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The Coulomb disintegration of relativistic !2C ions into three a-particles has been
considered. The basic assumption of the dissociation mechanism is that a preliminary exci-
tation of the carbon ion is followed by its decay into three a-particles. The total cross section
of such reactions have been calculated as well as the energy distribution of secondary
e-particles.

1. In recent years, peripheral collisions of relativistic heavy ions, the so-called frag-
mentation reactions attract more and more attention of physicists. One of main results
is the evidence for the Q-systematics [1], i. e. the exponential cross-section dependence
on the rearrangement energy of the initial and final states of fragmenting nuclei proposed
in Refs. [2, 3]. Another important result is the understanding of the essential role of the
Coulomb mechanism of nuclear disintegration with a preliminary excitation of high-lying
resonance states [4, 5]. The investigation of the Coulomb mechanism itself is a very
important problem. Really, since the electromagnetic potential of the ion-nuclear inter-
action can be assumed to be known, it appears possible to study the structure of high-lying
nuclear states, in addition to the analysis of a specific relativistic Coulomb excitation of
nuclei. Here it is necessary, of course, to choose among many processes of fragmentation
only those in which the Coulomb mechanism dominates. One of those processes is the
dissociation of carbon ions in collision with a heavy nucleus.

Other mechanisms, in which the nucleus is excited through the quasi-elastic scattering
of target nucleons on one or several ion nucleons, will result in a radical rearrangement
of the ion (e. g. in stripping of several nucleons) and in a decrease in the number of a-par-
ticles detected simultaneously.

In this paper we study the cross section of the dissociation of carbon ions into three
a-particles and the energy distribution of the a-particles. In so doing we restrict ourselves
to spherical target nuclei. (The restriction is not fundamental but essentially simplifies
our formulae).
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2. The main contribution to the transition amplitude from the state |i> to the state

if> at a relativistic initial energy and a small momentum transfer —t? = g2 —42 < m?

comes from the one-photon exchange. Because of the diffractive nature of the process,
the transition amplitude can be represented in the form
ip RLTLY Y

fiy = o dbe"*°0(b — byin)i4(b, g (D

where p is the initial momentum, 6(b—b,,,,) represents the strong nuclear absorption in

the region b < b, (bmin = R;+R,, R, R, are radii of the ion and target nucleus

R =12A4"3fm, and the profile function I';, in the one-photon exchange has the
form [6]

1 {\d_. e_i;‘-'; 2Z,miezFe(t)J§‘f(p+p'),,

r" = e '
4 2nip

L ; (2

Y

where m; is the ion mass, Z, and F,(t) are the charge and electric form factor of the target,
respectively, p* and p’* are the four-momenta of the target before and after collision,
J is the electromagnetic transition operator; the scalar product being defined as follows:
a bt = aobo—ab. Further consideration is carried out in the antilab system.

We transform the product J,(p+p’)* in the integrand (2) so that the electromagnetic
transition amplitudes of the photonuclear reaction are given in the explicit form. Because
of the gauge invariance J,g* = 0, the electromagnetic transition vector J in the spherical

R e, +ile, -
basis e, = 7 €3y = g/lg| can be represented as follows
‘\,
- o - Jodo - - Joqo ~
J=d@4dyer W00 =7 + --‘359 és. (3)
Then the scalar product reads
Lp+pY et I (p+P).  2opo V24, N, e
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where ¢ is the azimuthal angle of q.
The matrix elements J;,, J;;¢ in the antilab system are expressed in terms of the
electromagnetic transition amplitudes 7, [6].

Jo = 43 (=D VA@TR @), )
Ji= = Y (="' V2rQI+1) D9 = 9 [Tru+2Tia"). (6)
JM

Formulae (1), (2), (4)-(6) define completely the amplitude and consequently the cross
section of the ion Coulomb excitation in the state |f> with the excitation energy @

1 .
o (w) = Mz‘ J.dqilfif/‘miz- (D
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If |f> is one of the resonance states, the cross section of the resonance excitation in the
interval o, w+dw is

do = 0,(w) o(w)dw, ®

where p(w) is the density of states in this interval. The cross section of excitation of the
carbon nucleus with a subsequent decay into three «-particles has the form

do
dE,

= decl((’))g(w)w(w’ E,), ®

‘where W(w, E,) is the probability of decay of one a-particle with kinetic energy E,_ in the
interval E_, E,+dE, normalized by the condition

r f(w)

J. W(w, E)dE, = @) (10

where I'j(w) and I'(w) are the partial and total decay widths, respectively.

3. To calculate the amplitudes of the Coulomb excitation (1), it is necessary to define
explicitly the amplitudes T, of photonuclear reactions in (5) and (6). Due to the smallness
of the transferred momentum

gR; € 1 (i1
it is acceptable for this purpose to use the long-wave approximation {6]

T;OM = qJCJ» T.Iel = ql—lE.h T;nag = qJMJa (12)
—

J q
Tcoul = 1 Td. 12/
I J+1 o 7’ (12)

in our case this representation can only be applied to calculate the amplitudes of
dipole and quadrupole electric T resonances. The analysis of data on y*2C — 3« reactions
shows that the main contribution to the cross section comes from E1, M1, E2, transitions.
The contribution to the amplitude from the term 75! calculated by formula (12) results in
a divergent integral. Therefore, further calculations require another, more realistic at
large g, representation for T5°*". For our purpose it is sufficient to use the simplest liquid-
-drop formula

3Z, 5 ,
~————==J2(qRy), (13)

Tlcoul [
4n N 2VB,C,

where B, and C, are, respectively, the stiffness and mass parameters of the model.
The multipole expansion of J provides the following form for the profile function

