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INVESTIGATION OF GENERAL TRENDS IN FAST ROTATING
NUCLEI IN THE APPROXIMATION OF THE HARMONIC
OSCILLATOR POTENTIAL
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( Received July 17, 1978)

Bohr and Mottelson simplification of the Valatin solution for the rotating harmonic
oscillator potential is employed to the model analysis of the high angular momentum states
in atomic nuclei. The resulting yrast line consists of several trajectories corresponding to
fixed nucleonic configurations. Within each trajectory the system tends to acquire oblate,
or sometimes prolate shape which is axially symmetric with respect to rotation axis. Dynamical
(i.e. resulting from the spectrum) moments of inertia turn out to be of the order of rigid
moments for a given nuclear shape. There seems to be no possibility for the existence of
yrast traps in the pure harmonic oscillator potential.

1. Introduction

Considerable effort has been devoted within recent few years to the understanding
of the properties of fast rotating nuclei [1-3]. One of the possible treatments of nuclear
rotation is provided by the liquid drop model of a rotating nucleus [1] which however
disregards the role of shell effects. Many other approaches to the analysis of the proper-
ties of high angular momentum nuclear states have been attempted on the base of single
particle structure of nucleonic motion [4-10]. Calculations of this type employ the concept
of the minimisation of nuclear energy at the fixed value of angular momentum. In addition,
the minimisation has to be performed with respect to nuclear shape. In most cases the
calculations have to rely on the Strutinsky procedure of calculating the shell correction.
All these calculations involve rather complicated numerical programs and it seems not
too easy to relate various results directly with the original assumptions concerning the
input parameters of the model.

On the other hand, an exact solution to the rotating harmonic oscillator potential
has been known for many years from the paper by Valatin ([11], see also more recent paper
by Ripka et al. [12] as well as [13]). The simple solution resulting from this treatment
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seems not to have been fully explored in the discussion of the relevant problems in nuclear
structure. Obviously, the simplicity of the treatment is achieved on the price of dealing
with a very simplified and perhaps not quite realistic potential. Nevertheless, it seems
worthwhile to explore the consequences of the rigorous solution offered by Valatin’s
treatment.

This paper aims at the application of the Valatin solution to the high angular momen-
tum rotation of nuclei. In fact, a rather simplified version of the solution suggested by Bohr
and Mottelson [13] is used. In this case the very simple, closed-form expression may be
derived for the energy [14]. Moreover, it turns out to be possible to perform explicitly the
minimisation of energy with respect to deformation and to classify various configurations
by means of the familiar SU(3) group. It has to be emphasized that the precise fit to exper-
imental data in actual nuclei is not the purpose of this paper. It rather aims at the analysis
of general trends showing up in fast rotating nuclei that could be derived without any
involved computer calculations.

2. Diagonalisation of the Hamiltonian

The diagonalisation of the rotating harmonic oscillator (h. o.) has been performed
exactly by Valatin [11] (see also [12]) as mentioned before in the introduction. Although
a general solution could be used, we shall follow in this paper a simplified version of the
model suggested by Bohr and Mottelson [13], based on the approximation valid for not
too large nuclear distortions. This approximation enables one to write down many rela-
tions in explicit and very transparent form.

We shall assume that single particle motion in the nucleus is described by the triaxial
harmonic oscillator. Its Hamiltonian is expressed by the boson creation and annihilation
operators b;‘ (k) and b,(k), respectively. Here, y = 1, 2; 3 denotes the spatial component,
while index k =1, 2, ..., A is a nucleon label. We have

H= f h(k), (2.1)
where
B0 = 3, ho,bi09b,00+3) (2.2)

denotes the one particle Hamiltonian for the k-th nucleon. Quantities w,, w,, w; are
the three h. o. frequencies characterising the range and shape of the potential and obeying
the volume conservation conadition

03
(1)1(,02603 =, (2.3)

where @ is a deformation independent constant.
We shall now search for the minimum energy of the system of 4 particles described
by Hamiltonian (2.1) with the subsidiary condition that the expectation value of the



165

x-component of angular momentum, J, is given, and equal to /. This corresponds to the

assumption of the nuclear rotation about a fixed axis (x-axis). In order to solve the problem

we adopt the cranking Hamiltonian [15]
A

H® = H—owhJ, = Y h“k)

k=1

A
k; (h(k)— whj,(k)), (2.4)

where w plays the role of the Lagrange multiplier. Alternatively, #* may be interpreted as
the Hamiltonian of the rotating system in the body fixed frame of reference, and w as the
angular velocity of rotation.

