
x

of worldlines in V, (cp.2.C.). In particular, for cases with flat V, and covariantly constant
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HYV HV
fields #* the V' 5(t, 1) proves to be a family Eq(t, 1) = Es(1) @ Es(e) of flat spaces. The
HYV

members of this family with different constant values , v are identical with respect to
their geometrical structure. By the last example it may be seen that, in comparison with

HV
the classical phase space itself, its relativistic analogue ¥ §(z, 7) is split in two ways into
infinite sets of layers. Since the Euclidian subspaces F,(x; £) in the local E,(x) for different

v
£ = const are of identical structure, a superposition of the distinct layers with (e} = const

HV
effected by summation _J ¥ §(z, 1(¢)) over ¢ between 0 and co would be possible and would

£

improve the analogy of the relativistic phase space Ve (T r) with the classical one. The

splitting of VB('E r) into layers with different ’E =t = const is unavoidable (except
for the case of V, with u,,, = —u,u,). This is the reason why in relativistic statistics the
development in time of the states of particles cannot be described within the set of their
possible initial values, even if the particles have the same relative energy ¢ = —p*u, with
respect to the system of reference defined by u*.

We temark that the 4-momentum p* may be split up by

p=r+ealt (= hip', & = —pluy, by = gut+uuy). 3.7

From that, it follows m? = g2 —n2. The vector n* with 7 = ¢ (m = 0) is adequate to the
classical wave 3-vector. The space on which the classical theory of radiation defines the
intensity distribution function is given by the direct product of the configuration 3-space
and the wave-vector 3-space. A relativistic analogue of this classical space is the special
layer with m = O of the space (3.4).

In the classical theory of radiation the distribution function of spectral intensity of
radiation is defined on the 5-dimensional space given by the direct product of the configura-
tion 3-space and a spherical 2-surface around the origin of the 3-dimensional wave-vector
space. A relativistic analogue of this space is represented by the layer with m = 0 (n = g)

of the space Vf}(!:, }’, :;). In (3.6) the ¥, (x; ¢, m) have the structure of hyperboloids with
one non-vanishing, depending on m main-curvature.

We observe that a general mathematical framework for the investigation of the curva-
ture and embedding of anholonomic spaces as (3.3-6) has already been developed in
{7, 12-14]. Similar methods have been rederived in the special case of ¥2(t) for the purpose
of interpreting relativistic equations in terms of classical physics (cp., e.g. [15-17]).

4. Laws of conservation

H
The horizontal flow (cp.1.3.) intersects all the layers t == const of the anholonomic

H
space Va(t) (cp.3.3). In this way, it induces a homeomorphic map of point sets B§§ on these

layers onto each other. This map characterizes the development in time of the set of possible
states of a particle (cp. 1.1.). It is submitted to the constraint given by the incompressibility
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of the borizontal flow (¢p.I.4.19), which can be expressed with respect to anholonomic
or holonomic coordinates in Vg, respectively, by

1 @
p e = &5 (8P =0, (4.1)
g
. 1@ @ (K
=& (( gr)e— ( g { }p'p’") ,\] =0. (4.2)
- Im Ak

g

(8) 4)

(8) (4)
Here, g = g]2 with g = Det (g,,), g = —Det(gy) and (1.2.7, 3.3) have been applied.
With (I.1.1) equation (4.2) may be rewritten as

) dxk ) dp*
0 — %) —_
<g d°)+ <g d")—o 43
6xk apk - v ( . )

Chernikov [8] has given a coordinate-dependent equation equivalent to (4.1-3).

H H
In particular, if the ¥ 3(7) is supposed to be a family V,1(7), a domain B;H on the

H H H
hypersurface 7, = const obtains images B,H on all other hypersurfaces 1 = const (t # 1,)

H
of this V(1) in V. Then, from (4.1) after application of Stokes theorem* on an 8-dimen-
sional cylinder along the horizontal flow, one gets the law of conservation of the integral

{ “Op*df, = const; df, = df7,""u,. 4.9)

H
By

Locally, the volume element df,, in (4.4) may be split into the volume elements df, = d3x - u,
of the configuration 3-space and dg,, of the 4-momentum space E,(x), so that ®p*df,
= ukpkdf(ﬂ = —ed?x - dg 4, tesults.

