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The renormalization group is applied to analyze deep inelastic electron-proton scatter-
ing. The connection between renormalization group techniques and parton-model is also
discussed.

Introduction

In these lectures 1 shall be talking about the renormalization group, with specific
emphasis on its application to deep inelastic electron—proton scattering. I shall also
demonstrate, where possible, the connection between renormalization group techniques
and parton-model ideas.

I shall start from the beginning of the subject assuming only a minimum knowledge
of quantum field theory and some familiarity with the idea of renormalization. I shall
therefore not have time to discuss in detail the latest developments in this subject.

The plan of these notes is as follows: in Section 1, the concept of an effective coupling
is discussed and the § function is defined. In Section 2 deep inelastic scattering processes
are described, first in the free parton model, and subsequently using renormalization
group techniques to describe corrections to the free parton model results. In Section 3
the calculation of the anomalous dimensions of the operators occurring in the Wilson
operator product expansion is described using techniques of dimensional regularization.
This section is rather technical and may be omitted by the pedestrian reader, without
loss of continuity. In Section 4 the solutions of the renormalization group equations are
applied to deep inelastic processes and the comparison of the theoretical predictions with
experimental data is discussed. Finally in Section 5 some of the corrections to the lowest
order renormalization group results are briefly discussed.

* Address: CERN, 1211 Genéve 23, Switzeﬂand.
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1. The effective coupling

It is well known that if we consider any quantum field theory, e. g. QED, and look
at the higher order corrections to the coupling between the photon and fermions, we obtain
a result which is not constant but depends on the momenta of the external legs. For the
one-loop correction shown in Fig. 1, we obtain

e(Q%) = e+(’/48n°) In Q>+ -, (1.1
-q? _q2 _q?
-Q? -Q? -Q2 Q2 ‘a2 a2
Fig. 1

where we have put the invariant mass squared of each external leg equal to — Q? (we
choose a negative value simply to avoid complications arising from mass thresholds or
infrared divergences). For a general field theory with coupling constant g we have a similar
equation
3
g B
g(Q) = g+ == 2 Q*+0(g). 12

lon” 2

We may write this as an implicit equation for g(Q?)

3 2
£Q) Fo 1 024 0(g%(0%). (1.3)

2 p—tg
g(Q) =g+ 62 5

From this equation we may define the g function

é

=2 3. 1.4
Bla(@) =2 - o g(2) 1.4
For small values of g(Q?), f may be expanded in a power series
ﬁo 3 Bl 5
= e 1.5
Bg)=1cz8+ o2 T | (1.5)

The function § may in general have any of the forms shown in Fig. 2, where (g) is plotted
against g. In Figs. 2a and 2b, f, is positive, whereas in Fig. 2c it is negative. In Fig. 2a
B is positive near g = 0 so that as Q2 (i. e. In Q?) increases g(Q?) increases until it
reaches the value go, for which f is zero so that as we further increase In Q2, g(Q3)
remains at go. go is called an ultraviolet stable fixed point. In Fig. 2b no such fixed point
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exists, so that g(Q?) increases indefinitely as Q2 increases. Figure 2c has an ultraviolet
stable fixed point at the origin, i. €. # is negative for small values of g so that as we increase
02, g(Q?) decreases becoming closer and closer to a free field theory as Q2 tends to infinity.
Such a theory is called an asymptotically free field theory.

B B B

9, g g g

(a) (b) (c)
Fig. 2

What field theories are asymptotically free?

Coleman and Politzer have shown that no theory which does not contain a non-
-Abelian gauge symmetry can be asymptotically free!.

A strong candidate for the field theory of strong interactions in QCD. This is an
SU(Q3) colour gauge theory with fermions arranged in colour triplets. The Lagrangian for
such a theory is

L= —% Gf,vGZv+i@a(v"D"+ima)wa, (1.6)
where

Ga, = 8,A5—0,A%+gf " A4S, D, = 0,—igr"4l.
The 17 are the fundamental representations of the generators of colour SU(3) and obey

the commutation relations
[ "] = if ", a.n

where f®* are the structure constants of SU(3). The index « of the fermions runs over
the possible flavours (i. e. up, down, strange, charm, etc.) which the fermions (quarks)
may have.

The Lagrangian of Eq. (1.6) gives rise to three-point and four-point interactions.
between the 4% fields (gluons), which are absent in an Abelian theory for which f*¢ = 0

(a) (b) (c) (@) (e)

Fig. 3

* One exception to this is a A¢* theory with negative coupling constant, but such theories are usually
rejected on the grounds that the energy is not bounded from below as & ... oo,
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There is also an interaction between the quarks and gluons, which is similar to the QED
vertex between electrons and protons but carries a group theory factor t. The diagrams
required to calculate B, in such a theory are shown in Fig. 3. In the Feynman gauge we
get the following contributions: —(Cr—C,/2) from Fig. 3a, Cy from Fig. 3b, —3C,, from
Fig. 3¢, —3C, from Fig. 3d, $ T from Fig. 3e, where Cp, C,, Ty are functions of the group
generators defined by

51'ch = T‘i‘k‘c;j’ (1.83)
(sabCA = faaffbc‘d, (1 Sb)
S Tr = Thh; xmo. of flavours. (1.8¢c)

For SU(3) with quark triplets, Cr = %, C, = 3, Tp = X no. of flavours. Summing these

contributions we get
—11C,+4T,
fo=\"3—)

Provided we do not have more than 16 flavours this is negative. We note immediately
that for an Abelian gauge theory C, = 0, so that B, would be positive.