Using the appropriately selected phases [16] in the relations of particle coordinates
X, and momenta p,, with the creation and annihilation operators

Xpo = =i hJ2mo,) (bIk)—by k),  pu = v hma, [2 (bi(k)+b(k)). (2.5)
for y =1 and 3, and
o = VRI@mo,) (B3 +by(k),  pay = iVhmay2 (i) —by(k).  (2.6)

(k = 1,2, ..., A) we can obtain all matrix elements (including those of J,) as real quanti-
ties. Indeed, neglecting spin we have

A
Ji= ¥ k), @7)

where

Jilk) =

(3R 3(k) + bY(K)b(K)) ~

(B3R + ba(K)bs(K)).  (2.8)

\/wz(l)3 \/(1)2(1)3

The spin part of the angular momentum is omitted throughout this paper.

Although an exact diagonalisation of the cranking Hamiltonian (2.4) is possible for
harmonic oscillator, as mentioned before (see [11, 12]), with the inclusion of the complete
expression (2.8) for j,(k), we shall omit the second term in (2.8) as it acts between different
major h. o. shells (¥, N+2) and moreover contains a coefficient of the order of (w,— w;)
which may be small in many physical situations [13). This assumption restricts somewhat
the range of validity of the model as compared to the more exect treatment. On the other
hand, as we shall see, the calculations can be greatly simplified in this case, so that many
expressions can be written in closed form. As a result of the above assumptions we are
left with the diagonalisation of the single particle cranking Hamiltonian

he = hoy(b1b, +3)+hoy (616, +3) +hoy(blbs +4) —ho ——--——(b*b3+b’fb2), (2.9)

\/w2m3

where the index of a k-th particle has been omitted for simplicity.

Diagonalisation of (2.9) can be performed by a standard method of a unitary transfor-
mation [13]:

b} = blcos p+bfsing, b} = —blsin g+b}cos g. (2.10)
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Substitution of (2.10) into (2.9) and the appropriate choice of angle ¢ leads to Hamilton-
ian /1 expressed in terms of the « and f§ (normal) modes

h® = hw(bYb, +3)+ho(bib,+3) + hwy(bib,+1). (2.11)
The normal frequencies w, and w, are given by [13]

0,y = @yt w)t ] (@~ )\ T+p? (2.12)

where
sty o 20

X - (2.13)

p=tgg= —
Wy =W 003 W —

the last part of equation holding for small (but non zero) values of (w; —w5). The lowest
state of the system of A-particles is thus determined by the occupation of A lowest single
particle levels. Expressions

I = Y GO+, Zo= Y Glblb+3) v,

v occ v ace

= Y vibjbg+d) v, (2.14)

Vv oce
with ¥ corresponding to occupancy of 4 lowest single particle levels determine the total

¥ occ

eigenvalue of H® as
E® = ho3$, +/zwa21+hwﬂ2ﬂ. (2.15)

In order to calculate the total energy as the expectation value of H (Eq.(2.1)) in the state
that minimizes H“ (Eq. (2.4)) we need furthermore the expression for angular momentum.
Employing Eqs. (2.5), (2.6). (2.8) and (2.10) we obtain casily

I= Y vijyivy = (pN14p) (25— 2, (2.16)

This relation together with Eq. (2.13) determines the relation of angular momentum [
with angular velocity w. Solving Eq. (2.16) with respect to p one obtains
p=INIE-I?, (2.17)
where
[, =%,-%, (2.18)
may be interpreted as the maximum angular momentum that can be reached within a

given configuration [13].
We can now wiite down expression for the total energy

E= Y (vihvy = E°+ohl, (2.19)

¥ OCC
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Using Egs. (2.15), (2.17), (2.12) and (2.13) one can rewrite this expression as
E=hoZ, +ho,S,+hw,, (2.20)

where
513 = 2 AZDFLIVE-T, (2.21)