* The theorem (cp. [7], p. 94) for the transformation of integrals on simply connected regions
Buniy C Vs TV, into integrals on the boundaries B, of B+ may be rewritten as

* * * *
(n— ) 5 a2 TRl 2k = 5 akmeteRnd ok
B+ B
*
where, €.8., dfx,, . ,...x, is the dual (according to (2.1)) of the volume element df#:-#m = m! dxlil.... dxfiml.
In this form of the theorem (written with the covariant derivative) the tensors may be taken with respect
to holonomic or anholonomic coordinates as well. We put df#t#m = df,nett#m, where eti#m

= mlel#t | e#m) is the unity m-vector tangent to V), with etiBme  tim = Om - h1! (e¥e, = +1 for
1 m k k

eachk = 1,...,m; 0, = +1ifaneven, 6, = — 1 if an odd number of the e* have negative norm). From
K
.. * *
this it follows df#m+1tm = [f , eltm+1bn ynd
£ *
Afimy = [dfEvFrdfy, i Om mit = [dftm+vbndf, o un/On—m' (n—mt

(On = Gy * On-um). In the following, elements with exterior orientation shall be applied only, and all the
asterisks will be omitted.
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In (4.4) ®p" may be substituted according to

KA 5 (M _x
2

P = j2 4.5)

(cp. 1.4.29). The boundary of the region B;H can be chosen as a 7-cylinder along the

vertical flow (cp.I.3). The basis area of the 7-cylinder shall be taken within the hyper-
v v

surface o, = a(m = 0) = const. Its upper cross-sectional area can be chosen as the pro-
H v v
jected along p* domain BgHy on a 6-surface T = const, ¢ = const # ¢, of the family

HYV
Ve(z, 6) which (3.4) is supposed to be®. Then, from (4.4, 5) one gets

v
2
j p,ddfxl = const (U)’ dfx}. = ;; df(G)vxl (46)

HV

Bstao

after repeated application of the Stokes theorem and with p**v,, = m?¢/2 =0 on

v v

o, = const. i.e. m = 0. In (4.6) the notation const (s) shall indicate that the integral is
H v

independent of t but depends on the chosen value o. Until now it has been supposed

that the field «* in V, is hypersurface normal. If, additionally, «* is assumed to be rigid,

. H Vv
it holds that u,,, = —u,u,. Then, a u*normal family V(r, 1) exists (cp. 2.C.), and,

the basis area of the 7-cylinder along the field (¥p* can be taken within the 6-surface
H v Vv

= const, 7, = 7{e = 0) = const; its upper cross-sectional area as the projected domain
v

H v
Bguy on a 6-surface © = const, © = const (t # 7,). Providing this, one gets

v
§ Pdfi; = const(v),  dfix = 2df(6ytis 4.7
BT

instead of (4.6). Here p**u,, = ¢2/2 = 0 on 1\'/1 = const, i.e. ¢ = 0, has been taken into
account.

The equations (4.6, 7) may be said of to exhibit the “‘relativistic Liouville theorem”
in integral form. Accordingly, one has to look at (4.5) as representing a differential form
of this theorem. Equations (4.5, 6) are equivalent to those already given by Lindquist [4].

In (4.6) df,; can be defined with special elements, horizontal and vertical extensions,
respectively, of dfi = tumumom,dx{3y ... dX(5) = df sy, = d°x - uy and dg, = Eymympm,DPYT}

1
Dp;"g‘)] = dgy px = dP - py 8o, that p**df,, splits into p**df,, = emdf sy = em>d®x - dP.

The above dg,, may be built as dg, = mdmdP. With dP = dg,/m instead of the
3-element dg;, of the mass-shell a quantity has been introduced which is defined in the
limiting case m — 0 also, and, according to [18] is called the absolute 2-content of the
mass-shell. Applying dP = —d’p/pu* = d®ple (cp. [18]) in (4.6) we get p"ldj;l

5 This boundary of Bsu corresponds to a set of cones in the local E,(x¥) having their tops at the points
T

of contact with the points x* ot a region on a 3-surface 7 = const in V4, and, as their basis an arbitrary
mass-shell m 0.
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= m? - d*x - d®p. Similarly, in (4.7) df,; can be defined with df; = d3x - v, and dg, = d3p
so, that in thls relation p**df,;, = ¢ *df 6y = &°d*x - d*p holds.

Because o(m) = const for 6-surfaces on which (4.6) is calculated and t (s) = const
for 6-surfaces on which (4.7) is calculated, comparison of these two results for p**df,,
shows, that both integrals (4.6) and (4.7) are generalizations of the same measure {d3x - d%p
on the classical phase space However, since p**u,, = 82/2 remains constant for members

with r(r) varying and r(a) constant of the famlly Vﬁ(r r) but p Apes = € - m%2 varies
H HV

with ¢ for members with 1(r) varying and a(m) constant of Fg(z, 1), only (4 7) allows
us to conclude that the measure jdfm) itself of the underlying domain of integration is
conserved at its homeomorphic projection along the trajectories of the horizontal flow

onto members of these families with other }r{ = const. For this reason and similarly to the
manner of Gibbs it might be spoken of a “principle of conservation of extension in relativ-
istic phase” with respect to (3.5, 4.7) only, and not (3.4, 4.6).

