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CANONICAL QUANTIZATION OF GRAVITY AND QUANTUM
FIELD THEORY IN CURVED SPACE-TIME

By V. G. LAPCHINSKY, V. A. RuBakov
Institute for Nuclear Research of the Academy of Sciences of the USSR, Moscow*
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It is shown that canonical quantization of gravity and matter leads to quantum field
theory in curved space-time in the case when the gravitational field can be regarded as a classi-
cal background field. The Tomonaga-Schwinger equation for matter in a background field
is derived. The physical meaning of momentum constraints of quantum gravity in the presence
of matter is established. As an example, the Bianchi type I cosmology is studied and the
direction of alteration of evolution caused by created particles is found.

1. Introduction

1t is well known that canonical formulation of general relativity leads to constraints
imposed on canonical variables and the full Hamiltonian of the theory vanishes up to
surface terms [1}. Following the Dirac-Wheeler-De Witt method of quantization of grav-
ity {2, 3] we assume that canonical variables of the theory obey usuwal commutational
relations and the constraints of general relativity are the only equations imposed on the
state vector. Thus, in the case of empty space-time the main equations are:

AN, g) ¥ =0, (1.1)
where
H° =% 27V @ugp+ Guli— 8igu)n 7 — g'7R,
H = =2,
Here g;; denotes an operator of spatial metric, 7/ is its canonically conjugate momentum,
g = det ||g;;]l, R denotes a spatial curvature. A generalization for the case of gravita-

tional field interacting with the fields of matter is straightforward [1]. Let @ (x), 7%x) be
canonical variables of the fields of matter, obeying standard commutational relations.
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Then the presence of matter leads to additional terms £*(g,, 7%, g;;) on the left-hand side
of Eq. (1.1):

RMY) = (A#"+EM W) = 0. (1.2)
Note, that the Hamiltonian of matter in a background gravitational field is exactly
H, = [ & ,&"dx, (1.3)

where A4, and A”; are well known lapse and shift functions [1, 4].

This method of quantization is widely used in the investigations of quantum cosmo-
logical models [5]. But the validity of this method and its general consequences have not
been studied sufficiently (see also [6]).

However it was proved, that the quasiclassical limit of Eq. (1.1) leads to Einstein
equations of general relativity [7]. For the readers convenience we reproduce here some
results obtained by Gerlach [7].

Wheeler’s representation of canonical commutational relations is chosen. The state
vector |¥) becomes a functional of spatial metric:

> — q’[gij]-

The operator g;; acts as an operator of multiplication, 7/ acts as an operator of the func-
tional derivative,

éij(x) - gii(x); m(x) - —i6/0g;;(x). (1.4)

The quasiclassical limit is given by the state functional

¥ = exp (iS), (1.5)
where the action functional Sg;;] obeys the Einstein—-Hamilton-Jacobi equation:
HH(0S[0gij; &) = 0. (1.6)

Eq. (1.6) is equivalent to Eqgs (1.1) and (1.5) if the second functional derivatives in (1.1) are
negligible. In fact, they are of the order %, while Eq. (1.6) is of zeroth order in %.

Every solution of Eq. (1.6) corresponds to classical four geometry obeying Einstein
equations and vice versa. The four geometry is represented by a certain subset of a set
of all spatial metrics. It is possible to introduce a Tomonaga bubble-time parameter,

o(x) enumerating elements of the subset and to write down the equations of motion in
a covariant way:

SH*(5S5/6g(x); Y M
08:j/00(y) =J (95/08u(x) g"'(x)). u(2) cd3z

5(35/585/(2)) 50()
5S M, <6Mi,j(x) 5Mj,i(x)>
2GS ‘ , 1.7
4 Sz o) |\ da(y) T de(y) @7

Here

Giju = yg I/Z(gikgjl+gilgjk_gijgkl)a
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S obeys Eq. (1.6), functionals 6 M ,(x)/da(y) are connected with the lapse and shift functions
M

N (X)) = J —‘—‘(i) d’

da(y)

Choosing o(y) = const = ¢ and integrating Eq. (1.7) over d3y, one derives the canonical
equation of motion

(1.8)

0gii(x) SN Az
a en(x)

il =88/8g:4

Equations #'|¥) = 0 and .%i(éS/égij; ;) = o mean that functionals ¥[g;;] and S[g;}]
are invariant under the transformation of spatial coordinates [2, 7]:

x' = x(xh. (1.9)

The rest of this paper is organized in the following way. In Section 2 the last statement is
generalized for the presence of any kind of matter. In Section 3 the Tomonaga-Schwinger
equation for the fields of matter in background space-time is derived from Eq. (1.2). Some
applications of the results of Sections 2 and 3 to a simple cosmological model are considered
and the direction of alteration of evolution of the universe caused by created particles is
found in Section 4. Section 5 contains some concluding remarks.

