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The aim of this comment is twofold. Firstly, it is pointed out that the bag-like solution
conjectured recently by H. Suura in the case of the relativistic Breit equation (in its primary
form consistent with the single-particle theory) with an infinitely rising central potential is
in fact a solution to a related inhomogeneous equation. One may speculate on a possible
physical meaning of the source term there. Secondly, discontinuous selutions to the original
homogeneous equation are constructed. In particular, they can be confined to the inner region
r < rp or restricted to the outer region r > ro, where ¥ (ro) = E, but both kinds of solutions
can be mixed by an additional interaction. The new solutions are normalized to the Dirac
é-function and so belong to the continuous-energy spectrum, in contrast with the Suura
solution which is normalizable in the usual sense. One may wonder if the new solutions have
only a formal meaning.

1. Inhomogeneocus Breit equation

In a recent paper H. Suura {1] (cf. also Ref. {2]) has found a normalized bag-like
solution to the inhomogeneous Breit equation

[E-@™ - p+BVmD)=(=5® - p+BPmD)—V()]y(r) = Sé(r—ro), 6]

with a central static potential V(r) = V(r), where V(r) > o at r - o, V(0) = 0 and
V(ro) = E (for an r, > 0) as is the case e.g. for ¥(r) = p?r. The operator S appearing in
the source term in Eq. (1) is a constant matrix built from Dirac matrices of both particles.
The source term, which introduces an important physical and mathematical difference
between Eq. (1) and the familiar homogeneous Breit equation [3, 4] with a potential
V(r) [5), was in fact not considered in Refs. [1] and [2], where the homogeneous Breit
equation (in its primary form consistent with the single-particle theory) was discussed.
To this equation a solution was conjectured (in the case of m") = m(®) which was normali-
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zed and equal to zero outside the sphere r = r,, and contained a component that vanished
as (r—ro)* when r — r, (from inside) and another component which jumped as 6(r, —r).
‘The latter, when differentiated in Eq. (1), gives rise to a source term proportional to
d(r—ro) in the corresponding component of Eq. (1). Thus the Suura solution is a solution
to the inhomogeneous rather than to the homogeneous Breit equation, the latter being
a relativistic wave equation for a closed system of two spin-1/2 particles.

In Refs. [I]and {2] an argument was given that the invented solution represents properly
the physical situation in the quarkonium qq. In this argument, a crucial role was played
by the assumption that at r — oo the proper solution should contain only outgoing waves
(if any), since incoming waves would imply the existence of sources or reflecting walls
at infinity. This assumption, excluding standing waves, led to a zero solution for r > r,,
because non-zero outgoing waves could not be consistent with the wave function which
contained a component vanishing as (r—ry)? at r — r,, the last property being necessary
for the normalizability of the solution. The crucial assumption of the absence of incoming
waves was supported by the observation that the “confining” potential ¥(r) which rises
to infinity at r — oo, when inserted into the relativistic Breit equation, gives effectively
an infinitely growing repulsion rather than a reflecting wall (though this property might
be unphysical, being connected with the Klein paradox).

While this crucial assumption does seem to be intuitively justified, it leads to an
inhomogeneous Breit equation (1) which implies that the quarkonium qq is not a closed
system. On the other hand, the argument that the “confining” potential ¥(r) produces
an infinitely growing repulsion at r — oo is true only for the primary, one-particle version
of the Breit equation (which suffers from the Klein paradox). In the modified, hole-theory
version of the Breit equation (called usually the Salpeter equation) [6, 4], where the potential
V(r) is multiplied from the left by the projector

P(p) = AVPIAP(~p)— ADPIAD(-p)
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the situation is changed, since a part of the interaction P(p)V(r) produces terms which are
additive to the masses m'"’ and m® rather than to the energy E. In the case of the “con-
fining” potential ¥{(r), such terms lead effectively to an infinitely growing attraction at
r— o i.e., to a reflecting wall at infinity. Approximately, one can get such terms if one
expands the projector-(2) into 'powers of velocity o = p/m,

-

- -
P(p) = %(ﬁ‘“+ﬁ‘2’)<1 -7 :1—2) +%(d“’—&‘2’)% +0@*) = 3 (B +)+0G%), (3)

where m'? = m® = m.

In this situation, we would like only to mention that the Suura bag-like solution,
which is implied necessarily by the inhomogeneous Breit equation (1) (with a proper
source term) might be justified by a justification of this equation (or possibly its modified
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form consistent with the hole theory). We have in mind an attractive possibility that the
existence of a source shell at r = r,, as appearing in Eq. (1), might be physically reasonable.
If it was true, such a source shell would represent a surface accumulation of quark-anti-
quark pairs which could be treated as external surroundings of the quark-antiquark
pair under consideration. At this point let us notice that the inhomogeneous wave equation
for a given particle configuration (e.g. for a qq pair as in our case) follows in general from
the field theory [4] if one eliminates all other particle configurations (e.g. those containing
additional qq pairs). Then the source term is provided by those particle configurations
which can transit into the distinguished one (or vice versa) and are present in the Fock
space at the moment.