Expression (2.20) determines the energy of the system for a given configuration specified
by £,, %, and Z; for fixed [ as well as w;, w, and w;. However, the shape of nuclear
potential characterised by the h. o. frequencies w,, w, and w; may also be varied (pro-
viding Eq. (2.3) holds) as to minimize energy (2.20). The result of minimization of (2.20)
with respect to w,, @, and w; with the constraint (2.3) leads to relations

wlxl = w252 = (D3Z~3, (2.22)

which may be interpreted as the selfconsistency conditions in the rotating potential. The
resulting values of w,, @, and w; are

Y ~ ~ ~
o, = o(2,2,2,)'?/Z,, (2.23)

(with y = 1, 2, 3; £, = Z,) determining nuclear deformation for any value of 7<1,.
Final expression for the minimized energy is

0 -~ 0
E = 3ho(Z,2,5)'? = 3ha{s (2,5, +1 )}, (2.24)

This formula, valid for a fixed configuration specified by Z,, X, and Z;, corresponds
to nuclear shape ‘adjusted selfconsistently to minimize energy at each 1.

3. Selection of the lowest bands

We have derived expression (2.24) for the energy of a rotating system valid for
0 << I< I, and fixed configuration. We shall now search for configurations (£, X, and
Z;) that minimize the energy (2.24) at fixed /-value. For this purpose it is convenient to
apply the symmetry arguments following from the theory of groups. Let us observe that
Hamiltonian H of the system as well as the cranking Hamiltonian H® in the approxima-
tion (2.9) can be simply expressed by the generators of the harmonic oscillator group
U(3). Indeed, the nine operators

A, = 5 bI(k)by (k) 3.1)

(with y, 7 = 1, 2, 3; in this section we shall use rather x, y and z) obey the commutation
relations

[4 Aei] = Oyedy— OypAey (32

m

characteristic for the Lie algebra of the group U(3). Consequently, eigenstates of H®
can be classified according to labels defining representations of the group U(3), and there
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are no matrix elements of H connecting different irreducible representations. Keeping the
sum of eigenvalues of diagonal A’s fixed:

Ayt A, +A4,, = const (3.3)

we may employ the irreducible representations of algebra of the group SU(3) determined
by two integers 4, u (see Ref. [17]; we shall use notation of Ref. {18]). Following a conven-
ient procedure [18] we may label states in the following way

ApueA Ay, (3.4)

where 4, u determine the representation while g, A(A+1) and A, are eigenvalues of the
operators Q,, A% and A,, respectively. They are constructed out of generators A,, of
UQ@) (cf. Eq. (3.1)):

QO = 2Azz_Ax.\'“Ayy1 (3‘5)
A% = (A) +(4,)" +3 (A= 4y, (3.6)

and
AO = —;' (Axx—Ayy)- (37)

The variation of ¢, A and A, is determined by
e=24+pu—3p=-3q, A=iu+3p—3q9, Ao=3gH+3P—39—1, (3.8)
with
0<p<i O<g<yp O0<r<24; (3.9

(p, g, r — integers). Now, looking at definitions (3.1) of the generators A,, and identifying
the indices x, y, z with «, § and 1 (of the previous section), respectively, we can write for
the many boson state v)

g =2),—X,—Z (3.10)
2/ = Z5— 2, (3.10)
Furthermore, the sum

is fixed as follows from Eq. (3.3). Equations (3.10) to (3.12) can be solved
Iy =%3+te, EZp=%1Z-te+3v, Z,=3I-ge—3v, (3.13)

(where v = 24,). Substituting expressions (3.13) into Eq. (2.24) the energy E is obtained
as function of X, 4, 1, ¢ and v for any J. A selection of few best states out of the many
states labelled by (Z, 4, u, &, v) turns out to be possible by the direct minimisation of E
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with respect to quantum numbers ¢ and v. Detailed calculations can be found in Section
(3.4) of Ref. [14]. As a result we obtain three energy bands:

0
EL = ho{(Z—A=-20) [(T4+2A+ 1) (E -2+ w+$ P2, 0<I <2,  (3.14)
[y]
Ey = ho{C-A+w) [(T-A=-20) (Z+ 22+ +3 PP, 0<T <h+p, (3.15)

