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FLUIDDYNAMICS
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Within the framework of general relativistic thermodynamics, the note delivers an
account of viscosity and heat conduction in fluids, compatible with wave propagation,
via a hidden variable approach. Detailed results are exhibited.

In the last decade the attempt to achieve more realistic astrophysical models has
determined an increasing interest in topics concerning viscosity in General Relativity. In
this connection we cite, for example, Matzner and Misner’s account of neutrino viscosity
in anisotropic homogeneous cosmologies [1], Weinberg’s work on the role of viscosity
in the survival of protogalaxies [2], and the researches on viscosity effects in Friedman
cosmology carried out by Belinskii and Khalatnikov [3] and by Grabinska et al. [4]. Yet,
it is an unpleasant feature of Navier-Stokes’ law of viscosity that mechanical disturbances
would propagate at infinite speed. The same is true for temperature disturbances in Fourier’s
theory. Although solutions to the latter paradox are known, we still need a proper scheme
of both phenomena, compatible with thermodynamics and accounting for finite wave
speed. This note investigates such a topic through a relativistic hidden variable approach
which mirrors some points of the classical procedure [5-8].

Consider a heat-conducting viscous fluid described by the usual energy-momentum
tensor T of the form

Top = r(1+e)u us—S,p+2qUp), M

where S is the stress, S,if,u‘9 = 0, g the heat flux, gu* = 0, and u,u* = —1. The balance
equations are summarized by

(U =0, T, =0. @
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Introduce now the absolute temperature 9, the specific entropy s, and 1, = h(3,,+ 31,)
where h, = g5+, and 4y = ugu”. Then, on accounting for the second law of thermo-
dynamics through the Clausius-Duhem inequality, we get

. 1
—r(p+5H+S¥,+1 52,0 3 q°i, =0, (3)

where y = e—0s, 0 = u*, and 0,5 = b hy'u )~ Ohy.

Strictly speaking, a-material with hidden variables consists of a suitable set of response
functions — here vy, s, S, ¢ — and of differential equations governing the evolution of the
hidden variables via the real (physical) variables. Besides, as shown in [5, 6] — ses also
[8] — compatibility with wave propagation in fluids requires that the response functions
can depend only on r, 3, and on the hidden variables; such variables are here represented
by a spatial symmetric traceless tensor X, a scalar @, and a spatial vector A. To avoid an
unduly cumbersome theory and to get a model with an immediate physical interpretation,
the relaxation effects associated with viscosity and heat conduction are described through
the differential equations '

1
ha“hﬂv(z‘nv +% @h#v) = ':ru {hﬂghﬂvu(ﬂ;v) ~(Z‘zli +%&' @haﬂ)}’ 4)

htld, = 1 (1= AL} 5)
TC

So, the parameters 1,, 7. represent relaxation times for viscosity and heat conduction.
From a formal viewpoint equations (4), (5) are closely related to Matzner and Misner’s
ansatz concerning neutrino viscosity in a Bianchi type I spacetime [1]; there the evolution
equation governs the growth of the distribution function by means of the shear ¢ and of
a relaxation time 7 calculable from microphysics. We remark that sometimes, on the basis
of arguments concerning objectivity, the dot derivative is replaced by other derivatives
[9, 10]; however, as the physical behaviour is qualitatively unaffected by the particular
choice of the derivative, we use the dot derivative which allows a simpler treatment. Within
the outlined framework, the inequality (3) becomes

. 1 r
—r(py+35)§+ (S’”~ - wm) Oupt (rzw,-{—% S — - %) 6

v

- (—1— @+ w,) Aotr <-1- ViapZop+ L ¥e0 + L vmfh) = 0. (6)

| 7, T, 7, 7,
As it happens in the classical case [5, 8], the hidden variables £(z), ©(z), A(t) at the proper
time ¢ are independent of the present values a(r). 0(t), A(t) because, in view of (4), (5)
2,0, A turn out to be expressed by suitable integrals of the past histories of o, §, 4, respec-
tively. Accordingly, the assumed validity of (6) for every thermodynamic process leads
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to a reduced dissipation inequality and to relations yielding s, S, ¢ in terms of the free
energy ». In the particular case

. 1 K
p=¥,r+ —(mvza,,z‘“%-;- {r,0% + % A,A“), %)
r ]

-

1, {, x being suitable parameters, the reduced dissipation inequality provides n > 0,{ > 0
xk > 0 while s, S, g are given by

KT, a
s = —Wyo+ _2_, A A% gy = —xAd,, (8)
r

Saﬂ = —‘phap+2'12ap+cahap, (9)

where p = r?y,. Of course, Z,0, A in (8), (9) stand for the solutions of (4), (5) so that the
hidden variables are entirely eliminated at the outcome and (8), (9) involve only real
variables.

Two points stress the value of the present approach. First, the constitutive equations
(8), (9) reduce to the customary relativistic laws of viscosity and heat conduction when
stationary processes are involved; in fact £ =0, © =0, 4 = 0 imply that £ = 0, © = 0
A = . So, 5, {, k may be viewed as the coefficients of shear viscosity, bulk viscosity and
heat conduction, respectively. Second, equations (8), (9) are consistent with wave propaga-
tion. This claim can be ascertained through direct calculations. Letting ¢(x*) = 0 be a dis-
continuity surface, the spatial normal speed of propagation U, relative to the comoving
frame of the fluid, is defined as U = —u*N,, being N, = ¢,a(¢,ﬂ¢"’)‘*. Denoting by[ ] the
jump across the surface, for any tensor £ such that [£] = 0 we have the compatibility rela-
tions

[6:] = [Va¢IN,  [E] = UV, (10)
where pyé = N%,. Setting n* = h*;N’ we find that
[Vl = 1=-U%) [V]. (1

In the case of acceleration waves — jump discontinuities of pyr, P59, Pyt — propagating
into a constant state, application of the standard procedure to the balance equations (2)
yields

—U[Vyr]+r[Vyul, = O, (12)
K k(1-U?%
(S,+ rZ—TC) U[VNr] +. (SQU— —-—;‘—97]—1?-) [VN‘9] = 0, (13)
-U? SU
e L e L e [ B
3rt, . Te Urt, T,

(14)
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where [Vyu}, = [Vyu'ln,. Two types of waves can occur. (i) Transverse waves, namely
[Vayul, = 0. In this case the system (12)-(14) provides

n Te

Obviously 1, > k3/(r +re) guarantees that U? < 1. (ii) Longitudinal waves, namely [V, %]
= [Vyul,n®. The corresponding determinantal equation follows straightforwardly from
(12)-(14). It turns out that, within the approximation x & 0, the condition 1, > (g
+30/{3r(1 + e—p,+5,pg/sg)} ensures that U2 < 1,

Further applications of the present approach will be given later.

-1/2
[Var] =0, [Vy8]=0, U= {1+ s (r+re— K—‘g)} . (15)
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