2. Homogeneous Breit equation

In the remainder of this comment we would like to answer another question which
is opposite in a way to the problem aroused by the Suura solution. The question is whether
the familiar homogeneous Breit equation given by formula (1) with

Sé(r—ro) =0 C))

(and without the projector (2)) has some solutions with discontinuities at r = ry, as it
is the case for the inhomogeneous Breit equation (1) having the Suura solution which is
discontinuous at r = r,. The answer is in the affirmative, but it turns out that such solu-
tions can be normalized only to the Dirac é-function, in contrast with the Suura solution
which is normalizable in the usual sense.

To this end let us write the system of radial equations following from Egs. (1) and (4),
where V(r) = V(r) [5]. In the case of j = O this system reduces to two separate subsystems
of 4 equations which read

m D m® E—V N mPFEm® E-V

F =0’
> fé

d j:
PRI

mP+tm® _ E-V

i ~_——'3""‘”—fz + 5 _fli = 07
d mPym®  E-V
- — C+ = 0, 5
(dr ')fa * L 5 /2 &)

Here, the components f; and f, correspond to / = 0 and s = 0, while f3 and f, to / = 1
and s = 1. The superscripts “+”* and “—"’ refer to the intrinsic parities = +# and —n
described by the matrix nf®, where n2 = 1. The total parity is P = +5 and —pn
for upper and lower superscripts in Eq. (5), respectively.
The general solution of two algebraic equations in the system (5) (in terms of f5*
and f5°) is
m DT m® mD 4 ;2

F - _f:_v_fx_aia(E—V), fE=% —ﬁE:—V——ff—bxé(E—V), (6)
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where the S-terms are relevant if there is an ro > O such that F(r,) = E. If it is the case
and if a* # 0 and/or b¥ # 0, then it is evident that the corresponding wave function
w(r) may be normalized only to the Dirac é-function'. It can be done for the continuous
energy spectrum (if it exists). For the discrete energy spectrum (if it exists) the wave func-
tion y(7) following from the solution (6) (with a* # 0 and/or b¥ # 0) cannot be normali-
zed, being, therefore, excluded by the probability interpretation of the wave function.

Inserting now the solutions (6) into two differential equations in the system (5) one
gets the following inhomogeneous equations:

d m P Em' T mPFm?
B*fzi'*'%[E"V— (o ) ]ff =+ —; a*s(E-V),
.

E-V
d . 2 B (m(l)i_m(l))l mV e m®
-+ =) fF+I|E-V- — — |ff =+ ———=b¥SE~V), (7
(dr r)s 2[ Pl e (E-V), ()
where the source terms are proportional to

. 1 .

()(E— V) = —a‘V—‘_ (S(f'—"o) (8)
:i‘;("o)

since V(ro) = E. We would like to stiess that the inhomogeneous equations (7) have
been derived from the homogeneous equations (3) i.c., from the homogeneous Breit
equation. In the case of the Suura solution (to the inhomogeneous equation (1)), the
inhomogeneous equations of the form (7) are also-valid, but the J-terms in Eq. (6) are zero.
The last property enables the Suura solution to be normalized in the usual sense.

In the case of equal masses, m'"’ = m'® (= m), Eq. (7) with upper superscripts
shows that for r — rq ’

(r— "0)2

fi = [6(ro—1) z+”(ro“0)+9(r"ro)fz+”("0+0)]_‘2‘— ’

fy = 0(ro—n)f5 (ro=0)+0(r—ro)f5 (ro+0). )
Otherwise the wave function w(?) cannot be normalized unless to the Dirac J-function

even if " = 0 and b~ = 02, Here

dV.. 10
Ej('o)- (10)

f3(ro+0)—f3(ro—0) = —mb~ /

! Since the relativistic barrier at r = rq is moving with energy, ro = ro(E), two discontinuous solutions
to Eq. (5) corresponding to different E are not orthogonal (in general), even if they satisfy the same bound-
ary conditions at r = ro. Nevertheless, their scalar product may be normalized to the Dirac -function
plus. finite non-zero tefms spoiling the orthogonality, and this is the only possibility if at 3 0 and/or
bF # 0.

2 In fact, even if @t = 0 and b~ = 0, the component f ’l' of the second independent solution (for
which f} ~ const # 0 at r — r,) cannot be normalized unless to the Dirac S-function (cf. Eq. (6)). This
singular solution, however, must collaborate with the regular solution (9) in order to satisfly the regu-
larity condition at r = 0. So the wave function w(7) is discontinuous at r = ro even if a* = 0 and
b~ = 0, unless its singular part can vanish giving us the discrete spectrum.
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We can see from (9) and (10) that f," and its first derivative are then continuous and
equal to zero at r = r,, while f; jumps at r = ry if b~ % 0.

