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Some mathematical concepts used in the formulation of gauge theory are gathered
together with emphasis on their physical and geometric interpretation.

For the last couple of years or so many physicists have been convinced that the
language of fibre bundles is the correct language to use in gauge theory [1]. A very simple
case where a non-trivial bundle occurs is that of the potential surrounding a magnetic
monopole, as shown by the following theorem.

Theorem. Consider a magnetic monopole of strength g # 0 at the origin. Then
there does not exist a vector potential A for the monopole magnetic field that is everywhere
defined and singularity-free on a sphere of arbitrary radius surrounding the monopole.

cap I

A} cap Il

Fig. 1. A sphere surrounding a magnetic monopole at the origin

Proof. Suppose such a potential 4 exists. Then divide the sphere into two caps 1
and II by a parallel, Fig. 1. Then by Stokes’ theorem, the total magnetic flux through
cap I is

Q = § A,dx".
Similarly ;
Qy = § A,dx",

* Address: Mathematical Institute, Oxford University, 24-29 St Giles’s, Oxford OX1 3LB, England.
219)



220

where the contour is taken around the same parallel in both cases. Thus the R.H.S. give
zero, while by assumption the total flux out of the sphere 4ng is non-zero; hence a contra-
diction.

Since the sphere is arbitrary, we get Dirac’s string of singularities. But these singular-
ities are not physical. The trouble lies in trying to build a potential out of a trivial bundle.
We shall come back to this example later.

Wu and Yang [2] gave a translation table between the language of gauge theory and
that of fibre bundles, an adaptation of which is given in Table I. The essential point is to
exhibit a one-to-one correspondence between the prominent ingredients in both theories.

TABLE 1
Translation table between gauge field terminology and fibre bundle terminology, adapted from Ref. [2]
Gauge field terminology Fibre bundle terminology
space of phase factors bundle space
spacetime base space
gauge group structure group
gauge type principal bundle
gauge potential connection on a principal bundle
field strength curvature of the connection
electromagnetism connection on a U(1)-bundle
electromagnetism without monopole connection on a trivial U(1)-bundle
electromagnetism with monopole connection on a non-trivial U(1)-bundle
Dirac’s monopole quantization classification of U(1)-bundles according to first
Chern class
Yang-Mills theory connection on an SU(2)-bundle
instanton real algebraic bundle on CP;
instanton number second Chern class

In gauge field theory we have spacetime over which a gauge field is defined via a matrix
(i.e. Lie-algebra)-valued potential, enjoying a gauge freedom given by a gauge group.
In fibre bundle theory we have a base space over which a bundle space is built, with a struc-
ture group acting on each fibre of the bundle space, and, in the case of a principal fibre,
a connection which is a Lie-algebra-valued one-form that gives rise to the curvature two-
-form. From this parallelism one can easily see that a gauge theory with gauge group G
can be described by a principal fibre bundle over (a model of) spacetime with the same
group G as structure group.

For the convenience of readers who are not familiar with such notions, we have
gathered below some of the fundamental definitions, adapted from various standard text-
books [3].

Definition 1. A coordinate bundle B is a collection of the following:
1) a topological space E, called the bundle (or total) space,
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2) a topological space X, called the base space,

3) a map n:E — X, called the projection,

4) a topological space Y called the typical fibre,

5) a topological transformation group G of Y, called the (structure) group of the bundle,
such that gy, = gy,, for all y;, y, € Y, implies that g is the identity element of G,

6) a family {V;},.; of open scts covering X, the V;’s being called coordinate neighbour-
hoods (or patches), and

7) for each je J, a homeomorphism

@ V;xY - 2 (V)
called the coordinate function. The set n~!(x) is called the fibre above x.
The coordinate functions are required to satisfy the following conditions:

8) 7r¢j (x,y) = x, for all xe Vj, yey,
9) if the map ¢@; ,: ¥ — n~'(x) is defined by

¢j,x(y) = ¢j(xs y)9

then for each pair i, je J, and each xe V; n V;, the homeomorphism
Piabin: Y > Y

coincides with the action of a (unique by (5)) element of G, and

10) for all pairs i, j, € J, the map
g VinV,>G

defined by g;;(x) = ¢ .¢, . called a coordinate transformation or transition

function, is continuous.