2. The role of momentum constraints

In this section unified notations (g;;, ¢,) = ¢, and (7¥, 2%) = n* are used. Consider
the infinitesimal transformation of spatial coordinates, Eq. (1.9):

X' = x4 E). 2.1

The dynamic coordinates and momenta transform according to:
3 a(x) = [ ma(x, Y)E)dy, (2.2)
on'(x) = J 64(x, y)eyv)dy. (2.3)

It was shown in [1], that in the classical case this transformation is generated by the quanti-
ties R’ (see Eq. (1.2):

{b4(), R(»)} = SR(1)[o7"(x) = niy(x, y), (2.42)
{m*(0), R(0)} = —6R(1)/3¢ 4(x) = 0*(x, y). (2.4b)

From Eqs (2.2) and (2.3) it follows that functions #,' and 6 depend only on ¢, and %,
respectively. Thus the functions R are linear and homogeneous functions of n* and ¢,
(see Eq. (2.4)). Consequently,

Ripansy] = J

and SRY/6n* is independent of momenta.

SR'(»)
61(2)

(2)d>> (2.5)
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Now, consider the change of some functional Ul¢,(x)] under the transformation
of (2.1) and (2.2)
U [ oV S (x)d?
= | ————dp(x)d°x
J 6
2V e, e
=13 nalx, y)ciyja xa-y
J 56400 ™

_ [0V 9RO, s s
- J 0¢(x) 57IA(x) c{y)dxd’y
= [ R'[pa; 8U[6 43 y1E»)Ay.

Here Eqs (2.2), (2.4a) and (2.5) and the independence of SRY/dn* of momenta were used.
Thus, the necessary and sufficient condition for the invariance of the functional U
under the transformation is

Ri[d)A; ﬂA; y]/n"=6U/«5¢A = 0. (2.6)
In generalized Wheeler representation, which is

(23,4 = ¢4 - —i6[0¢ 4,
the momentum constraints are exactly in the form of Eq. (2.6) because of the linearity and
homogeneity of R’ as functions of the canonical variables. Thus, the meaning of momentum

constraints in the presence of matter is precisely the same as that of empty space-time
(see Section 1).

3. Derivation of Tomonaga—Schwinger equation

Consider Eq. (1.2) in a particular case. Let the gravitational field be classical and the
matter field be weak so that the gravitational field may be regarded as background. In this
case the main dependence of the state vector on the gravitational variables is quasiclassical.
We construct the space of state vectors of the system as a set of mappings from the set of
all spatial metrics into the Hilbert space of state vectors of matter, i.e., into Fock space.
In other words, the space of state vectors is a set of all functions of spatial metric with
values in the Hilbert space of matter. Each state vector can be written in the form |¥[g;;]>
and for a particular metric it is an element of Hilbert space, 3¢y, of the state vectors of
matter. Operators g;; and 7/ are realized as in the Wheeler representation, Eq. (1.4), opera-
tors ¢, and 7° act in J#), in a common way, i.e., operators ¢, and 7° act on |¥[g;;]> as
they do on an element of .

We search for the solution of Eq. (1.2) in the form:

[¥[gi;]> = exp (iS) W’M[gij]>~ 3.1

Here, S is the classical action of empty space, obeying Eq. (1.6). The terms %5/dg;;08
in Eq. (1.2) are negligible because of the classical character of geometry. The terms
0%| ¥ mlgi;1>/08:08. are also negligible because of the weakness of matter (see below).
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Then Eq. (1.2) has the form:

2Gijkl éé ' iw = ébo/"PM%
0gi; 08
—2i <5WM>> = &1\ (3.2)
081 /i
Using Eq. (1.7) we derive from Eqgs (3.2) and (3.3):
SM(X) IO
[ f 5 g x] W)y = 172 (34)

The dependence of |¥y> on o(y) appears here instead of the dependence of |¥y,)
on g;;(x) because the spatial metric describing classical four geometry is in its turn
a functional of ¢ (see Eq. (1.7)). In the derivation of Eq. (3.4) we used the identity

0| ¥wm(o)) _ J‘élY]M[gij]> . 0g;(x) Bx
So(y) dgi(x)  da(y)

From (3.4) we observe that 6%|¥y)/dg;,0g,, is of the order of £?|¥y) and is thus a small
quantity.

Eq. (3.4) is in fact the Tomonaga—Schwinger equation for the matter in background
space-time. In the case where o = const = ¢ integration over y in Eq. (3.4) leads to the
Schrédinger equation:

o|w
i laM> = Hyl¥D.

Here, Hy is determined by Eq. (1.3) and 4, being given by Eq. (1.8).