2. Deep inelastic electron-proton scattering

The purpose of performing deep inelastic electron-proton scattering experiments is
to examine the internal structure of the proton. A schematic diagram of the parton
picture of this internal structure is shown in Fig. 4. There are three principle (valence)

Fig. 4

quarks which carry flavour (2 up and 1 down) and colour. By changing colour they
exchange gluons with each other and this is the mechanism which binds them together
in the same way that the exchange of photons inside an atom binds the electrons and
nucleus together. However, unlike QED these gluons can interact with each other. Further-
more, the gluons can produce quark antiquark pairs which is known as the sea (this can
also happen inside an atom, but since QED is a weak coupling theory the amplitude for
such a pair production is extremely small).
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When we hit a proton with a hard off-shell photon from an electron current, the
photon hits one of the charged constituents; either a valence quark or a quark or anti-
quark from the sea (see Fig. 5). The parton model assumes that the initial and final momenta
of the struct quarks are on their mass shells and that in the “infinitt momentum frame”
(where the three-momentum of the proton, ipj, is much larger than the proton mass)

4

iq
xp

hadrons
Fig. 5
the struck quark comes a fraction x of the longitudinal momentum of the proton (for the

moment we neglect the transverse momentum of the struck quark). The initial momentum
of the struck quark is

p; = ((m2+x?p*)'2,0,0, xp), (2.1)

and the final momentum is p; + ¢, where ¢ is the momentum transferred to the quark mass.
The requirement that the final quark is also on its mass shell gives

x=—¢*2p-q. 2.2

It is easy to show that the kinematic limits on x are 0 << x < 1. If we define F(x) as the
probability of finding a quark inside the proton with longitudinal momentum xp, then
the parton model tells us that the total cross-section is given by

1
Cepoex = );F(x)a"a“ic(x)dx. 2.3)

eq

Fig. 6

The elastic electron quark cross-section is easily calculated in lowest order. We require
the imaginary part of the Compton scattering diagram shown in Fig. 6. This is

Ly
;‘* LTr [y, (e p+7 - @nxy - p16(g* +2p - %), (2.4
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neglecting quark masses. Here /,, comes from the lepton currents and the 1/¢* terms is
from the two photon propagators and the delta function is the imaginary part of the
internal quark propagator. Performing the trace we get

21uv [:( quqv) 2x2 < p . q>< p . q)] 2
— |l —guwt X+ Pu—4y—5 )\ Pv—qv—3 }|[0(g"+2p - gx), (2.5)
q4 u q2 p . q 13 13 q2 q2

where we have obtained the form of Eq. (2.5) by exploiting the fact that the quark current
is conserved. Putting this into Eq. (2.3) we obtain

21, [( q,m) 2x%F(x) P q P q
Oepoex = — 8t xF(x)+ Pv—du—— I Dv—a—5 )| 2.6)
TR gt mlog? p-g \'" " g g (

We define the structure functions F, and F, to be the coefficients of —g,,, and p,p./p - q,
respectively, and obtain the relations

F, = xF(x), (2.7a)
F, = 2x*F(x), (2.b)
where x = —¢?/2p - q. We see that to this order F, and F, depend only on the ratio x

of the two kinematic invariants g and 2p - ¢. This is called Bjorken scaling.

In the next order in perturbation theory we get diagrams shown in Fig. 7. In general
we would expect such diagrams to give us terms proportional to In (—¢?) which would
violate exact Bjorken scaling; calculating such violations is not easy. First of all QCD.
is a strong interaction theory, so we cannot simply perform perturbation theory in the

AR v v
ey N YNy
xp /27__4\ /C::x
xp xp,
(a) (b) (c)
Fig. 7

strong coupling constant and expect to get reasonable results. Alternatively, for sufficiently
large values of —g? we could say that it is the effective coupling constant which is important
and attempt to perform the perturbation expansion in g(—gq)%. This also fails since the
perturbation expansion generates, in each order of perturbation theory, powers of the
product g%(—¢?) In (—g?*/p?), where p is the momentum of the external leg (p? = m’
for electron-proton scattering). Thus, although g2(—g?) decreases with In (—¢?) as —g?
increases this product remains of order one. The only possibility is to try to factorize the
cross-section into a term which depends only on p?, multiplied by terms which depend
only on g2 and 2p - q. If this can be achieved then (except possibly at the kinematic end
points x = 0 and x = 1) the terms depending only on ¢2 and 2p - ¢ may be calculated
in perturbation theory using the effective coupling constant g(—g?).
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The Wilson operator product expansion

If we look again at the three diagrams of Fig. 6 we see that in coordinate space this
may be written

Im o , i — - .
—z;z—fd‘*ye"’ X pT L0 Ip> = J d*y<{pI Ty O (M1 p(y) ) (2.8)
to lowest order in perturbation (we have dropped the lepton current and photon propagator
factors).

We observe that Ty(0)y(y) is the fermion propagator to lowest order and this may
be written

- 7y
Ty(0 =50~ — ———. 2.9
Y(O)p(y) = S(y) @ G=ie)? (2.9)
w(¥) may be expanded as a Taylor series
o
VO) = X Yy Yun® e 0(0), (2.10)
and 7"y%"’ may be written
P = 28" —2y%", (2.11)

where we have thrown away a term antisymmetric in g, v (which vanishes when multiplied
by the lepton currents).
Combining Egs. (2.8) to (2.11) we have

X

. —1i uvVuYus " Vun YuBvusVps " Vun
TJ (0)J = — —
PITIO D) P> = — E [ =i =i ]

N=0
x {plyp(0)y*'a** -+ 8*¥y(0) | p). (2.12)

The next step is to arrange the operators of Eq. (2.12) into representations of the Lorentz
group (by symmetrizing and removing traces) and then to make the operators gauge
invariant by replacing the derivatives ¢ by covariant derivatives D, = 0,—igt°4;. The
term (p|y(0)y" 8" ... " y|p) becomes

S{plp(0)y*'D*2 .- D*¥y(0) —traces|p) + S<ply(0)y"*D*D** --- D*y(0)

—traces|p>+ -, (2.13)
where S means symmetrized over all Lorentz indices.
We now make the Fourier transform of Eq. (2.8) and obtain

N-2
i 2 Y N _ ) ‘
2 (g’”_ Pup){qm Jux SCpp(0)y D> - D**yp—tracesip)
Led

LAy pra/l @)
Qu, " Qo 2t N2 N
+ Ws<ple y*'D** ... D*¥y—traces|p>+ o . (2.14)
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Now by dimensional counting and the fact that in Eq. (2.14) we have matrix elements of
operators between single particle states which can therefore only depend on the
momentum of that single particle we have

{plpy*'D** ... D" yp—traces|p) = Ay(p,, - P, — traces), (2.15a)
{plyy**D*D** .- D*Nyp—traces|p) = Axp*(p,, -+ Puy—traces), (2.15b)

where Ay and Ay are dimensionless. We see that the second term in Eq. (2.14) is smaller
than the first term by O(p?/q®), which can be neglected if ¢ is large and p? = mf,. Simi-
larly we may throw away the trace terms. In general, an operator of spin N and dimension
D has a single particle matrix element.