Remarks (i) In cases of physical interest, we are interested in the case in which X
is spacetime, a differentiable manifold. In the above definition, we then replace *“‘topological
space” by “differentiable manifold”, “topological group” by “‘Lie group”, and “con-
tinuous map” by ““differentiable map”. Here for simplicity, “‘differentiable” means
C*-differentiable.

(ii) The above definition depends on a given covering, or, in the case of manifolds,
on local coordinates. In the next definition we get rid of this undesirable dependence.

Definition 2. Define an equivalence relation between bundles B and B’, by saying
that B is equivalent to B’, in symbols B ~ B’, if and only if they have the same bundle
space, base space, projection, typical fibre and group, and their coordinate functions
{¢;}, {#)} satisfy the conditions that

gkj (x)= ¢;¢,—x1¢j,x7 xeV;n V¥V
coincides with the action of an element of G, and the map
g8 V;nVi—>G

so obtained is continuous (or differentiable as the case may be). Under such an equivalence,
a fibre bundle is defined to be an equivalence class of coordinate bundles.
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Remark: notwithstanding this abstract definition, when we speak about a particular
fibre bundle, we shall often refer to one representative, i.e. one particular coordinate
bundle in the equivalence class. The important fact is that the concept of a fibre bundle
is independent of the particular local coordinate system one may choose to work with.

Definition 3. A principal fibre bundle is a fibre bundle in which the typical fibre Y
coincides with the group G, and G acts on itself by left translation.

Definition 4. A rrivial bundle is one in which £ = X'x Y.

Definition 5. A (cross) section s of a fibre bundle is a continuous map
s: X > E,

such that = o 5 = identity on X,

Before we go on to give some examples illustrating the above definitions, it would
perhaps be helpful to paraphrase these definitions in a more intuitive way. The (Cartesian)
product of two spaces X and Y occurs naturally when one wants to represent the function
y = f(x) as a graph. In this sense a fibre bundle is just a generalization of ordinary products,
and sections are the objects corresponding to graphs. Put another way, fibre bundle language
gives us a means of coordinatizing locally certain spaces that are not naturally a product
of two spaces. Looked at in a small enough neighbourhood of any arbitrary point, the
total space is a product. As one varies from point to point, these products are “patched
up” in a way compatible with the continuity requirements of the theory (i.e., continuous,
differentiable, etc.). To picture a non-trivial bundle as distinct from a trivial one it is useful
to have in mind the difference between a Mobius band and an ordinary ring.

Now for some examples.

1) Trivial or product bundle: here one has

E=XxY, n(x,y) =x

One needs just one coordinate patch, and the transition function is the identity. The
group G is reduced to the identity element. Sections are just graphs of maps of X into Y.
2) If G is a Lie group and Y is a closed Lie subgroup of G, then one can form the quotient

X = G/Y, with the natural projection

n:G— X,

This gives a principal fibre bundle.

3} Let X be a manifold, E the set of all tangent vectors at all points of X, and = assign to
every tangent vector its initial point in X. Then each fibre n~*(x) is the tangent space
at x, denoted by T,(X). The resulting fibre bundle is called the tangent bundle, denoted
T(X). Each fibre is a vector space (of the same dimension), but since there is no unique
way of mapping one vector space to another of the same dimension, G in this case
is the full linear group. A section is just a vector field over X, see Fig. 2. The tangent
bundle always admits a section. The zero section is an example.

The last example is one of vector bundles. Bundles are usually classified according
to the typical fibre Y, and a vector bundle is one in which the fibres are vector spaces and the
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group is the corresponding general linear group. An important special case is the line
bundle, where each fibre is just the complex line C. Vector bundles will be important
when we come to the self-dual Yang-Mills theory.