V]
Ey = ho{C+22+ ) [C—A+ ) (E—i=2w)+2 P2, o<I<pu  (3.16)

These three bands correspond to the cranking of the nucleus about three principal axes of
largest (E; — lowest band), medium (E\) and smallest (£} — highest band) moments of
inertia.

in the following, we shall use in our calculation formulae (3.14) to (3.16). However,
let us end this section with a short comment on the more general treatment employing the
complete Valatin solution. As already mentioned before, the exact treatment of the cranking
Hamiltonian H® with the full expression (2.8) for angular momentum is also possible
[11, 12). In this case transformation (2.10) would have to be replaced by a more general
one that involves both creation and annihilation operators

/1;‘ = Z (/l).,bj-!-y;.tbs), a, = Z ().;b,—%;z,{.,bf). (3.17)

The existence of term (b}b}+b,b,) in (2.8) leads to an extention of the SU(3) algebra to
a noncompact group Sp(3, R) (see Ref. [19]) including all possible products btb* and bb
in addition to b'h. The application of transformation (3.16) to Hamiltonian (2:4) with
the full expression (2.8) leads again to the three normal modes for the resulting diagon-
alized form of H® (see Refs. {11, 12]). One then obtains a new three-dimensional h. o.
Hamiltonian expressed in terms of the new generators forming a new U(3) group which
is a subgroup of Sp (3, R). The basic vectors forming new irreducible representations of SU(3)
could be constructed out of mixtures of the original h. o. states over several major shells.
We shall not follow this line in our paper.

4. Search for the yrast configurations

In previous sections we have described the diagonalisation of the cranking Hamil-
tonian and the selection of the lowest energy rotational band for each representation of the
group U(3). In order to complete our procedure we should now give a prescription for
the U(3) representation that leads to the lowest energy for given angular momentum 7
and number of particles A. Since the quantity X' appearing in Eqs. (3.14) to (3.16) can
be found by simple arguments following from the distribution of particles over the h. o.
shells (see Eq. (4.6) below) we are left with the search for the quantum numbers 2 and
Jt determining the irreducible representations of SU(3).

The problem can be solved in two steps. If certain distribution of particles over tlie
h. o. shells is known we first have to determine (4;4;) for each shell “;”” separately and then
the final irreducible representation (4x) is selected out of the outer product of representa-
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tions (4;y;) entering the consideration. We shall illustrate this procedure by examples
given in the next section.

In this way, we can reduce our problem to a search for the (Au) representation within
given h. o. shell. In order to achieve this last goal we employ now two different methods.
We shall briefly describe them below and then give examples in next section. First of all,
most powerful technique of pletysm [20] can be employed. It is based on the group
theoretical determination of what are the SU(3) irreducible representations corresponding
to the set of » particles located on a given h. o. shell, N with certain particle symmetry {v}.
Here {v} denotes the particle Young diagram. To each single box in this diagram there
corresponds an N-row Young diagram [N] of a system of N h. o. phonons (completely
symmetric state). This can be illustrated by the symbolic relation

% = LI 1TTT1TTT]

(N boxes)

or
{1} = [N].

Here, the shadowed box corresponds to one particle Young diagram, while the N-row
diagram (not shadowed) —to N phonons of the h. o. Now, the symmetry {v} of n particles
(in the N-th h. o. shell) will generate some of the phonon Young diagrams that can be
found among the states occurring in the outer product of n diagrams of the type [N] each:

[N]x[N]x - x[N].

{ntimes)

The operation of pletysm selects only those representations (A, ) that correspond
to the particle symmetry {v}. This is written down in the following way

[NI®{v} = X (27, u'), (4.1)

where symbol @ denotes the operation of pletysm.

