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PADE APPROXIMATION IN EFFECTIVE RANGE THEORY
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Padé approximation has been proposed for calculating the scattering length and the
effective range as functions of the potential strength. The appropriate Taylor series coeffi-
cients which constitute input for the Padé method are obtained from a perturbative scheme
based on the variable phase method.

1. Introduction

The purpose of this paper is to show that the Padé approximation combined with
the variable phase method results in a very effective scheme for evaluating the s-wave
scattering length a and the effective range r,. According to the standard methods, given
the potential, these parameters may be obtained after a single integration of the appro-
priate s-wave Schridinger equation and if we want @ and r,, for several values of the poten-
tial strength the integration procedure has to be applied repeatedly. The advantage of the
proposed method lies in the fact that after a single integration one is given the functional
dependence of a-and r, upon the strength of the potential. Thus, in contrast with the
standard methods which produce just two numbers, the proposed method gives two
functions after the same amount of labour.

The plan of the presentation is as follows. In Section 2 we discuss the analytic properties
of a and r, regarded as functions of the potential strength and give a brief account of the
necessary essentials of the Padé approximation. In Section 3 we develop a perturbative
expansion scheme based on the variable phase method which gives the appropriate Taylor
expansion coefficients to be used as input for constructing the Padé approximants. In
Section 4 we illustrate the effectiveness of the proposed scheme in the case of the Hulthén
potential and in Section 5 we discuss the conditions for the existence of a bound state
in a given potential. Finally, in Section 6 we present our conclusions.
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2. Padé approximation

We shall consider s-wave scattering of a particle of mass p by a local central potential
V(r). We assume that the potential is less singular at » = 0 than r~2 and is of a short range
which means that it has a sufficiently rapid fall-off so that both a and r, should exist: If
the potential does not change sign, what will be assumed in the following, a convenient
measure of the strength is given by the dimensionless quantity s, defined as

§ = —-2;1;‘? V(r)rdr (1)

(h = ¢ = 1 units adopted hereafter). The scattering length and the effective range may be
both thought as functions of s and the usual effective range expansion takes the form
which exhibits the dependence on s

k cot 3k, s) = —[a(s)] +3k2ro(s) + O(k*), @

where k is the wave number and J(k, s) is the s-wave phase shift.
Elsewhere [1] we have shown that a(s) and ro(s) are meromorfic functions of s and
may be represented as quotients of two entire functions, viz.

a(s) = P(s)/ Q(s), 3
ro(s) = R()/[P(s)P, @

where the functions P(s), Q(s) and R(s) may be conveniently represented in a product
form (cf. Ref. [1])

P() = ass [T (1-5/2,), (s2)
06 = T1 a=s/s), (55)
R(s) = 261501~ £o9) [T (L+&5+m,57). (50)

The constants a, z,, S,, 1, &,, and 7, are real and depend upon the shape of the potential.
In particular, a, and 8, are given by the expressions [1]

o_\? V(r)r*dr V(ryrdr
0

e

s ﬁl=

a1=—

§
> 6)
)
0

§ v(ryrdr V(ryrdr
0

In practical applications P(s), Q(s), and R(s) may be approximated with arbitrary
accuracy by polynomials and usually just a few factors in (5) turns out to be sufficient.
This comes about because the potentials we have to deal with considering strongly inter-
acting systems such as NN, KN, AN, etc. may support at most one bound state.
Therefore, what we are interested in is in fact the behaviour of P(s), Q(s) and R(s) in
a limited range of s values —3.0 << s < 3.0.
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The representation of a(s) and ry(s) as a ratio of two polynomials suggests that they
should be obtainable in result of the application of the Padé approximation. Since the
latter method has been dgscribed in many places, we shall confine our attention to a review
of the necessary essentials (a current review of the subject may be found in Refs. [2] and
B3D.

Let us consider then a function f{s) which vanishes at s = 0 and is analytic in the
neighbourhood of zero. The Taylor series

16 = T he" ™

converges within a circle around s = O which passes through the nearest singularity.
Although the Taylor series (7) cannot be used to evaluate f(s) outside the circle of conver-
gence but, of course, the function f{s) is uniquely determined by the coefficients f,. The
Padé method makes use of these coefficients to obtain an approximate analytic continuation
of f(s) beyond the convergence circle of (7). We shall be concerned here with the so called
diagonal Padé approximation, where f(s) is being sought as a ratio of two polynomials both
of the order N (N = 1,2, 3, ...), viz.