Fiy = 42&'m(= 1) 7" S (T5+ T34 T5%%), (14)
J
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where the amplitudes I'; are completely determined by the above formulae. The excitation
cross section then has the form

o (@) = (4naZ)? Y. [ bdb{|I'§' >+ |51 + |82, (15)

Condition (11) allows one more approximation, i. e. the following representation of the
target form factor [7]:
F(8) = -
0 1—-a%t
where the parameter a is close in magnitude to the parameter of diffuseness of the nuclear
density, 4, which characterizes the decrease of the form factor with increasing F(¢)
~ exp (16%), [8] and equals a ~ 1 fm.
Then, by using (12)-(16) we arrive at the following form of the resonance excitation
Cross section

; (16)

2
|E1]

E1
o(w) = (411:0th)2[

w2

IEl(a’)+|M1|21M1(w)+|E2|21E2(0))] » a7

where the relativistic radial integrals /{(w) depend upon the minimal impact parameter
b, initial energy £ and level excitation energy and decrease with increasing w. The
factorized form of (17)

dn, dn, dn,

01 = Oyer +0,g2 o +0m1 T (18)

is more convenient for us. Here o, is the cross section of the nuclear excitation by y-quanta,
dnidw is the number of photons, for instance:

dn, 2aZ7‘I (@) 4ro IE1}?
= — W), O = .
do w0 o *El o (0—)+I?4

(19)

To calculate the «-spectrum, it is necessary to define, in (9), the probability W of the level
decay into a registered channel. This probability can be found within concrete nuclear
models. However, to establish the main qualitative regularities, one can use directly exper-
imental data on the reaction y'*C — 3a. Thus, the product ¢ W is the differential cross
section of the photonuclear reaction do./dE,. Finally, for the total and differential cross
section of the relativistic Coulomb excitation we obtain

I'i(w)(dn, dn, dn,
=\|d ! — s —_ 20
[ j (UO'Y F(w) { dw 251 -+ da) oAy -+ d(u Az oy ( )
do P do, {dn1 N dn, N dns 1)
- = | dw o o o3¢,
dE, dE, l do ' do * do °

where o, I' (/I and do_/dE, are the total and differential cross sections, respectively, for
photodisintegration of the carbon into three o-particles, «; is the weight of each multipo-
larity defined experimentally.
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4. Figure 1 shows the cross section for the Coulomb disintegration of carbon relativistic
ions into three «-particles calculated as a function of the target charge and initial energy
E,. o, and «; are taken from Ref. [9]. As is seen from the calculation, the cross section
increases rapidly with growing Z, (approximately as Z?) and E,. In Fig. 2 the differential
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Fig. 1. The Coulomb disintegration cross section of the 2C+Z, — 3a-+Z, reaction

cross section of a-particles is plotted: a) for the reaction y+!*C — 3a, and b) for 2°%Pb
+12C - 208Pb 4 3¢,

It is evident that the cross section of the relativistic Coulomb disintegration is somewhat
deformed as compared with the cross section in Fig. 2a. The reason is that the number of
effective photons in (21) decreases rapidly with growing o, approximately as 1/w In
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Fig. 2. The differential cross section of a) y+1!2C -» 3 and b) 2C+2°8Pb — 3 +2°%Pb reaction

x (1/wbgyy,), for E, > m;. However, in magnitude, the cross section in Fig. 2b exceeds con-
siderably the photodisintegration cross section because of the great number of effective
photons in a single nuclear collision.

In conclusion we note that the present analysis is very much like a prediction and
indicates the possibility of experimentally studying the relativistic Coulomb of nuclei.

The authors are grateful to V. Lukyanov for helpful discussions and interest in the
work.
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APPENDIX
We write the relativistic radial integrals in the explicit form

b:\m ) 4 _'%/
Iy () = {‘11 qu 10,2, )—25"1, ‘11_2—‘12‘(;‘“:' +4qi#(1,0)

A (1, 0) £.0,2,1) 4q3 A 1,
+ “+aw“c4—————+ i[1+a*w*] = +
[qz ] —dPoty qre’[ ] 20 " b (1—d’w 2)2(
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bmin [quw a2 1—02602 “Qim + q; .%",0.%"01 ;, (A.l)
2

b2 4cq,a®
(@) = 3 [qu’,(o, 2, )+c*2 (0,2, 1)~ b : -/ch(o)_] ,

Igx(0) = Igy(w) +153" (), (A.2)
bai 6q a;
LY}
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2 @*bn 2
6 ‘11.‘11 2
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8q3ca’G q
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Here we use the notations:
(0] Yo E, 2 2 2
q = e, q o, V =, ¢ =a +q 3
Lyt VR m; l
Ry
G= - 12(':), y = =Val?+1,
y a
"Z,s(m’ n, k) = x‘smfsn_f:k’ (A-S)
'/ﬂs(m’ n) = fszm—‘x/fm (A6)

‘/Vst(m) = stsmf:m+ b _ql'%('sm*%- lftm’ (A7)
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H om = KA (xs) are the Mac Donald functions with the arguments
XL = qibmine X1 = Gibnins X = CDpin: (A.8)
Considering the fact, that for x — 0 the functions " (x) will be

) (n—1)12""* 2
Ay o ————, u#0, Ay(x)~In|—)}-05772, (A.9)
X X
it is possible to show that the radial integrals go over into the well known Weizsacker-
-Williams formulae in the limit of large initial energies E, — o0 and small excitation
energies  — 0:

min,

2
() ~ ln( b” )—1.077.
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