We shail not describe here the details of calculation of various pletysms. They can be
found in literature [20, 21]. Instead, in Table I we give the example illustrating the pletysms
for one, two, three, and four particles in the N = 2 h. o. shell. According to Eq. (4.1)
the square bracket [ ] denotes a Young diagram for a phonon state, curly bracket { } — the
Young diagram for a particle symmetry and the ordinary bracket ( ) — the (i) (phonon)
representation of SU(3) (that could also be expressed as a Young diagram [ ]). If we deal
with identical particles of spin %, only those particle diagrams {v} are allowed that contain
no more than two columns. So, for example, out of those included in Table I the diagrams
{3}, {4} and {31} would not be allowed. On the other hand, in the case of protons and
neutrons .all particle diagrams {v} with number of columns not exceeding 4 are allowed,
as follows from Pauli principle. Now, out of all (A1) representations occurring in the pletysm
(4.1) the one that leads to lowest energy band should be selected. The selection should
be done by a direct check which (iu) lead to lowest energies in Egs. (3.14) to (3.16).
However, common experience is that usually the representations with largest possible
values of 4 and pu are really important.
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TABLE |

Pletysms for one, two, three, and four particles in the (sd) shell. Square bracket {N] denotes the Young
diagram for phonon state, curly bracket {»} denotes a diagram for the particle symmetry, and ordinary
brackets (A()uli) denote the labels for the irreducible SU(3) representations entering the pletysm

M® 0} LG uth

21® {1} 2.0

21® (2} 0), (0.2)

21® {11} @

21® (3} 60, 2,2, 0,0

21 ® {21} @1, @2, 0,1

21® {111} 3,1, 0,3)

21® 4} 3,0, (4.2, (0,4), (2,0

21® (31} 61, 42, @3 G, 1.2, 2.0
21® {22} 4,2, ©.4, G,1)., 0

21® {211} @3 5,0, &1, L2, O
21 ® {1111} (1,2)

Another method of searching for the best (Ax) representation proposed by Bohr and
Mottelson [22] can be based on the analysis in which order various h. o. single particle
states are filled in case of no rotation (/ = 0). It turns out that first as many quanta as
it is permitted by the Pauli principle are located in one dimension (say, z). Then, next
group of quanta fills in, say, y-direction and finally as few as possible are placed in the
remaining direction (say, x). For a given sum

I=2,+2,+2; 4.2)
one then obtains Z, as large as permitted by the Pauli principle, and Z, as small as possible.
For larger n and higher shells there may occur however some irregularities [22]. For
example, it may turn out more advantageous to locate one particle in the next shell (thus
increasing the total value of X) gaining in the minimisation of the product by the further
increase of X, with respect to Z, and I, owing to the relaxation of the Pauli principle.
These cases have to be checked individually.

Apart from the above reservations, a simple formula may be worked out for the
lowest energy representation corresponding to n nucleons in the N-th h. o. shell. For
example in case of even-even system with the same number of neutrons and protons
(n divisible by 4) this formula reads

A= 2k(k+D)(N—k+ 1) +2v2N—4k+v—1), = 4v(k—v+1), 4.3)
where k is the largest positive integer that fulfills inequality

k(k+1) < n/2, 4.4)
and
v = [n—2kk+1))/4. (4.5)
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Let us also add that quantity 2 may be calculated directly from the h.o. spectrum

N-—t

I=(N+PHn+2 Y (N+1D)(N'+2)(N'+3). (4.6)
N =0

Knowing 4, ¢ and £ we may use Eqs. (3.14) to (3.16) in order to deduce X,, Z, and Z,.
For example in the L-band (Eq. (3.14)) we have

I, = (Z—A-2u)/3, 4.7
I, = (Z-21+p)/3, (4.8)
I, = (Z+24+w)/3. (4.9)

Finally Eq. (2.24) can be used for the energy of the system at arbitrary angular momen-
tum /.

