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The diffraction of a plane electromagnetic wave by a Schwarzschild black hole is
considered. Measurable quantities of the diffraction field (Poynting vector, frequencies) are
calculated in the high-frequency approximation for (freely falling) observers very near the
horizon. Within two focal regions on opposite sides of the black hole the intensity is strongly
amplified but finite, in contrast to the results of geometrical optics. Outside these regions
no interference takes place, i.e., geometrical optics holds. According to the different light
rays passing through each point of the horizon, there are several images (redshifted or
blueshifted) of the radiation source (distant star). The positions and relative intensities of
these images are given in terms of the observer’s position at the horizon.

1. Introduction

In a series of papers, Herlt and Stephani ([1], {2]) have investigated the field of a plane
electromagnetic wave diffracted by the spherically symmetric gravitational field of a star
or a black hole. Though a high-frequency approximation was used, a waveoptical treatment
of this problem (including interference effects) has been given. Furthermore, the observer
was assumed to be far away from the deflecting mass. In the present paper the optical
appearance of the radiation source of the plane wave to observers near the event horizon
is studied.

Because it is of little importance to astrophysics, the existing literature offers only
few works dealing with optical phenomena measured by observers in the vicinity of the
horizon. Breuer and Ryan [3] and Cunningham [4] have considered the appearance of the
external universe as seen by observers near the black hole in the framework of geometrical
optics. They find an infinite number of images of all distant objects which can be seen
within a circular region of the observer’s sky. Pineault and Roeder [5] used an observer
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near a rotating black hole but not at the horizon. Though Nugaev [6] goes beyond the
scope of geometrical optics he is unable to sum up the partial waves. Triimper and Wayland
[71 have calculated frequency shifts of photons which would be measured by observers
inside a cloud of freely falling radiating particles. A similar investigation has been perform-
ed by Debney [8].

In the present paper the above-mentioned images are calculated in terms of the observ-
er’s position on the black hole’s surface for the special case of an incident plane wave.
However, the starting point is not the null geodesic equation but the exact expression
for the field of the plane wave in Schwarzschild’s space-time. This waveoptical approach
enables us to determine the Poynting vector associated with each image and the relative
intensities; it becomes essential in the focal regions. The approximation procedure used
here is similar to that of Herlt and Stephani. It is described briefly in the following section.

2. The Debye potentials of a plane wave near the horizon

In the background of the Schwarzschild metric (with the horizon at r = 1)

r r—1
ds® = w—rt - dr? +r}(d9* +sin® dg?) - —— - di* )
¥ - r
the electromagnetic field of a generalized plane wave incident from the direction 8 = n

can be derived from a single function P(r, 3). As shown by Herlt and Stephani P is closely
connected with the Debye potentials and has the structure

(1 @n )
207 - n(n+1)

n=1

P(r, 9) = et TR (r) - Py(cos 9), (2

where o is the frequency of the wave, i.e., 27 times the number of flat space wavelengths
per Schwarzschild radius. According to Maxwell's equations the radial functions R, ()
have to fulifil

2
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In the high-frequency limit (w > 1), which is assumed throughout the paper, an expression
of the form (2) can be further elucidated using a four-step procedure proposed by Ford
and Wheeler [9]. Firstly, the radial equation (3) is solved by means of the WKB approxima-
tion. Near the horizon (1 < r < 1.5), where only ingoing waves contribute, the WKB
solution is given by

1 .
Rn(l‘) =, e-:w(r+ln(r~1)+T)' (4)

, r—1
Jime
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T denotes the phase shifts of the partial waves coming from infinity:

T(r,n)=f(1—\/1—a2-r—:3—1>-r%ldr. (5)

N
r

In the next step the asymptotic representations (for n sin 3 > 1) of the Legendre functions
P} (cos 9) are inserted into the sum (2). Then this sum has to be replaced by an integral
which, finally, can be evaluated by application of the method of stationary phase. The
points of stationary phase no(m, +) or ay(m, +) are solutions of

, oT

(m integer). It can easily be seen that the lines ny(rm, +) = const coincide with the light
rays of geometrical optics, + indicating the direction of revolution and m the number