P[N]
1(5) = fs) = E[—Nj% , ®)
where
P["](s) = ; P.s", €))
oM(s) = ;0 q,8" (10)

and the hitherto unknown coefficients p, and ¢, are determined by the requirement that
the lowest 2N derivatives of f(s) and those of the f'Y*! approximant should coincide at
s = 0. This condition gives (2N + 1) linear equations whose explicit solution is

Jifa o favzen o fen
fafs v fssea ot fea
Pn=1:" : o (11)
Infver o fanwi-w 0 fow
00 e Sy v f,
Jifa o Svrren 0 e
fafs o Iwezea o fae2
4 =|: : : c - (12)
Iafwer o fawew T faw
00 | e 0
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The advantage of the Padé method lies in the fact that knowing the behaviour of f(s)
close to zero, one may find approximately the singularities of f(s) by looking for the zeros
of Q™(s).

Having assembled all the necessary tools, we can return now to a(s) and rqs), but
before we start applying the Padé method we have to dispose of a minor difficulty. Inspection
of the expression (3)—(5) indicates that only a(s) vanishes at s = 0 whereas rq(s) has
a pole at s = 0. The simplest way out is to introduce an entire function f(s) which vanishes
at s = 0 and seek ry(s) in the form

2p(s)

o = BHr

(13)

The factor 2 is introduced for a later convenience and by construction ry(s) has the
correct 1/s behaviour for s values close to zero. Our task is now to devise an effective
scheme for evaluating the appropriate Taylor series coefficients for a(s) and B(s) expan-
ded around s = 0 to be used as input in the expressions (8) — (12). This will be accom-
plished in the following section by using the variable phase method.

3. Variable phase perturbative scheme

The variable phase method has been described in many places (a rather complete
review may be found in Ref. [4]). Basically, the chief idea behind this method is to eliminate
the usual radial wave function in favour of the variable phase 4(r) so that the Schrodinger
equation can be rewritten as a differential equation for A(r). The corresponding phase
shift d(s, k) is obtained as the limit of 4(r) for r — co. For low energies one may expand
A(r) in powers of k, viz.

(—lk)tan A(r) = A(r)+ B(r}k* + O(k*), (14)

where A(r) and B(r) are two functions to be determined and in (14) the dependence on s
has been suppressed. Clearly, for r — oo formula (14) goes over into the usual effective
range expansion (2), and we find

a = lim 4(r), (15)
B = lim B(r). (16)

oo

Using the Schrodinger equation for 4(r), it can be shown [4] that A(r) and B(r) are solu-
tions of the following differential equations

A'(r) = —sU@) [r— AP, an

B'(r) = sU(r) {5r* +r{B(r)—$r> A(r)]+ [4(")r? - B(r)] A()} 18)
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where the potential U(r) is defined as
U = V) [| V(x)xdx]™" (19)
0

and does not depend on s. The boundary conditions are A(0) = B(0) = 0.
For small s we can represent A(r) and B(r) in a power seties form, viz.

AP = T A0S, 20)
B(r) = i B,(r)s". (21)

Setting » — oo in (20) and (21), we obtain the desired Taylor expansions for a(s) and
B(s), respectively

a(s) = QZO: a,s", (22)
B = T Pus” @3)

where
. a, = lim 4,(r), B, = lim B,(r). (24)

Inserting the expansions (20) and (21) in (17) and (18), and equating the coefficients multi-
plying the different powers of s, we obtain an infinite system of equations for the A,(r)
and B,(r) functions. These equations are trivially solved by quadrature and we end up
with the recurrences

Alr) = — j U(x)x%dx, A,(r) =2 j U(x)xA,(x)dx,
0 V]

1

A Aj+ l(x)An—j(x)]dx, (25)

n

Ao = [ UG [224,0,(0= 3
B(r)=1 j U(x)x*dx, B,(r) = j U(x)x[ By(x)—% x2A4,(x)]dx,
4] [+

Byyo(r) = 3 U(x) {x[Bys 1(3)— % X2 4,1 1(0)]

n-1

+ Y A% [xiAn_j(x)—Bn_j(x)‘]}dx, n=1,273". (26)
i=0

The resulting system of equations (25) and (26) is very simple and for many potential
shapes the 4,(r) and B,(r) functions may be obtained in an analytic form. The recurrences
(25) and (26) complete our scheme and letting r — o from (24) we immediately obtain
the a, and B, coefficients necessary for constructing the Padé approximants.
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Some care has to be exercised, however, in setting the order N of the Padé approxi-
mants. As far as a(s) is concerned, N is of course arbitrary, and increasing N we account
for additional poles and zeros extending thereby the accuracy and the range of applica-
bility of the Padé approximant. This is not quite that simple in the case of f(r). Since
the only poles of ro(s) appear at the zeros of afs), the poles that occur in f(s) have got
to be canceled with the poles in [a(s)]*. As seen from formula (13), the Padé approximants
for B(s) ought to be chosen in such a way as to obtain only second order poles which in the
limit N — oo would be exactly cancelled with the poles that occur in [a(s)}?. Therefore,
the Padé approximants to B(s) have to be of the order 2N, for then both the numerator
and the denominator in (13) are approximated by polynomials of the same order. Summa-
rizing, we suggest the following approximation scheme

a(s) = a*Ns),
rols) = 26V 2Vs) {al*M(s)} 2.