5. Results and discussion

Once the representation (4u) is found one can calculate the energy of the lowest bands
from Eqgs. (3.14) to (3.16). It is interesting to note that the dependence is. linear in the
plot of E3 versus [?. All the three bands L, M and H terminate at / = 4, A4+ p and yu re-
spectively. Beyond these limits one has to search for another representation (iu) by shifting
some of the particles to higher shells. An example will illustrate best the procedure. Take
24Mg nucleus i.e. a system of 12 neutrons and 12 protons. We can easily see that in the
ground state the first 16 nucleons fill in the two closed shells (N = 0 and N = 1 h.o.
shells), while the remaining n = 8 nucleons have to populate the (sd)-shell (¥ = 2). For
a system of 4 neutrons and 4 protons the best particle symmetry is given by the Young

diagram {44}. In order to find the corresponding SU(3) phonon symmetries we can
evaluate the pletysm {[18)]

[2] ® {44} = (84)+(73)+(46)+ (81)+(54) +(62) +(35) +(08) + (43) + (51)2 + (24)?
+(32) +(40)% + (13) +(02). (5.1)

It is easy to see that the lowest energy configuration will be provided by (Au) = (84).
One can arrive at the same conclusion if formulae (4.3) to (4.6) are used. For n =8
particles in the N = 2 shell we obtain

k=1, v=1, 1=8, u=4 X =064 (5.2)
Now, formulae (4.7) to (4.9) give for the lowest band (L):
Zy =16, Z,=20, Z;=28. (5.3)

The energies of the three bands L, M and H can now be calculated from Eqs. (3.14) to
(3.16). They terminate at 7, = 8, 12 and 4, respectively. They ate illustrated in Fig. 1
as straight lines in the plot of E3 versus /2. In order to calculate states for higher values
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of I one has to go beyond the (sd)-shell. For example, shifting one particle to the (fp)-shell
(N = 3) we obtain (Ay) = (83) corresponding to the remaining seven nucleons in the
(sd)-shell -and (Au) = (30) corresponding to one nucleon in the (fp)-shell.

(E/35&)°

11000 -

10000

! 1 1 1 5
100 200 300 400 1

Fig. 1. Dependence of energy E on angular momentum / for the system of 12 protons and 12 neutrons
(**Mg). Labels at each band denote the irreducible representations (Ax) of the SU(3) group. The L-bands
are plotted as solid lines, while the M- and H-bands as dashed lines

The product
8,3)x(3,0) = (11, 3)+... 54

contains the (11, 3) representation leading to lowest energy band in this region. Using
= 635 one can now calculate the corresponding bands L, M and H leading to I, = 11, 14
and 3, respectively. Similar procedure leads the determination of £ = 68 and (Ax) = (20, 0)
for the four particles shifted from (sd)-shell to (fp)-shell (see Fig. 1).
Energy FE treated as function of angular momentum I (cf. Eq. (2.24)) increases in the
whole range from 7 = 0 to infinity with the inflection point at

I =1l =vVI2L,Z,. (5.5)

For I < I, the curve E(I) looks similar to a parabola. For I » I, the dependence is
weaker: E ~ I3, However, the physical region of angular momenta usually corresponds
to I < I '

It is interesting to analyze the changes in selfconsistent deformation of the nuclear
shape in the rotating nucleus. Formula (2.23) provides us with the values of the harmonic
oscillator frequencies w;, w, and w; for any value of angular momentum 7. Obviously,
the condition (2.3) of a constant volume for the potential is fulfilled. It is convenient to
introduce the familiar Nilsson ellipsoidal deformation parameters ¢, y (see e.g. Ref. [23])
by the relations

ay
W, = wyle y) <1 +3ecosy+ 7§sin y) , (5.6)
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e
w, = wyle, y)(1+%scos y— —= sin y), (5.7
\ v3
w3 = wole, ) (1 -3 e cos p), (5.8)
where relation
wole, ) = co(l —3 e?+2 &% cosy—% &3 cos® y) 7! (5.9)

is obtained by substitution of w,, w, and w; given by Egs. (5.6) to (5.8) into Eq. (2.3).
Using Eq. (2.23) we may determine deformation parameters ¢ and y for any configuration
(£,2,2;) and angular momentum 7 through relation (2.21)
SPRERE LT ) s o) P S UL
— ( 1 2 3 _ 1 ~31 ~:7.1 3 3 1 ) ., (510)
—ZZ +23

2 —i
gy = \/3( {). (5.11)

e -~
o0k (Bdly 7 \
| 7 10 -
| s
L ~ d <p°
Fig. 2. Spin trajectories in the (¢, v)-deformation plane for the 2*Mg system (cf. Fig. 1). Each band is labelled
by Au (both L and M-bands). The yrast states are joined with a solid line within a band while various
parts of the yrast line are connected with a dot-and-dash line