(0,+)
(1,+)

Fig. 1. Light rays near the horizon {r = 1)

of revolutions the ray has performed. Only rays with impact parameters ao(m, +) in the
range 0 <C a? < 27/4 can enter the region between r = 1 and r = 1.5. (Fig. 1).
At the horizon approximate solutions of (6) are

a0, =) =n-8 for 0 < a4 <

, 54°
ag(m, £) = 31— —

e ce WEMENRES  for o < L (7
4-2+3

There is an infinite number of points of stationary phase, which accumulate near aj = 27/4.
Consequently, the sum (2) is transformed into the infinite sum

(8)

P Z 1 1 1 1 iSo*(m, )
o /sin 9 \/S(f”(m, +) \/no(m, +) i/ r—1

—ad(m, )5,
.
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where

Sim, £) = 0 - G =In2)+ny(m, +)-2Cm+1) 1—ow - {r+In (r— D+ T[r, no(m, +)}}

+( +)+4)- 9 n z 9
_[("o(m,_)“f'i) —Z]_‘_Z' )

S3" is the second derivative of the phase with respect to n. At the horizon it is given by the
expressions

Sy "'(0, =) = —[1+a2(0, —)/8] for 0 <ay S 1,
oSE"(m, +) = —2aq(m, +)- [BL—ai(m, £)]"' for m > 1. (19)
Fortunately, because S5 (m, +) increases rapidly for large m, only few terms in the sum

(8) are essential, i.e., in the vicinity of the horizon the contributions of rays with large
values of m are negligible.

3. Poynting vector and frequency shifts for a freely falling observer

To simplify the calculations we choose an observer who is initiaily at rest at infinity
and then radially falls into the black hole. His proper reference frame is characterized by
the orthonormal tetrad vectors (in Schwarzschild coordinates)

h§1>=<_1 OOJr)’ h? = (0,r,0,0),

K = (0,0, rsin 9,0), h® = (—V—r—l 0,0, 1). (11
r—

The last formulas can be obtained by using the line element (1) in Lemaitre coordinates
(see e.g. [10]). In the field of the diffracted wave the observer measures the frequencies

Q= '—'(S{)t —Q)t)’i * 24) (12)

(tetrad indices are raised and lowered with the flat space metric 5 ;). Inserting (11) and
the phase ,Soi from (9) we obtain at the horizon

Q(m, +) = [1+a¥(m, +)]- % (13)

Consequently, for a freely falling observer the various terms in the sum (8) have different
frequencies. Therefore, the interference terms of light rays cancel out and incoherent super-
position takes place as in geometrical optics. These interferences must be taken into account
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only in the vicinity of the points 3 = 0 and 3 = 7z, where frequency differences between
certain rays become small (this case is treated in Section 4). Due to gravitational frequency
shift and Doppler effect, both redshifts (@, < 1) and blueshifts (¢, > 1) occur (Fig. 2).

‘Q/w T~ 00
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blueshift

redshift

/2 e

Fig. 2. Frequencies (m, +) as measured by a freely falling observer in terms of his position at the horizon

Generally, the Poynting vector in stationary space-times is expressed in terms of the
metric tensor g;;, the energy-momentum tensor T;; and the timelike Killing vector &; by

g TV, (14)

Since g4, = —1 in Lemaitre coordinates the components of the energy current as measured
by the observer with the tetrad (11) are

S(k) T”f h(k) (15)

where & = (0,0,0, —1) is timelike outside the horizon, even for very small r—1 > 0.
In the plane wave case the Poynting vector has the structure

S' 1 1 R (ﬂ —-ia)t) R (5 —iwt)
= — —.———+Re(Be * K¢ (oe »
r? sin?8
1 -
83 - _4. : Re(ae—lmt)_Re(ée uot)
r- sin
S§? =0,

t 1 1 1 2 —iot 1 1 1 —iot ot
S =z~ 5 Re“(@e ) +5- ‘[Re? (Be™™) + Re* (3¢™*] (6)

r* sin® 9 2 f(r=1) sin®9
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with the abbreviations

0 1 .