4. Application to Bianchi type I cosmology

4.1. Empty space-time
We choose the metric tensor for the model in the form [8]:

8y = diag [—A"7; exp (2Q) exp 2(B. +/3 B-);

exp (20) exp 2(8, —+/3 f_); exp (2Q) exp (—4B4)].

In the Hamiltonian approach the variables Q, 8. are canonical ones. Following the standard
procedure of quantum cosmology [5], we neglect other degrees of freedom of the gravita-
tional field and obtain the only constraint [8]:

5o _ (GO _ &xp (GQ)
24 24

GAB=diag(—1a +19 +1)7 A,B=Qa +, —.

(P% +p> —p2) G 50" p",
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The classical equations of motion are {8]:
B+ = (1/12)4" exp 3Q)p+,
B. = (/12)4 exp 3Q)p-,
Q = (1/12)4 exp (3Q)pa,
P+ =p-=po=0.

The collapsing universe corresponds to p, > 0, and singularity is reached at Q = — w.
In the space with axes f,, f- and € (minisuperspace [8]) the evolution of the universe is
represented by a straight line, being null in the metric G4, Eq. (4.1). In the quantum case
the analog of Eq. (1.1) for this model is:

(—1)*(1/24) exp (3Q) (8% +9% —02)¥ = 0,
0y = 0[0By; Op = 0/0L. (4.2)
The solution of Eq. (4.2) for the collapsing universe is given by:
¥ =exp[i(pfe+p-B-+pa D], pa=(pi+p)"% (4.3)

This solution is analogous to the wave function of a zero mass particle in three dimensional
space-time with space coordinates f., the time coordinate 1 = —Q and with metric
G 4. Just as in the classical case the universe collapses up to singularity, Q = — oo,

4.2. Space-time with matter

The addition of matter can break the symmetry of the model. However, we consider
the case of the weak matter (see Eq. (4.5), where this difficulty does not appear. So we choose
the action in the form

S = [ d&xdi[Bip.+B-p-+Qpo+ @, (x)7(x)— N (H°+&)].

We do not write the normalization volume for simplicity of notation, so that Eq. (1.2) for
this model is:

[(—)*(1/24) exp (3Q) (65 + 0% —02)+ [ &d°x] |¥) = 0. (4.4)
According to Section 3 we search for the solution of Eq. (4.2) in the form of

|#> = exp Li(p+ B+ +P-B-+PaD)] (B, O,
Pa = (D1 +p)'""

In the case of weak matter, |¥y)> obeys the equation

il = (N[ Eydx) [P
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It may be proved that this approximation is valid if:
exp 3Q)pa > (Pw, § 8x ¥y, (4.5)

i.e., when matter does not change the evolution of the universe considerably.
Now, we introduce the ‘‘conserved current” £, [2, 9]:

1
Fr= 2—i(<5”,0i‘1’>—<5‘19’, ¥3),

o= %«sv, oWy —(0p¥, W), (4.6)

In Eqgs (4.5) and (4.6) the brackets {, > denote the inner product in the Hilbert space of
matter. The current £, is a function of f; and Q. In the case of an empty universe with
the wave function (4.2) it is

Fr =P Fo= —Po

Thus, the current reflects the evolution of the system [10]. For an empty universe the
current is null in the metric G ,p, but in the presence of matter we get

G I 8% = —24exp (—3Q) (¥ap, [ E°x¥

up to terms negligible when Eq. (4.5) holds. Due to the positiveness of ¢ | d3x), the cur-
rent is directed inside the “light cone™. This corresponds to the isotropisation of collapse.
Note that if no particles exist at the beginning of collapse, ¢ | &d3x> > 0 at ¢ > 0 due
to the particle creation [11], and the particle creation leads to the isotropisation.

One can show [11] that Eq. (4.5) holds up to diameters of the universe on the order
of 10722 cm and only then the investigation of a complete equation, Eq. (1.2), is necessary!.

5. Concluding remarks

The results presented in this paper show that the canonically quantized theory of
gravitation interacting with matter leads in proper limits to the theory of quantized matter
fields in curved background space-time. Authors hope that these results will help to find
a solution of such important problems as the back reaction of created particles on geometry.
The example in Section 4 shows that the relevant object for this problem is the “conserved
current” and it is likely that the full solution of this problem, including the question about
the energy source of creation will take into account the quantum properties of space-
-time.

The authors wish to thank Drs A. O. Barvinsky, V. P. Frolov and all participants of
M. A. Markov’s joint seminar o quantum gravity for helpful discussions.

* Note that the value of < { £d%x) can be calculated both in Schrodinger and Heisenberg representa-
tions because of the usual connection between them.
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Editorial note. This article was proofread by the editors only, not by the authors.
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