The spin trajectories corresponding to states marked by dots in the (sy) plane are
shown for various bands (including the yrast states that are connected by solid line) in
Fig. 2. We can see that the **Mg system which turns out to be triaxial in our model at
I =0, approaches the oblate shape y = 60° as I — 8. Similar trends in nuclear deformation
in the rotating harmonic oscillator system have been concluded by Neergaard et al. [6].
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The conclusion is based on the complete Valatin solution {11]. However the discussion
in Ref. [6] is limited to eigenvalue £ (“‘the Routhian”, cf. our Eq. (2.15)) instead of the
energy E (Eq. (2.19)).

Coming back to our example of 2*Mg we can see from Fig 2 that for / > 8 the system
cannot gain any more angular momentum by further increasing its angular velocity, as
follows from the oblate shape of the potential. Consequently, further increase of / can
be only achieved if the system goes over to another configuration corresponding generally
to the triaxial shape at / # 0. Then the system tends to the oblate limit again following
a new trajectory. It has been our numerical experience that at each configuration change
the new state corresponds to larger deformation. This could possibly be connected with
the analogous trends in the behaviour of the drop of classical liquid that becomes very
much elongated at certain angular velocity. However, our model may perhaps be not
good enough to describe very deformed shapes as a result of the omission of part of the
angular momentum (see Eq. (2.8)). We have seen in the example of 2*Mg (Fig. 2) that
the system tends to acquire oblate shape with respect to rotation axis (y = 60°) within
each nucleonic configuration in the L and M bands. This tendency seems to follow as
a rule in case of L bands. The situation seems to be more intricate for the M and H bands
(cf. Eqgs (3.15) and (3.16)). These bands correspond to rotation of the nucleus about the
principal axes that are not axes of the largest moment of inertia. In the classical system
such rotation never comes to the yrast line as there is always more economic for the
system to rotate about the l.-axis. However, in the quantal system such a case is possible
as first suggested by Neergaard et al. {5, 6] (see also {7]). This can also show up in the
rotating harmonic oscillator potential. For example, we have seen (Fig. 1) that in the
spin range between 9 and 12 the M-band of the (1) = (8, 4) configuration is the lowest
one in the system of 12 neutrons and 12 protons (?*Mg). The M trajectory is shown in Fig. 2.
One can show generally that for 4 > p the trajectory corresponding to the M band starts
in some point (ggy,) in sector II (i.e. for —60° <y < 0°, see Fig. 3) and is directed towards
sector 1 (0 <C y < 60°), reaching finally the oblate axis (y = 60°) coinciding with the
rotation axis. However, for configurations characterised by 4 < u the trajectory looks
different: it starts in sector I, but then it extends toward sector I1I (see Fig. 3) corresponding
to the nucleus becoming more and more prolate with the symmetry axis coinciding
finally with the prolate rotation axis {y = 120°). Configurations of this type seem also
to be of interest in case of real nuclei. Finally, for the H-band (which however never becomes
yrast) the starting point of the trajectory lies always in sector III and extends toward the
prolate axis of symmetry (y = —120°). This is also illustrated in Fig. 3.

Another conclusion that seems to follow in our model is connected with the possibility
of the existence of yrast traps, that iequire local minima in the yrast line in the oblate
region. The results of this calculation show that the energy is a monotonously increasing
function of 1. Moreover, there exists in most cases a triaxial state between two oblate ones.
This is connected with the fact that each band ends at / = I, with the oblate shape (7 = 60°)
and the next value of angular momentum corresponds usually to the intermediate states
in a new band which are of the triaxial shape. Moreover, the energies of those states
appear to lic always on the increasing curve, so that no traps are likely to occur. One can
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conclude that the possible existence of the yrast traps in nuclei is perhaps intimately con-
nected with the deviations of the actual nuclear potential from the pure h.o. type (described
for example by the 1-5 and 12 terms in the Nilsson potential). The above argument does
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Fig. 3. Schematic plot of the deformation plane (¢, 7). Various possible spin trajectories are indicated with

dashed lines. Solid lines mark the border lines between sector I (0° <y < 60°), Il (—-60° <y < 0°) and

I (= 120° < ¢ < —60°), as weil as the border lines of maximum possible distortions. The dot-and-dash
line divides sector II into two regions: (2 > ) abd (4 < p)

not exclude, of course, the possibility for the existence of the high spin 1somers emerging
from some retardations in the electromagnetic decays.