Assuming the field #* in ¥, to be tangent to a rigid and non-twisting congruence of
world-lines, u* is incompressible in ¥,, of course, and its horizontal extension ®u* is
incompressible in Vg (cp. 1.4.12). Further, Vu*, u**, 4*** have properties dealt with in
(2.A., C, E). Then from *"u*, = 0 and v, = 2" or ¢*%, = (P~ V")/2 (cp.
1.4.29, 30), respectively, one gets

\2 \4
| v**df,, = const (1), [ g**df,, = const (1) 4.8)
Bgry Ber s

after repeated application of Stokes theorem, similarly as (4.7), if here the domains Beuy

H
with different 7 are projected along the field ®Vu*.
Assuming that domains of integration in (4.8) are identical and applying

P, = Ly L g g 49)
(cp. 1.4.31) we get
v
{ p***. df.; = const (7). (4.10)
Bor:

Now, if the domain BG§¥ < Vs(g = const, ;:, = const) is chosen as a 6-cylinder along
the vertical flow with its basis area BS?YX on the S5-surface ;I: const, ¥= const,
;l(m = g) = const and its top area ler«nr/y on a 5-surface ::{= const, ¥= const,
; = const (‘; # gl) from (4.10) it follows

vy 6
5 p,d”dfrdu = const (Ts O'), dfk/’.u = —71— df(S)uxi.n' (41])
Byt

v
Here p***u,,, = e(m®>—¢?)/6 = 0 (cp. 3.7) on o, = const, i.e. m = &, has been observed.
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Equation (4. 11) means, that the integral on the left hand side on arbltrary domains
within a 5-surface 'c = const, r = const, ;/ = const is independent of r, if the domain is
projected onto 5-surfaces of a family V(z, :, o) with other values t along a congruence
with the tangent field “u*, being a horizontal extension of a field #* in ¥, with i, = —u,u;.
If, additionally, the field #* is assumed to be covariantly constant, then its tangent world-
-lines coincide with geodesics in V,, and, the projection of the boundary of Bsuvy
along ™y* in V7 is a projection along the horizontal flow at once. In this case equation
(4.11) represents a “principle of conservation of extension of a hypersurface in relativ-
istic phase”. The equation (4.9), being most important for obtaining (4.12), may be regar-
ded as a local expression of this principle.

The laws of conservation given by (4.4, 6, 7, 11) can be rederived applying a theorem

communicated in [7] which in our context (cp.*) reads as follows.
Theorem of E. J. Post® In a V,, a (n—m)-vector field v*=**" and a set of o' V,’s
depending on a parameter ¢ are given. Let a set of curves intersect each V,, at one point,
such that ¢ is also a parameter on each of these curves. If B,, is an m-dimensional part of
one ¥, there is a one to one correspondence between the points of this B, and co! B,’s
on the co! V,’s. Then a function of ¢ and its derivative are given by

V() = jv""‘“ e 4.12)
(g Km+l"'Kn+ um UKm+1"'Kn)df K de
= v 57 Kmaiokny S = .
s * ” dt
By the help of the equation
dv
—d7 = (n_m) J\ UKm+Z...K"Q;Q ' Sudflle+2"'Kn (413)

appearing as an intermediate result in the proof of (4.12) a corollary to the theorem of
Post may be formulated, which also permits a simplified rederivation of (4.4, 6, 7, 11).
Applying (4.12) and the equations

(H)px;x — 0’ g pxl — 0’ gpwlu — p[xl(V)lu]_vxlu (414)

(H)p (H)p

(cp. theorems 1.4. G., H.) one immediately gets the integral laws of conservation (4.4, 6, 7,
11) with the same suppositions as above: 1. families of subspaces exist, on which the

¢ This “dual” form of the theorem can be obtained from that one given in ([7], p. 111) if the above
dualization conventions (cp. 2.1) are applied. It can be proved directly with the help of the theorem of
Stokes in its “dual” form (cp.* ) and an identity connecting the divergence of p®m*1-%n = glkm+ 1Km+2...6n]
and Lym+z-Fn (cpl4 in [1]).

s
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B,’s may be chosen (cp. theorems 2.A., C., E.); 2. for the proof of (4.11) instead of u,,
= —uu, even w,; = 0 must be assumed, since p** VM, = e?u,. . p"p6 vanishes
for arbitrary p* only in this case.
It is reasonable to regard the last two equations in (4.14) or their transvections
2
ba L P =0, u, £p*=0, u,,Lp*= £ UpssP"P° =0 if 4, =0 as laws of
H1p tHlp 11y 6
conservation in local form. These equations express the same facts as (4.5, 9) or their
transvections Vp, p*., =0, My p*, =0, r,p*, = u,ppY6 = 0 if ug,, = 07 for

the mapping of sets of points (states) between the different layers t = const, respectively,
of the anholonomic spaces (3.4, 5, 6).

With respect to the application of the theorem of Post in its original (not dualized)
form [7] the equations

L Py =0 L Peyne =0,

(H)p (H)p

L Puyns = —F Py mxww)]a_vm xs (4.15)

(H)p

(multivectors defined as duals of ™p*, p**, p*** 1***) have to be regarded as further local
expressions of the laws of conservation given by (4.14).
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