<p|0#1 uNIP) = BN(pm puN—traces) (pZ)T—Z’ (216)

where T'= D—N is called the twist of the operator. In the limit of large ¢2, therefore,
we need to keep only operators of twist 2. The above derivation has been conducted in
lowest order of perturbation theory. If perturbation theory is valid a more general relation
can be derived

[ v oims, 100 ) - Z Z( el i)+ PP )

Qu, " dun
x — e
@"

where the sum j runs over all twist 2 operators of spin N, which are

{pjO** - #¥Ip> +higher twist terms, 2.17)

O}° = S(p,Arpy"'D*? -+ D*¥ypp—traces), (2.18a)
0% = S(y,y*'D"* --- DNy, —traces), (2.18b)
0% = S(G**'D** ... D*N-1G"NY —traces). (2.18¢)

The first operator is a flavour non-singlet operator and A is a generator of the flavour
group. The second and third operators are the fermionic and gluonic parts of the flavour
singlet operators. Using Eq. (2.16) and the fact that p - g/g*> = —1/2x, Eq. (2.17) becomes

J d*yet X PITI(0)J,(3) [P = — g Ti(x 43+ (1‘;—;%‘1) Tyx. q®),  (2.19)
where
(-1
Ty2)(x, ‘12) = Z Z 1(2)1(‘12) 2x ))N je (2.20)

N=0 i
We now have to project out a particular value of N. Firstly we note that T (,)(x, ¢°) is
symmetric under x <+ —x. This can be seen from Eq. (2.19), where on the LHS x> —x
is equivalent to g «> —q or y <> —y. Using the translation invariance of operator matrix
elements and the symmetry of the RHS under u «» v, we see that both sides of Eq. (2.19)
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are symmetric under this interchange. The structure functions are 4m x the imaginary
parts of T, and T,. Since the physical region of x is 0 <x <1 and 7, and T, are
symmetric functions of x, they can only be analytic in an x plane which is cut along the

Lx

Fig. 8

real axis from —1 to +1 (see Fig. 8). Now the cxpansion of Eq. (2.20) is valid on any
contour for which |x| > 1, and the coefficient of 1/x” may be obtained from the integral

{
§ TI(Z)(x q ) = — z -(qz)B’}’ (N even) (2.21)

2m

c

around such a contour. Since 7, and T, have no singularities outside the cut, the contour
may be shrunk until it surrounds the cut. We now have
1

1 1
5 j dxx" 712 1Im Ty5)(x, ¢%) = 5 Cm“(qz)B}v (N even), (2.22)
i
-1
or
i
i _ 1 :
J dxx" 1F1(2)(xr qz) = im 1(2);(‘1 )B (2.23)
0 J

Thus we have arrived at an expression for the N'* moment of the structure functions with
only three terms in it, each of which is a product of a coefficient function which depends
only on ¢? and a factor which is related to the matrix element of a twist 2 operator between
single proton states.

We cannot calculate the quantities B?’ for operator matrix elements between proton
states. We can, however, calculate them in perturbation theory between single particle
quark or gluon states. For example, if we consider the non-singlet operator

BRsPy, *+ Puy = {PlpAy"'D** -« D" yip), (2.24)

where 1p) is now a single particle quark state of momentum p. To lowest order D*¥ may
be replaced by the ordinary derivative, J,, and we can expand the fields in creation
and annihilation operators

- . dsp —ip+x ip-x
Gy, 0, w(0) = lim f 2 84y - O [u(pla(p)e ™ * +u(p)bl(p)e” *]

x=0 0

d? . .
= (=" fz—} Pus -+ Punlu(p)a(p)e ™™ > +(= D)V uo(p)b (p)e” *]. (2.25)
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Thus we have

7 2 <plp(0)y*19* - 0*ylp) = 3 Tr (3"'y * PP, ** Ppw = 2P, =+ Puy»  (2.26)
spins
so that to this order BNs = 2. In the next order in perturbation theory we find infinities
(the details of how to calculate these quantities in one loop are given in Section 3) so we
must renormalize the matrix elements by subtracting at some value of p?, say p? = —u?
(again we choose a negative value of p? to avoid possible infrared and mass threshold
problems). To one loop, therefore, we have

N
g Yo )
BY. =21 2y . 2.27
NS [ 1672 2 (2:27)

The quantity Cl(z) ns(9%)Bys is a physical quantity (although it contains only the non-singlet
operators it could be related to the differences of electron-proton and electron-neutron
scattering structure functions which are purely non-singlet). All physical quantities are
independent of the renormalization point u. This is the fundamental axiom of the renormal-
ization point p. It permits us to calculate the u dependence of Cf(z), ns(@?) from the p
dependence of Bls

d Y ;
— Yy ns(@?) = —28 Ns(q )

i Brs s B (2.28)
ns( P

The quantity (d/du)Bys comes from the infinites of the operator matrix elements and,
as we shall see in the next section, is a property of the operator only, and not the states
between which the matrix elements are calculated. In other words, for any matrix element
we may write

Bgs(pz = _uz)lall orders ng(u)BgrS(pz = _”z)llowest order> (229)

where Z3s is a property of the operator.. We now define a quantity yXs, the anomalous
dimension of the operator Ogs,

g7

2 +0(g%). (2.30)

?gs(g) Ns(#)

zﬁs dlnp

Now the coefficient functions Cf'( 2), ns(¢?) are dimensionless quantities so that they can only
depend on ¢* through the ratios —g?/u2.