o= —s — —— — Psin 3,

03 sind &

5 sar—l 8P+ P
=3 n ——— ———— y
MYV T e T

. 0P r—1 0P

0= —iw-sind— — — 17

Because no interference of terms of the sum (8) takes place the time-averaged Poynting
vector S® (averaged with respect to the observer’s proper time) is simply the sum of the
quantities S®(m, +) connected with the various rays. In the high-frequency approxima-
tion the radial components S(m, +) and the tangential components S®(m, +) at the
horizon are

ag(m’ i)_ao(ma i)
4sin 9 - w|SE""(m, +)|

SW(m, +) =

+aj(m, +)

SO(m, +) = .
m 4) = i 8- olSE(m, 1)

(18)

From (7) and (18) it follows that the intensity of the images (m, +) of the star decreases by a
factor e~2" ~ 0.002 if m increases by one in accordance with the predictions of geomet-
rical optics for rays going round the black hole outside the circle » = 1.5 [11].

The angle 4 between the (outward) radial direction and the direction in which the
image of the star is seen by the observer at the horizon is given by

SY(m, +) _ l—af)(m, +)
IS®(m, +)|  2a4(m, +)

cot A(m, +) = 19)

Intensity (i.e. magnitude of the Poynting vector §® (m, +4)) and direction of the images are
plotted against the observer’s position in Fig. 3.

The freely falling observer receives all images within a circular region of his sky with
half an opening angle A,,,, = 138°. This phenomenon has already been discussed by
Breuer and Ryan [3] and Cunningham [4] and was called the “porthole effect”. Redshifted
rays have A < 90° (outward half of the observer’s sky) whereas for blueshifted rays A > 90°
holds (inward half of the observer’s sky).

To summarize, the results of this section agree with the predictions of geometrical
optics as a consequence of the approximation procedure used here: interference terms
rapidly oscillate and cannot be observed. Nevertheless, the details of the images as shown
in the figures (especially the relative intensities) have not yet been given in the literature for
the case of an incident plane wave.
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Fig. 3. (a) Direction of the Poynting vector and (b) intensity of the images (m, +) as measured by a freely
falling observer at the horizon. The intensity of the incident plane wave far away from the black holeis
normalized to 1/2

4. The focal regions near $ =0 and 3 = n

In the vicinity of the points 3 = 0, = interference between certain rays takes place and,
therefore, the predictions of wave optics differ from those of geometrical optics. More
precisely, near 3 = 0 the interference between the rays (m, +)and (m, —)and near 9 = =«
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the interference between the rays (m, +) and (m+ 1, —) are essential, because the corre-
sponding frequency differences become zero. At these points geometrical optics yields an
infinite intensity. Contrary to this, wave optics is expected to yield an extreme but finite
amplification of the intensity.

To succeed in this question the expression (8) has to be replaced by a similar formula
involving the asymptotic representations of the Legendre functions holding true for 9 < 1,
n>» 1 and n—8 <1, n> 1, respectively. Using this function we find that the interference
of the rays (m, +) and (m, —) at 9 ~ 0O gives the averaged components S® () of the
Poynting vector as measured from a freely falling observer at the horizon as

5Y(m) = il

> " Ts7om LS Tnatm) - 9)= adm) - Tinetm) - 9]

§®(m) = o, (20)
where ag(m, +) x ao(m, —) and Sg(m) = Sy (m, +)~ Sy (m, —). J;, J, are Bessel

functions. Fig. 4 shows the radial component S”(m = 0) and the corresponding rays
connected with this (nearly time-independent) interference pattern. The intensity behaves

5 (m=0)/w

Fig. 4. The radial component of the Poynting vector close to & = 0-

in an oscillatory fashion and is amplified by a factor of order w. Thus at the horizon the
magnitude of the Poynting vector is enlarged up to the same remarkable factor as in the
focal beam far away from the black hole ([1], [2]). Again, the intensity of the inter-
ference pattern arising from rays having revolved the black hole several times is negligible
because it decreases by a factor e™ 2" ~ 0.002 if m increases by one. At § = 7 the situation
is similar to that at 3 = 0. Therefore, the expression ‘“‘focal regions” is justified here.
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