So far we have gone through the minimum of concepts in topology. We still need
some geometry. A “‘connection” is needed to transport from one point of a manifold
to another objects such as vectors, tensors and values of wavefunctions. In bundle language,

70)=T4 (X)

E=TX

\d/;_____ section

I

4
LN

Fig. 2. Illustration of the tangent bundle over spacetime

we want to be able to go from fibre to fibre. (Along a fibre we know how, by virtue of
the group action.) A connection can be defined in several ways. Using local coordinates
one can define the coefficients of a connection I'; on a manifold in terms of the covariant
differentiation Vu, where u is a vector field on X, satisfying the usual linearity and Leibnitz
rules. If {e;} is a field of frames on X, then F;k is given by

k
Ve,-ej = F,-jek.

In particular for a Riemannian manifold one can take I' fj to be the Christoffel symbols.

Let us go back to the magnetic monopole. As we said, our trouble comes from trying
to build a field out of a trivial bundle. By a theorem in topology we know that the U(1)-bundle
is trivial if X is contractible. One way out is to assume that spacetime is not contractible,
in particular, not homeomorphic to R* globally. One model [4] is to take X ~ R%xS?
and to construct non-trivial U(1) bundles over S2. These bundles are known and are
characterized by integers. One simple example is the Hopf bundle:

UQ2) » UQ)U() = S* > §? ~ CP,.

The connection in terms of the Euler angles is
i
w = D) (dy+cos 0dg),

and the corresponding electromagnetic field
F = 4sin0dyp A do

describes a magnetic monopole of strength g = 1.
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Having gone through the basic concepts let us look at gauge theory, and instantons
in particular. Instantons are the minimum action solutions of the SU(2) Yang-Mills fields
in euclidean 4-space R* [5]. By imposing certain convergence conditions at infinity the
problem is equivalent to working on the 4-sphere, which is the conformal compactification
of R* If G is a simple Lie group, then the principal G-bundles over $* are classified by
the third homotopy group w;{(), which is the integers Z. Hence we can label the principal
bundles by an integer k:

Py

| G.

S4
By choosing the orientation one can always arrange for k > 0. The case &k = 0 is trivial.
Thus topology gives us a number k, the so-called instanton number.

Before we can proceed further we have to feed in some differential geometry. Bundles
in gauge theory are bundles with a connection 4 (and the corresponding curvature F).
Having a connection enables us to parallelly propagate vectors around in spacetime.

Now the geometry of spacetime is well studied, especially by relativists. There is one
theory, the twistor theory [6], which looks at spacetime from a complex geometric point
of view and is particularly suitable for dealing with massless spacetime fields. In fact,
it was through Penrose’s construction of the non-linear (self-dual) graviton [7] that Ward
discovered his construction of the seif-dual Yang-Mills solutions [8]. Let us have a closer
look at twistors.

The basic philosophy of twistor theory is that complex numbers are more basic than
real numbers and that massless particles more fundamental than massive ones. The former
is borne out by the essential use of complex numbers in quantum mechanics and the
latter fits in well with the sort of gauge theories considered here. Massless particles,
moreover, are tied up with the conformal properties of spacetime, because, in a sense,
scales do not matter.

Let us take first flat Minkowski space, i.e. ‘“ordinary” spacetime with signature
(— — ~ +). Next we compactify it in a way that respects its conformal structure. The
resulting manifold M has the topology of a torus, S3x S*. The conformal group C(1, 3)
of M preserves null geodesics. Consider its identity-connected component, and denote it
by CL(1, 3). We have the following local isomorphism:

SU(2,2) 22550(2,4) ——1> CL(1,3). (1)

The group SU(2, 2) acts on C*. Twistors are representations of SU(2,2), and hence twistors
of the lowest valence are given by four complex numbers Z%, o = 0, 1, 2, 3. In other words,
twistors arise from the local isomorphism between the group SU(2,2) and the conformal
group, and they are tailored to Minkowski space in the sense that the local isomorphisms
(1) do not generalize to higher dimensions nor other signatures. This is a unique feature
of twistors.