2 1(2)NS( q /#) (2.31)

d
-3 —H le(z),Ns(_qz/.uz) =

CN -2 —
12),ns(q ) d1n

dIn(—q%)

If we now expand CI{’(Z), ns(@?/— 1?) in a power series in the effective coupling constant,
g(—¢?), and use the chain rule

o - a2
din(—¢%) dln(—4¢%) +3 Blg(—9)) Pt (2.32)
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we arrive at the renormalization group equation for the g* dependence of coefficient
functions C75, ns(@* — 1)

% 0
——— +1 B(e(—q%)- + 7N 2)0"’ 2y =0. 2.33
(6 In(—q%) 7 B(g(—q%) oe(—q?) Ins/ ’ 12ns(g”) ( )
This equation has a solution
9(—a%)
Clxv(z).Ns(qz) = Cf(z).Ns(qz = —u®, g(—q")) exp— (j) s(8)/B(g)dg, (2.34)
g(u?
where the first factor is the coefficient function calculated at g> = — p? in ordinary perturba-

tion theory but using the effective coupling constant g(—¢?). Now if we expand yis and

f to lowest order (one loop) we have
2

/ g
Ths(g') = 1672 8 (2.35a)
g"
V=773 2.35b
ﬁ(g) 167{2 1809 ( )

and Eq. (2.35) can be used to give us (to leading order) the coefficient functions at ¢*
in terms of its value at some fixed value of ¢°> (= g3)

Cloyns(@) = Cay(ad) [82(—g%)/g(—gd)]™"*e. (2.36)

The approximation is valid provided both g%(—g?)/16n% and g?(—q2)/16n* < 1.
Now solving Eq. (2.35b) we have

g(=q") = 1/Bo In (—¢*/A%), (2.37)

where A is the one theoretical free parameter of the theory which sets the scale of the
strength of the coupling constant (it may be considered to be the one constant of integration
of the first-order differential equation (2.35b)).

Thus for the moments of a structure function which depend only on the non-singlet
operators we have the following equation for the g*> development:

Mu(g®) = [ X"7'Fi(x, ¢°) = My(q) [In (=g*/4%)]In (— g3 A7) 77"°1%Pe
+0(1/In (¢*/— A%)). (2.38)

For the coefficient functions of the singlet operators the situation is a little more
complicated. This is because the two singlet operators of spin N have the same quantum
numbers and can mix in higher orders. This means that one can begin with one operator
(say O} of Eq. (2.18)) and through higher order interactions generate O% and vice versa.
The situation is shown schematically in Fig. 9. All the diagrams in Fig. 9 are divergent
so that the operator renormalization constant of Eq. (2.29) becomes a 2x 2 matrix

N
Z‘:g Zsf
Zy Zg
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and the anomalous dimension is a 2 x 2 matrix. The coefficient functions C{,, ; and C{,, ,
obey the matrix equation

< I +4 B(g(—q") 64-—-) 5ab+v§b) Ci =0 ab=forg (239
\eIn(-g% og(—q*) \
The matrix 7" can be diagonalized

. N0
AN‘v“AN=(”+ ) (2.40)

i e b e e ———

Fig. 9
and to leading order Ay is independent of g, so that we have
CHGD) (A ) = CN@* = — 1% g(— ) (Ae ) [ (=) (=g 7P
(2.41)
or

Cig®) = ¥ Ci(q* = %, (= a*) (A1) (g(— g g4,
+ 3 CXg* = —#% 8= (A1) (=g AT, (242)

In Egs. (2.41) and (2.42) we have assumed that g*(u?)/16n* < 1. We are always free to make
an arbitrary choice of u, but remember that the operator matrix elements must be con-
sidered to be calculated as a perturbation series in g() such that the product of the coefficient
function and the operator matrix element are p independent.

We shall return to this problem of operator mixing at the end of the next section.

3. Calculation of anomalous dimensions

3.1. Incorporation of operators

Operators can be incorporated into the theory of QCD simply by defining an effective
Lagrangian which is the usual QCD Lagrangian to which an operator multiplied by a source
term is added

Leff = "% G;VG;.JV-*‘ i@a(yul)u'*_ ima)’pz'!"liu #NO‘i“ ”N’ (31)
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where the source of the operator O; may be written

Jhun = 4,4, 4 where 4% = 0. (3.2)

uN?

Such a source term automatically projects out the traceless symmetric parts of the operator
so that we have operators which are irreducible representations of the Lorentz group.
For example for the flavour non-singlet operator we would add to the Lagrangian a term

A, Ay, - Ay hagy" D2 - DMy, 3.3)

B2

Such a term gives rise to a series of effective vertices, some of which are shown in Fig. 10.
It we replace all the covariant derivatives by ordinary derivatives in Eq. (3.3) we obtain
the vertex of Fig. 10a whose Feynman ruleisy - 4 (4 - k)"~ '. If we replace all but one of

oA A

Fig. 10

the covariant derivatives by ordinary derivatives and pick up a gluon from the other one
we obtain the vertex of Fig. 10b whose Feynman rule is

N-2

.20 7 A4 k)Y TITHA - k)4,
f=

Similarly we have vertices with 2, 3, ..., N— 1 gluons coming out.
The diagrams which contribute to higher order corrections of the effective vertex
of Fig. 10a are shown in Fig. 11. They give infinite contributions so that we must define

k k k
1 1
Y'A —_ PO
o 2 2
P p
(a) (b) (c)

Fig. 11

a bare Lagrangian in which the operators are multiplied by their renormalization constants
(or matrices in the case of operator mixing)

L{ = —1 Z,G5,Go+ Z,ip (y" DS — mD)p,+ZyA,, -+ 4,,0% "+, (3.4

so that Fig. 10a, for example, has a counter term (Zy—1)y - 4(4 - k)~ which cancels
the infinities of the diagrams in Fig. 10, but which depend on the renormalization point, u.
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3.2. The method of dimensional regularization

If we have an integral
da*k g2

I

we know that this diverges logarithmically, However, if we calculate it in 3, 2, or | dimen-
sions, we would have convergent integrals

r dSk g2 gZ
I; = 3 2, N2 = (3.6)
J @ (P +p* 2D
~ d?.k 2 2
I, = ) 2g22= gz’ 3.7
J@m)” (k*+p)°  4np
I dk gZ g2
] = ——— == . .
' ) @m @y T ay ¢
The analytic function
rQ2—dj2) _
I, = 2 W (pz)a/z 2 (3.9)

reproduces Eqgs. (3.6), (3.7), and (3.8) for d = 3, 2, 1, respectively. We see that this analytic
function has a pole at d = 4. Since gauge invariance (the Ward identities) holds in all
dimensions it must hold separately for each coefficient of (d—4)" or (d—4)"" so that if
we remove the pole of Eq. (3.9) at d = 4 we are guaranteed that the part we have removed
is gauge invariant, so that what remains is also gauge invariant (provided, of course, that
we were calculating a gauge invariant quantity in the first place). Doing this and expanding
Eq. (3.9) about d = 4 we have
2

Ree — Ti?ﬂ (In 47—y —1n (p*/u?)) + O(d — 4), (3.10)

where 7y is the Euler constant. The In p? term arose from the fact that in d dimensions the

coupling constant g has dimensions 4—d
g = hu*™", (3.11)

where 4 is dimensionless and expanding g2 around d = 4 gives us In p?.