Consequently, the coefficients a, have to be evaluated up to 2N and, correspondingly, the
coefficients f, up to 4N.

4. Numerical example

In this section we shall illustrate the effectiveness and accuracy of the method described
in the preceding section by calculating a(s) and f(s) for the Hulthén potential of the form

V(r) = —Volexp(r/R)— 1T, @7

where ¥, and R are the depth and range parameters, respectively. Since for Hulthén’s
potential exact expressions for a(s) and ro(s) may be obtained (cf. Ref. [1]), we can readily
examine the effectiveness and accuracy of the Padé approximants. In this case the coeffi-
cients a, and f, are given by the following expressions

a, = —2R(6/n*)"(2n+1),

#n—2 n—-m-1
B, = (4HRX6j*V(n+ 1) (n+2){2n+3)+5 Y Y a.aa,-p-j,
m=1 j=1
where {(2) is Riemann zeta function and it is understood that a; = 0 for j < 1. The strength
parameter s is related to ¥, and R by the formula

s = (n?/3) uV,oR?

and the ls, 2s, 3s, ... zero-energy bound states appear at s values equal s, = (n%/6)n*
with n = 1, 2, 3, ... In Table I we compare the Padé approximants for N = 1, 2, 3, 4, 5
with the exact values of a(s) for s in the range —10.0 < 5 < 10.0, whereas in Table II
we examine the accuracy of the Padé method for calculating B(s) for the same values of s
and N.
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TABLE 1

The Padé approximants &V ¥ in units of R for the Hulthén potential (27) for different values of the
strength parameter s

s alts 1 a2l at? 3l al* 4 at% %l a (exact)

-10.0 2.3 292 2.985 2.98718 2.987227 2.987227
—8.0 2.2 2.73 2.770 2.77122 2.771240 2.771240
—6.0 2.1 2.47 2.4953 2.495677 2.495680 2.495680
—-4.0 1.9 2.108 2.1152 2.115260 2.115260 2.115260
-2.0 14 1.5020 1.5028 1.502830 1.502830 -1.502830

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 - 0.99 —1.0036 —1.0036 —1.003578 —1.003578 —1.003578
1.0 —-3.07 —3.3767 —3.3785 —3.378456 —3.378456 —3.378456
1.5 —10.3 —20.84 —21.1444 - —21.145234 —~21.145235 —21.145233
20 59.9 10.89 10.6238 10.622435 10.622433 10.622434
2.5 11.7 5.14 49713 4.969794 4.969790 4.969790
3.0 7.6 3.47 3.2658 3.26292 3.262905 3.262905
35 6.1 2.5 2.251 2.24443 2.244387 2.244387
4.0 53 1.9 1.399 1.3839 1.383810 1.383810
5.0 4.5 0.67 ~-0.69 —0.800 —0.80205 —0.802062
6.0 4.1 -0.72 —6.70 —8.345 —~8.3913 —8.391701
7.0 38 ~2.8 359 18.58 18.2629 18.259232
8.0 3.7 ~6.6 9.0 6.97 6.8796 6.878131
9.0 3.5 —17.1 6.0 4.66 4.565 4.562824
10.0 34 —~231.5 4.7 34 3.277 3.272986

TABLE 11

The Padé approximants SI2¥- 2N in units of R® for

the Hulthén potential (27) for different values of
the strength parameter s

s l plz. 21 ' ple: 41 l pls. el I pis. 81 . plio. 101 B (exact)
-10.0 1.9 5.69 5.7898 5.789826 5.789799 5.789846
-~8.0 13 3.98 4.0261 4.026050 4.026042 4.026052
—6.0 0.5 2.145 2.1594 2.159443 2.159441 2.159441
—4.0 ~5.0 0.2238 0.2261 0.226103 0.226100 0.226102 .
-2.0 —1.6 —1.5180 —1.5179 —1.517921 —1.517921 —1.517922
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 5.02 5.0084 5.0084 5.008353 5.008353 5.008353
1.0 31.3 28.970 28.9693 28.969299 28.969299 28.969300
1.5 —122.5 760.87 744.8289 744.828949 744.828948 744.829355
2.0 —52.7 142.9 132.4436 132.443652 132.443647 132.443719
2.5 -51.0 25.1 20.4247 20.424775 20.424763 20.424772
3.0 —62.3 19.1 6.0032 6.00338 6.003261 6.003261
35 ~-93.1 —314 2.3164 2.338 2.31676 2.316727
40 | —2116 —14.4 2.6989 2.695 2.7010 2.700719
5.0 132.1 —13.7 20.81 20.76 20.94 20.894501
6.0 524 —153 263.5 258.0 389.1 287.633460
7.0 34.0 -~17.3 453.1 430.2 214.6 747.595333
8.0 25.9 —19.5° 5.0 58.0 51.3 73.308294
9.0 214 —219 16.2 159 14.3 23.620704
10.0 18.5 —244 1.5 13 0.5 9.263055
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As seen from the entries envisaged in Tables I and II, the convergence of the proposed
method is quite rapid and the accuracy exceptionally good. Thus, for N = 3 the Padé
approximants are practically as good as the exact solutions for s in the interval —10 <s <3
and for N = 5 this interval may be extended up to s = 10. For comparison, the radius
of convergence of the Taylor expansion (22) and (23) is only 1.645. We have considered
also other potential shapes finding convergence rate and accuracy very much the same
as that exemplified above.