If a* = 0 and b~ = 0, one gets the “conventional” solutions to Eq. (5) (with upper
supersctipts). These “conventional” solutions may a priori belong to continuous or
discrete energy spectrum and be normalizable in both cases (to the Dirac d-function in
the first case and in the usual sense in the second).

Thus, we can conclude that @/l discontinuous solutions to Eq. (5) (with upper super-
scripts) can be normalized and may have a physical interpretation only in the case when
they are normalizable to the Dirac d-function and so belong to the continuous energy
spectrum. In the other case they are excluded by the probability interpretation of the wave
function. In contrast, the Suura solution to the inhomogeneous Breit equation, though
also discontinuous, is normalizable in the usual sense. -

In particular, if f; (ro+0) = 0 but 5 (ro —0) # 0, all components f,', £, 5, fo are
zero for r > ry but non-zero for r < ry and one gets solutions confined to the inner region
r < rq. If the situation is opposite i.e., f3 (ro—0) = O but £5"(r,+0) # 0, one gets solutions
restricted to the outer region r > r,. Both solutions are discontinuous at »,= r,. The
difference of the inner and outer solutions corresponding to the same a* and b~ as well
as E represents the “conventional” solution. It follows that the formal existence of
these ‘““‘conventional” solutions is a necessary and sufficient condition for the formal
existence of the inner and outer solutions. In fact, we can write

fiinncr = e(ro_r)ficonv (l — 2, 3), . inu!er = _o(r_ro)ficonv (l - 2’ 3)’ (11)

where fi"", f2" and ff*" (i = 1, 2, 3, 4) have the obvious meaning (here all f’s cor-
respond to upper signs in Eq. (5)). Notice that fi°" = 0 (cf. Eq. (6), where a* =0
and b~ = 0).

Since the inner and outer solutions can be normalized only to the Dirac d-function,
we conclude that they are normalizable if and only if the corresponding “‘conventional®
solutions can be normalized to the Dirac é-function and so belong to the continuous
energy spectrum. In particular, the inner solutions, if expressed through Eq. (11) by the
“conventional” continuous-energy solutions, belong to the continuous energy spectrum,
in spite of their vanishing outside the sphere r = r, (and their regularity at » = 0 when
V(0) = 0). If one discussed the inner solutigns exclusively in the inner region r < r,, one
would ignore discontinuities (and the d-source term in Eq. (7)), in spite of their having an
important influence not only at r = r,. Their influence in fact provides the link (11)
between f; """ and f°".

Thus, we turn now to the problem of existence of the “conventional” continuous-
-energy solutions to Eq. (5) (with upper superscripts). We will consider for example two
potentials, the Coulombian repulsive potential ¥(r) = a/r and the popular “confining”
potential ¥(r) = y?r. In these cases ro, = o/E and r, = E/u?, respectively.

In the first case there are no doubts that the scattering solutions exist. Here they are
the “conventional” continuous-energy solutions. So, in this case the inner and outer
solutions given by Eq. (11) exist (for this conclusion the absence of projector (2) in the
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Breit equation is irrelevant). Notice that the “conventional” solutions have here a direct
physical meaning and the same may be true for inner and outer solutions.
In the second case the ““‘conventional” solutions satisfy the conditions

c 1 . HZ 2 E onv ! 3
[~ —exp| Fi{—r'— =rjlatr-o>o0w, ff"~ratr-0 (12)
r | 4 2
and for their regular part
fzconv ~ (r__,_o‘)Z’ 3:’;onv ~ (r__ro)O, 4c':onv = 0’ v 'lconv ~ r—r al r — o (13)

(cf. Egs. (9) and (6),where at = 0 and b~ = 0). We can see already from Eq. (13) that
not all components f7° are zero at r = r,, so one gets for the wave function ¥*°™(r)
a leakage through the relativistic bartier at r = ro. Thus ¢®™(r) is non-zero for r > r,
if it is such for r < r, and vice versa. The non-zero oscillatory behaviour (12) of f°"" at
r = oo (caused by the infinitely growing repulsion) implies that ¥*°™(¥) can be normalized
only to the Dirac d-function and.so belongs to the continuous energy spectrum. Thus,
also in this case there exist the inner and outer solutions given by Eq. (11) (for this
conclusion the absence of projector (2) in the Breit equation is relevant). Notice, however,
that due to the Klein paradox at r — oo, implied in this case by the infinitely growing
repulsion, would exclude any non-zero y*°™(r) both for r > ry as for r < ro. So the
“conventional’ continuous-energy solutions, though existing, might have here no direct
physical meaning. The same could be said about the outer solutions, but not necessarily
about the inner solutions. At this point one should keep in mind that the projector (2),
if introduced into the Breit equation with a *“‘confining” potential V(r), seems to lead
effectively to the infinitely growing attraction, excluding thereby all continuous-energy
solutions.

One may wonder if the continuous-energy inner solutions could not be realized in
Nature as some intermediate states produced in highly localized interaction, e.g. in high
energy pp collisions. They would have some resemblance to such phenomenological
notions as fire-balls or clusters.
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