Note that this method of regularization is not the same as the renormalization prescrip-
tions of subtracting at p*> = u?, because of the presence of the terms In 47 and y. However,
to this order, the In u? coefficient is the same.

The method of dimensional regularization is very useful for defining the anomalous
dimensions (to any order in perturbation theory) remember the definition of y is

d
y = (=1/Z(w) Y A2 (3.12)
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To order g*(u?) we can write Z(u) as
Z(p) = 1+8(1*) (@a+bo In p?)+g*(w?) (@ +by In p + ¢y In® p)+...,

so that Z(u) has both an explicit and implicit (through g?(u?)) dependence on p. This
clearly gets very complicated. However, in d = 4—¢ dimensions we have for the coupling
constant

g1y = uZ(who, (3.13)

where h, is a bare dimensionless quantity. Z,(u) to any finite order in perturbation theory
(order r) can be expanded in powers of 1/e up to order r

r

Z(w) =1+ Z a"e(f ). (G.14)

k=1

The definitions of f is such that from Eq. (3.13) we have

d
g = % 81D +(UDIZ, W) 11— Zo(. (3.15)

Inp
Using Eq. (3.14) this gives

r r r A a
(1 + Z ak(u)/s"> B = %g(uz) (1 + z a:&ﬂ)/«?") +g(1?) Z T awfe*. (3.16)
np
k=1

8 is finite as ¢ — 0 and the highest power of ¢ in the RHS of Eq. (3.16) is &', so that § must
have the form A+ Be and comparing coefficients of ¢ in Eq. (3.16) we have

B=A+ -Z—g(;ﬂ). (.17)

Now the renormalization constant of an operator up to r™ order in perturbation may
also be expanded in a power series in l/e,

r

1
Zy(w) = 1+ E ’ bi(2(1?)), (.18
k=1
where we have written the p dependence of the coefficients &, implicitly by expressing

them as functions of g(u?) only (it is always possible to do this). Now from the definitions
of yx(Eq. (3.12)) we have

r r 1 )
Zyw = (1+ Z bk(g(uZ))/e") = — Z *1. —a?‘z;) bi(g(1?)

r

— 1 2 0 2
== z (At )e[2) 38G0) bi(g(1)), (3.19)

k=1
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where we have used Eq. (3.17) and the fact that

d
b N=p—0> ). (
Jin g W(8(W) = B 2200 (8(17) (3.20)
Now again vy is finite as ¢ = 0 and the highest power of ¢ on the left-hand side is &°
whose coefficient is yy. Comparing this with the coéfficient of ¢° on the right-hand side
of Eq. (3.20) we have

d
dg(u®)
b, is the residue of the simple pole part of Zy and Eq. (3.21) is valid to all orders. This
greatly simplifies the problem of finding yy from Zj, particularly when one goes beyond
one loop.

We now return to the diagrams of Fig. 11. The contributions from the first diagram
in d = 4—¢ dimensions is (in the Feynman gauge)

L[4k Yy ky Ay - ky"(4 - k)Y
—1g e i 2 .
(2n) k*(k—p)

= —(8u*)/2) b(g(1*)). (3.21)

(3.22)

In 4 —¢ dimensions y"y - Ay, = (—=2+¢)y - 4 so this becomes

) d* "k 2y k(A - k)N =K%y - A4 - k¥
204 .
ig"(2—e) f G K= ) . (3.23)

This has the general form Ay - 4+ By - p. But the second term is not proportional to the
original vertex, so it is finite and therefore uninteresting (it cannot depend on u). We can
get rid of this term and convert the numerator of Eq. (3.23) into a scalar quantity rather
than a Dirac matrix by multiplying by y . p, taking the trace and putting p? = 0 (we must
finally multiply by y - 4/44 * p to project out the term Ay - 4). We find it also useful to
use the relation 2k - p = k*>—(k—p)*® (with p?> = 0). Now in 4 — ¢ dimensions

d* K 1 r € (m2)~e2 0 for 0
(2r)* " (k¥ —m?y? 2 m o or &<7% (3.24)
so that
d* %k 1
(2n)4—g k4 - (325)
and we are left with
A [ d* %k (AN~ 4
i(2—6)g? Y T x ((4-k) 2( )2 p)_ (3.26)
4-p ) (@2n) k*(k—p)
Performing the Feynman parametrization this may be written
1
A4 [ a7k A-R)N—(4- k"4 -
i2—g)g? 2 I PG e CRL A (3.27)
A-p)(Q2n) [k*~2p - ka+ p’a]
]
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Now we symmetrize the denominator by making the shift £, - k,+ap, - (4 - k)™ becomes

' N! ; e
40" ) @

Jj even

(3.28)

where we sum over even j only because the odd terms vanish by symmetric integration

in k. But all but the j = 0 terms also vanish because 42 = 0 and

i d* %k k*k’ E
Y @en)tr [P+ pPa(1—a) ] )
Thus we have

1
d4-—sk J\ (ocN——aN—l)

) C WL A2
(G- 48" | o= | e et =T
0

1
_ (2—¢) a4 p)" 'y - AT (_g_) (47_[132)—8/2‘[‘1Oc
0

T 6nd)

(aN_aN—l)

as/Z(l _a)€/2

—(2-¢) -
T g4 pY"y-ar

i) ()" [r(N+ L—e/2)I (1 —¢[2)
2 I(N+2—¢)

(N —¢2)[(1—¢/2)
T T I'(N+1—g)

= T ey A e DN
]—lng( 'y ;[/(+)—-/]

+finite terms as ¢ — 0.
Therefore the contribution to yNg from this diagram is

—4g? 1 c
(167*) N(N+1) ©

(3.29)

(3.30)