A more geometric way of looking at twistors is to complexify M into a complex
manifold CM (still compact), which can be embedded as a quadric Q in CPs, 5-dimen-
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sional complex projective space. Furthermore, this quadric Q can be identified, via the
Klein representation, with lines in CP,. On the other hand, consider the space of null
geodesics of M, which, as a real manifold, is §2x R3, but which can be embedded as
a hyperplane PN in the complex manifold CP;. Now recall that twistors are given by four
complex numbers. If we divide out by the (complex) scale, i. €., take ‘“homogeneous
coordinates™, then we get the space of projective twistors PT, which can be shown to be
precisely CP;. Hence we have the following correspondence:

{point in CM} < {lines in PT}
{null geodesics in M} «> {points in PN}

This is pictorially shown in Fig. 3.
The significance of the preceding construction, as far as gauge theories are concerned,
is to enable us to study geometric objects over projective space instead of fields over

o™ er

e

/ R

v

Fig. 3. Correspondence between geometric objects in spacetime and those in PT

Minkowski space. Mathematically this is a great advantage. Thus (anti-)self-dual Yang-
-Mills fields are in one-to-one correspondence, via the Penrose twistor transform, with
certain complex two-dimensional holomorphic vector bundles over regions of CP;, which
we shall specify presently.

Since we are working in complexified Minkowski spacetime CM, we have to complexify
the group SU(2) as well. This gives SL(2, C). The gauge potential A, gives a connection
V, on an SL(2, C)-bundle P over CM. The covariant derivative operator is given by

D,=V,+4,
and the curvature, which is the field strength, is
Fap = 2V, Ay +[ A, Ab]. 2
In this notation, the Yang-Mills equations can be written as

VF,+[A4% Fu] = 0. 3)
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If we define *F,, the dual of F,, by
*Fap = % €apcaF ™,
where ¢4 is the totally skew symmetric tensor, then the Bianchi identities are given by
V*F o+ [A4% *F,,] = 0. 4
Hence if the field is anti-self-dual, i. e.

*Fab = _iFab’ (5)

the Yang-Mills equations are automatic consequences of the Bianchi identities. -

We note that this treatment covers both the real Minkowski and the Euclidean cases,
since both are real slices of CM. If we now specialize to the Euclidean case, i. e. to the
so-called instanton solutions, then we consider vector bundles defined over the whole
of CP4', and put some reality conditions on them to recover the group SU(2) and not just
SL(2, C). Such bundles have been studied by Horrocks [10], and the whole problem can
now be reduced to linear algebra [9]. In particular, a quick parameter count shows that
the dimension of the space of solutions is 8%-3, where k is the instanton number.

Mathematically the linear algebra construction referred to is satisfying indeed. It
has been generalized to the symplectic and orthogonal groups. The outstanding question
for mathematicians is, it seems, the topology of the so-called space of moduli, the 8k-3
dimensional manifold which represents the solution space of the self-dual Yang-Mills
field. It appears that its topology is not at all well understood. In fact, for k > 1, it is not
known whether the space is connected or not [11].

For physicists, however, the outstanding problem is to find general, i. €. non-self-
-dual, solutions of the Yang-Mills field. A step towards this direction has been made
by considering bundles over PT, considered as the diagonal in PT x PT, that can be
extended to bundles over a certain type of neighbourhood of the diagonal [12]. However,
beyond a purely formal construction nothing much is known yet.

I have greatly benefited from conversations and correspondence with Professors
R. Penrose, A. Trautman and Dr. R. S. Ward, to whom I wish to express my gratitude.
I would like also to thank Professor A. Bialas and the organizers of the XVIIIth Krakéw
School for their invitation and kind hospitality. Finally, I wish to thank Professor J. Prentki
for hospitality at the Theory Division at CERN, where most of this article was written.
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