5. Conditions for the existence of a bound state

The number of bound states in a potential may be directly counted via numerical
integration of the wave equation to find the corresponding eigenenergies. Regrettably,
this procedure is rather laborious as usually a large number of integrations is being re-
quired. An alternative procedute [5] makes use of the properties of the scattering length
and reduces to the evaluation of the poles in a(s). To be more specific, the necessary and
sufficient condition that a potential of a given strength s will support a bound state is

s =8

where 5, is the nearest to zero pole in a(s) (generally, s > s, is the condition for the existence
of n levels). Thus, knowing s; one can answer immediately the question whether the
potential supports a bound state, without the necessity to solve the associated and more
difficult eigenvalue problem. We are now going to show that the Padé method just described
provides an extremely economical way to determine s, with a high accuracy.

The poles of a(s) in the Padé method are obtained as the zeros of O™(s), where the
latter quantity is given by the expressions (10) and (12) with f; = a;. We denote the Padé
approximations to s; by st} i. e.

QM) = 0.
The solution of the above equation for the first and second Padé approximant may be

immediately obtained in an analytic form, viz.

[ V(rrdr § V(x)x*dx
g _ o o , (28)
2 [ V(rdr | V(x)x*dx
0 0

21 = —(Vy2Zax +)/(2x), (29)
where

x = (aa,—a3)/(a,a3=a3), y= (ayas—aya,)/(a,a;—aj).
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It can be easily shown that s{"! > s, i. e. the s} tend to 5, from above. Indeed, expand-
ing a(s) given by (3) and (5) in powers of s around s = 0, one finds

a 1
e (30)
Y
1— —
zﬂ
n=1
where we have employed the foliowing sum rule derived in [1]
al
—— = 1. (31)

n=1

Separating out in the above equation the /s, term, we can use Eq. (31) to calculate s,
with the result

P (32)

Z :
1
Sn+1

n=1

As shown in [1], 5,,, > z, and in view of (28) and (30) one obtains

s

1 1
[11] = o > p = 85
i 1
1— —_— i—
Zy Sn+1
n=1 n=1

which proves our assertion. Thus, strictly speaking, the inequality

s == s{lN 1
has to be regarded as a sufficient but not necessary condition for the existence of a bound
state. On the other hand, the s{*! rapidly converge to s, and the above restriction is
inessential in practical applications.

To illustrate the rate of convergence of the Padé scheme we have displayed in Table 111
the values of si*}, 5?1, and s, calculated for six different potentials. The shapes considered

TABLE 11

The values of si'}, s1?), and s, for the following potential shapes: square well (SW), cut-off Coulomb (CC),
exponential (EX), Hulthén (HU), Yukawa (YU), and Gaussian (GA)

Sw CC EX HU YU GA
st 1.25 1.5 1.6 1.9068 20 1.4142
sS4 1.23372 1.4460 1.4468 1.6486 1.6843 1.3422
e 1.23370 1.4458 1.4458 1.6449 1.6799 1.3420
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were: square well, cut-off Coulomb, exponential, Hulthén, Yukawa and Gaussian. As
seen from the presented results, the values of s'¥ are quite close to s, . Since the first three
digits or better have been always reproduced, s{?! should be sufficient for all practical
purposes. It should be emphasized that this remarkable accuracy is being obtained merely
by calculating the first four coefficients given by the integrals (25).

6. Summary and conclusions

We have developed a very effective and accurate approximation scheme for evaluating
the scattering length and the effective range as functions of the potential strength. The
method js based on the Padé approximation (8)-(12) and the appropriate Taylor expansion
coefficients (22) and (23) are obtained from the recurrencies (25) and (26). The latter
have been obtained by applying the variable phase method. Judging from the considered
examples, it is quite sufficient to take N = 3 to obtain 0.19 accuracy in the physically
interesting region — 3.0 < 5 <C 3.0. The Padé method is very efficient for the task of calcu-
lating the scattering length as a function of s; it reduces to the evaluation of six integrals.
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