(3.31)

where the factor Cy comes from the group theory (i. e. form summing over all the possible
gluons which can contribute to the diagram). Repeating the procedure for the second

diagram in Fig. 11 we have

N-2
ZZJ d*™k -y ky- A4 R4 - )2
t ~&

/) e K(k—p)®

N-2

. d* %k y- A4 k)TN p) TR

= Z I @2n)*~ k2 (k— p)? o),
j=0

(3.32)
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where we have thrown away a term proportional to A2. Performing the Feynman parame-
trization, shifting the variable of integration, and keeping only (4 - p)’*'a’*! from the
binomial expansion of (4 - k+4 - pa)’*!, we have

Z J d4 £k J‘ (A'p)N—l'y'Aaj+l
4lg 4-e 2 2 2
(2m) (K" +p (1 -0)]

o2 j+1 —2/2
- By Ar(e/z)Zj o )
T

5/2(1 a)e/Z

-4 N1 I(j+2—¢/2)I(1—ef2) (4np*) > .
= Ten > (d-p) Ty AF(s/Z)Z TG13=e2) . (3.33)

so that the contribution to yng is
8g 1

1672 ]+2

j=0

Cr. (3.34)

Finally the contribution from the third diagram of Fig. 11 is (g%/1672)2CF so that we have

N-2
w2 o[ 2. 4 3.35
™= 162 P T NN+ D G+2) | (3.35)
j=0

Note that this is zero for N = 1. This is because the operator for N = 1 is y*y*A3,9, which
is the flavour current operator. This is conserved (to all orders) so that its anomalous
dimension is zero. This is a restatement of the Ward-Takahashi identity of QED, Z,=Z,.

The anomalous dimensions of the singlet operators can be calculated in the same way.
To this order y¥ is the same as yNs and the other anomalous dimensions are

N-2
2
= e [ZC" G_ NS WD T Zﬁiz) * 8—?] (3369
=
N g2 1 2
= 4 (ven N(N—l))’ (3:360)
N gz 8 16
Vet = fon? TR ((N+2) NN (N+2)>' (3.360)

We note that for N = 2 we have the relations

Ve—vi = vi—v% = 0. (3.37)
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This is because the operator combination
07 —0; = py"DHy—G G (3.38)

is the energy momentum tensor which is also conserved to all orders.

We now return to the problem of the calculation of the coefficient function in per-
turbation theory. The full solution to the renormalization group equations for the moments
of structure functions which depend both on singlet and non-singlet operators is

1

N-1 2 1 N 2 .
X" F2y(x, g7)dx = N3 [Ciayns(a ) <{piON s|P>+C1(2) (g ) <plOf1p>

[¢]
Cliay.e(a®) <pIOF1P>], (3.39)
where
PlOFIP> Py Puy = <PIOF P} (3.40)

and C},, ns(q®) obeys the equation
Cliayns(@®) = Clayns(a® = 17, 8(a™) [°(— 4/ g () ]=="/**. (3.41)

The first factor must be calculated in perturbation theory. Since the coefficient functions
do not depend on the states between which the operators are sandwiched we may calculate
them for scattering off an external quark of momentum p. The tree diagram approximation
has been calculated in Section 2 and the diagrams contributing to the next order are shown

Fig. 12

in Fig. 7. These are calculated using the effective coupling constant g(—g¢?) at each vertex
and it is necessary to take the moments to calculate Cf(z), ns OF C{\5, ¢ In order to calculate
Cf(z),g we must consider electron-gluon scattering. The leading order non-trivial diagram
for such a process is shown in Fig. 12. We see that it begins in order g*(—¢?) and may
therefore be neglected to leading order. However the Cf(z),g term may not be simply
thrown away since Ci”(z),f and Civ(z),g mix through the mixing of the operators in higher
order. What we can do is to neglect Cf(z), o(@* = —p?). Doing this and using the elements
of the matrix 4" which diagonalizes the matrix y¥ (giving diagonal components y¥ and
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y¥) we have

Cla@®) = [(A) ™ AN g% (— g/ g ()] "1

+(AF) T AV [ (= )W) IC o (a8 = —), (3.422)
Clae(@®) = [(AF) 7 AY [ %(— P /g ()] /2P
+H(AF) T AN [ (— D) Ig W) ICY o) (0 = — D). (3.42b)
Now if we define

ay = (Af) "4l (3.43a)
By = (4f) 1A, (3.43b)

then using the fact that (4") ' 4" = 1 we have
A AN = 1 —ay, (3.44a)
(A7) AY, = — By, (3.44b)

so that combining Egs. (3.39) to (3.44) we have

1

i 1
JxN Fioy(x, 4°)dx = 73 [Clanms(a® = — 1) (pIONsIP) [&7(—a7)/g* (W) "/
0

+Clo@® = — 1) (plO}|p> {an[g*(—q?)/g (u*)] "2
+(1—ay) [82(— gD/ W)Y} + CYp(a® = —1®) <plOYIp)
< Byl &7 (— g g ()T * 7?0 — Byl g (— gD/ (D] 1?0} ]. (3.45)

We interpret the matrix element of the flavour non-singlet operators as the valence quark
distribution at ¢ = - u2. This is because to a very good approximation the sea is a flavour
singlet (i. e. a non-singlet operator has zero matrix elements between states consisting
of just the sea). The fermion singlet operator matrix elements are interpreted as the total
quark (valence and sea) plus antiquark distributions at g2 = — u? and the matrix elements
of the gluon operators as the gluon distribution at ¢> = — u?. We note that the last term
of Eq. (3.45) vanishes at ¢> = — p2. This is because one cannot directly detect a gluon
with a photon. The presence of the last term away from ¢*> = — u? arises from the fact
that gluons can be indirectly detected in higher orders due to sea pair production.