Let us finally discuss the rotational moments of inertia resuiting in our model. Using
Eq. (2.24) we obtain

o
o=t 9B _ ol | (5.12)
hal T 2T,EE, 1

for the angular velocity of rotation, and

W2 dEN™Y  hl  2{Z(Z.Z,+3+ID)}* | o
ton=5 (i) == TR e e
1
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The value of £, is close to that of the static rigid-body moment of inertia, £, calculated
from the expression

T =m 3 V(P +2%) W, (5.14)
where the summation runs over all the occupied single particle states (corresponding to
normal modes «, f of the transformed Hamiltonian (2.11)). After a straightforward
calculation employing Egs. (2.10) to (2.12) as well as (2.5) and (2.6) we obtain

24407

V]
Eag,+ o M G

I star =

It is interesting to note that at I = 0 we always have S, < £, (unless Z, = X;). When
I increases from O to 1,,, #,, increases, while #,, decreases approaching common value

_(Z I

e (hjo) (5.16)

at the end of the band. The changes in #,, come only from the changes in nuclear defor-
mation. In fact, #,, and S, do not differ very much even for 7 = 0. For example in
the ground band in **Mg we have

S 25T,  2:20-28

= = = 0.95.
I Zi+ZF 20%+287

The above discrepancy between S,, and £, may be caused by the omission of the
second term from Eq. (2.8) in the cranking Hamiltonian (2.9).

One has also to bear in mind that the above considerations are valid only for a given
configuration. When the system changes its configuration with increasing angular momentum
the abrupt discontinuities in energy may be interpreted as the average additional increase
in the value of the inertial moment. Fig. 4 illustrates the variation of the dynamical
moment of inertia #,,, as function of angular momentum / (solid line), as well as that
of 7. (dashed line). The determination of the nuclear moment of inertia from experimental
data on the low lying rotational energy levels leads usually to an appreciably lower value
than those determined by Eqs. (5.13) or (5.15). For example in the **Mg nucleus [24]
we have £,,/#4,, ~ 0.6 in the ground state band at 7 = 0. This well known discrepancy
has been discussed especially extensively in the case of heavier nuclei. The reduction of
the nuclear moment of inertia seems to be caused mostly by the short range nucleon-
-nucleon correlations. We shall not discuss these effects here, as we are mostly interested
in the analysis of the overall trends with particular attention directed towards the behaviour
at large angular momenta. ,

In the above analysis we have not employed the renormalisation of the energy to the
liquid drop model by means of the shell correction method. This could be done with no
difficulty since the suitable expressions for the average smooth energy and angular momen-
tum have been derived for the rotating harmonic oscillator [25, 26]. We have not used
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this procedure however, as we were mostly interested in the behaviour of the system fol-
lowing directly from the single particle potential.

Summarising our conclusions we may observe that the yrast line is in-the h.o. model
composed of various bands corresponding to fixed configurations. Within each band
the nucleus tends to approach the oblate shape with angular momentum reaching a certain
value I = I,. However, in some special situations (H-bands, or M-bands with 4 < p)

a
Hee

40

o 2 4 6 8 10 2 1z 16

Fig. 4. Dynamic moment of inertia (solid line) as well as the static one (dashed line) plotted for various
bands in the 2*Mg system as function of angular momentum (cf. Figs 1 and 2)

the end point, I = I,, in the band corresponds to prolate shape. Once the end point of the
band is reached the nucleus changes its configuration thus going over to another band which
usually corresponds to a more deformed shape. Within each band the cube of energy E
is a linear function of the square of the angular momentum /. Dynamical moment of
inertia is not equal (although lies very close) to the rigid-body value corresponding to
given nuclear shape. At the end of the band the two values coincide. Finally; within the
pure harmonic oscillator there seems to be no chance for the existence of the yrast traps
since the energy is a monotonous function of angular momentum.
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