4. Comparison with experiment

In the previous two sections we have derived formulae relating the moments of
structure functions at one value of ¢2 to their values at a fixed value g3 (which must be
obtained from experiment). Before discussing how to invert these moments to obtain
the structure functions we compare the renormalization group predictions with a recent
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neutrino scattering experiment at CERN (BEBC) for which the moments of the structure
functions have been calculated directly from the experiment. In neutrino scattering it is
an off-shell W+ or W- which is exchanged and not a photon. This gives rise to parity
violating interactions and hence an extra structure function F,(x, Q3). It can be shown
that for an isoscalar target F, is an odd function of x and so depends on the anomalous
dimensions of odd spin operators. Gluon operators have only even spin and so there
is no mixing between gluon and fermion operators, and the moments of F, are governed
by the anomalous dimensions y3s = . Thus

MY = [ x"7'F,(x, ¢¥)dx ~ [In (—g*)]"/%Fe, 4.1

Taking logarithms of both sides we have for two values of N (N, and N,):
In (M5') = C, +(3i/2Bo) In In (—g°), (4.2a)
In (M3?) = C,+(yN4/2Bo) In In (—g%). (4.2b)

So that if we plot In (M}*) against In (M}?) we expect a straight line of slope yN&/y¥2. This
has been plotted in Fig. 13, where the straight lines are the theoretical values. The success

is spectacular.
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Inverting moments

In principle, one can obtain the structure functions from their moments by performing
an inverse Mellin transform. That means that if we can take all the moments, M7, of
a structure function and make an analytic continuation in N

MY = M(N). (4.3)
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Then the structure functions may be obtained from the integral

F(x) = [ x"M(N)N. (4.4)
=i
In practice, however, it is impossible to perform the analytic continuation and a much
simpler approximate method was devzloped by Buras and Gaemers. This method essen-
tially consists of guessing the form of the valence quark, sea, and gluon distributions with
some parameters and then fitting the parameters to the solution of the renormalization
group equation (Eq. (3.45)). Thus they take for the valence quarks
3o +a,+1
Vi) = LA g (4.5)
I (22 +1)
The normalization factor has been chosen to satisfy the criterion that the total number
of valence quarks is three, i. e.

1
f V(x)dx = 3. (4.6)
]
For the sea quark distributions they take
S(x) = A1 —x)*/x, “.n
and for gluons
G(x) = B(1—x)™/x. (4.8)
They assume that the g2 dependence is all contained in the «’s and has the form
o = aq® = qo)+a; In(In (—g*/A*)/In (- g3/4%)). (4.9)
T
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Now the quantities 4, B and «,(g> = ¢3) are obtained by fitting Egs. (4.5), (4.7) and (4.8)
to electroproduction at g2 = g (they take —g§ = 1.8 GeV? although there is no data
at this point for all values of x — what they actually do is to use the renormalization
group results to extrapolate the data for all x down to —g? = 1.8 GeV?). Having obtained
these quantities the slopes «; are obtained by fitting to Eq. (3.45) (note that this second
step is not a fit to data but a parametrization of the theoretical prediction of the ¢ depen-
dence of the moments).

Figure 14 shows the results of this fitting for low values of x (up to x = 0.33). The
dotted lines are with A = 0.5 GeV and the solid lines (which give a better fit) are for
A = 0.3 GeV. We defer the comparison of theory and experiment for larger values of x
until the next sections where we discuss the effects of target masses.

5. Higher order corrections
5.1. Target mass effects

We recail that in Section 2, the operators were classified into representations of the
Lorentz group by removing the traces and symmetrizing over Lorentz indices (such
a classification is necessary in the renormalization group analysis since it is only operators
of the same spin and dimension which mix in higher orders — in other words the index N,
in 7" refers to the spin of an operator and thus assumes that the operators have well defined
spin). Later the trace terms were dropped since they gave rise to terms of order mf,/qz,
where m,, is the proton mass. Georgi and Politzer have performed an analysis in which these
trace terms have been taken into account. By looking at the parton model Barbieri et al.
have obtained the same results. They assume that the parton which is struck (see Fig. 5)

carries a fraction ¢ (not x = —g2/2p - q) of the momentum of the proton. Now in the
infinite momentum frame (|p| > m,) the proton has momentum
p = ((lp1*+m2)"2,0,0,|p)), (5.1)
and the struck quark has momentum
pi = (¢&lpl, 0,0, | pl). (5.2)

For simplicity we continue to neglect quark masses although both Georgi and Politzer
and Barbieri et al. have extended their analyses to include quark masses. The momentum
transfer, in this frame, is

g = (((pP+m)'*p- g—m((p- 9)*—mZg>)''*)Im},0,0,(pip - q
~(pP+m2)*(p - @)* —m2g*)?)md). 5.3)
As |p| » c0 we may rewrite this
Al M2 a2 2312 ]
qx(fpl(p =29 —ma)") 0,0’p_q_((P,q)z_miqz)l/z(i% _ ))

mP mp 2T;':

(5.4)
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Now the requirement that the final struck quark momentum must be on the mass shell

(pitq)* =0 (5.5)
gives us for &

= Y (p- g L N2 2 231/2 2 2x
=l a=(pra=(rrar=mayBlim, = rram -y OO

We notice first that as m}f/q2 -+ 0, & approaches x so that this is a low ¢g* correction.
Secondly we notice that for fixed ¢2, & approaches x as x — 0, so that these corrections
are also more important at large x.

What this means is that we should write F,,, (x, %) as a function F 12y &, ¢%) and
it is this function F 1(zy Which scales in lowest order and whose moments have scaling
violations which go as powers of logarithms (owing to higher order corrections). Actually
of the electromagnetic currents and the fact that F; and F, and the coefficients of specific
Lorentz structures. For examples, the full result for F, is

.2

x X
[1+4x*m2/(—g*)]?

[1+4x*m2((—g*)] e

Fy(&, g+ (6mi/(—q%)

Fz(xa q2) =

1
d ’ 5 3 d 1 -
J ?i— Fy(&, q2)+(12m:/(~¢12)2)[1 " 4x2m§ T J a¢’ J"E% &', 4% (57)
s 4 4

with a similarly complicated expression for F,.
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One should note at this point that it is not strictly consistent to consider the target
mass effects without also considering the effects of operators of higher twist, which are
also O(mf,/qz). This is still an unsolved problem; however it is believed that these higher
twist operators only became relevant for very high x(> 0.8) and that target mass effects
alone should be sufficient below x = 0.8. Figure 15 shows the comparison of theory and
data for 0.4 < x < 0.8. The broken line is the theoretical curve without target mass
effects and the solid contains both target mass effects and the next order in the solution
to the renormalization group equations (discussed at the end of this section). The improve-
ment in the agreement with data is mainly due to the target mass effects.

5.2. Violation of the Callan-Gross relation

In Section 3 we derived in the tree diagram approximation the relation between F,
and F, (see Eq. (2.7)

F, = 2xF,. (5.8)
This is known as the Gallan-Gross relation.

In the parton model this could be avoided if the struck parton has a component of
momentum transverse to the momentum of the proton, as well as a component x|p|,
along it (for the moment we neglect target mass effects). The momentum of the struck
quark is now

pi = ((x*1p*+pD"2, 0, pr, xipi) (5.9)
and Eq. (2.4) becomes

qizTY[%&W'p+ﬁ'pT+V'qWAXV'p+Y'prﬂ5@2+2p'qu (5.10)

where p - pr = q - pr = 0. This leads to the relation

2xF,—F, _ 4(p>*
2xF, —q?

, (5.11)

where (p2> is the average square transverse momentum of the quarks.

The relation (5.8) is also obeyed when leading order scaling violations are taken into
account. This is because, to leading order, the coefficient functions at g% = —pu? are
simply those obtained from the tree diagram approximation, whereas the operators whose
anomalous dimensions govern the ¢* dependence of the moments of the structure functions
are the same for both F, and F,. If we go to subleading order then we must calculate the
coefficient function to one loop. The diagrams for this are shown in Fig. 7. The diagram
of Fig. 7c gives a different contributions to F, and F,. This can be related to the notion
of transversec momentum in the parton by observing that even if the external quark has
zero transverse momentum, before it is struck by the photon it emits a gluon which may
in general have a large transverse momentum so that the quark also carries a large (equal
and opposite) transverse momentum when it interacts with the photon. It is not necessary
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to take moments of this diagram. If we write the contribution from this diagram at

q°> = —y’as
2 2 2 2
g(-4q) 2x pq p (-9
(_guv+quqv/q2) W Al(x)"' ;"_q(pu"" ?_ qu) (pv_ 'q_z qv) - 167[2 A2(x)
(5.12)
and
412(x) = A1(x) —4,(x). (5.13)
Then to leading order we have
(x, 4%)
2F (%, 4*)— —2-—- - F:(y, ) (B (—)16n ) A a(xly).  (5.14)
This can be proved by taking the N** moment of both sides of Eq. (5.14)
MY(¢*)-M3(g) =M (qz)f 2V g} (—gD)/16n1)4,5(2), (5.15)

where we have put z = x/y. The second factor on the RHS of Eq. (5.15) is simply CY —C3,
the difference in the coefficient functions of the spin N operators for the Wilson expansions
for the structure functions F; and F, (to leading non-trivial order).

Target mass effects will also increase the quantity R, where

_ 2xF,—-F,

5.16
2xF, (5.16)

The experimental data on R is not very good. Nevertheless we can see from Fig. 16 that
the theoretical prediciion for this quantity is consistently too low, even when the in-
creases due to target mass effects (solid line) are included. It is possible that the inclusion
of higher twist operators may improve the situation.

5.3. Other higher order corrections

The solution to the renormalization group equation for the coefficient function of
the spin N non-singlet operator is

g(—4%)
CNs(a%) = CRslq® = 1%, g(—q%)) exp— (IZ) Ns(8)/1B(g)dg . (5.17)
9(u
Crs(¢®> = — %, g(—g?) may be written

©
Crs[1 +fRs8*(— ¢)/(167)], (5.18)
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where the coefficients frns come from the one loop correction calculated in ordinary

perturbation theory. If we expand yNs and B to two loops we get
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(5.19b)

Now the exponential in Eq. (5.17) may be written as the product of two factors

9(—q?)

a(—q?)

exp— (§2) dg'vis(g)/B(g")

i
= exp J —gg,-(v’g/ﬂo){1+(v’f/ﬂo—v’gﬂl/ﬂ§)

g(—q?)
dg'g'/(lsnz)} ,

9(u?)

(5.20)
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where in the second factor we have expanded the exponential to first order. We note that
for the quantity R discussed above this factor is the same for the moments of both F,
and F, so that it was only necessary to calculate the differences of the quantities fus of
Eq. (5.18). Using Eqgs (5.18) and (5.20) in Eq. (5.17) we have

[{s)]
Chs(@?) = Crsle*(—aD)gWhH T o1 +fisg*(— gH)/(167%)
+ (7Y 2B —y3B1/2B2) [&°(— 4%)/16n* — g*(u?)/(167°)]}. (5.21)

If we are working consistently to two loops for ys and f$ then the coupling constant
g%(— q)* must be calculated from the solutions to the f-function equation also taken to two
loops, i. e.

2 e —Bog*(—q*)/(167°)~ B, 8°(—g*)/(167°)? (5.22)

which gives us
g (—q%) = 167°(Bo In (—q*/A%)=(B,/p)167° In (In (—g*/A®))/In® (- g°[A%).  (5.23)

The quantity § has been calculated by Jones and Caswell (independently). For the non-
-singlet operators the quantities vV have also been calculated (by my collaborators and
myself). They are found to be renormalization prescription dependent. That means they
are different if you use the method of dimensional regularizition and perform the sub-
traction by removing the pole parts (as discussed in Sec’ion 3) from those obtained by
subtracting the operator matrix elements at a given value of the external momentum
(p* = — u®). However, Eq. (5.21) is clearly independent of the renormalization prescrip-
tion since it describes a physical quantity and it turns out that the quantities fng also have
a renormalization prescription dependence which exactly cancels those of 7.

For the singlet operators the situation is more complicated because of the mixing
of the fermion and gluon operators. In higher orders the matrix which diagonalizes the
anomalous dimension itself depends on the coupling constant and this must be taken into
account when solving the renormalization group equations. Furthermore, the calculation
of the anomalous dimensions of the singlet operators in two loops has not yet been completed.
However, we believe that for large x (x > 0.4) it is sufficient to consider the non-
-singlet operators only since it is found that the sea and gluons have distributions which
are large at very low x and fall extremely rapidly as x grows (i. e. the indices a3 and ay
of Egs. (4.7) and (4.8) are much larger than o, for Eq. (4.5). This leaves only the valence
quarks at high x, and as shown in Section 3 the valence-quark distribution is controlled
by the non-singlet operators. We find that although the individual corrections in Eq. (5.21)
are quite large, when we taken them all together (and include Eq. (5.23)) the total change
due to higher order corrections is rather small, due to cancellations between various
components.
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