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EQUATORIAL GEODESIC MOTION OF TEST PARTICLES
IN THE KERR AND FIRST TOMIMATSU-SATO METRICS
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Four crucial effects of General Relativity in the Kerr and first Tomimatsu-Sato metrics
are calculated by a new method. A possible time-delay test of General Relativity in the
gravitational field of a rotating mass is considered.

1. Introduction

From the standpoint of possible astrophysical applications it is of great interest to
investigate the geodesic motion and observable effects in those axi-symmetric space-times
which are regarded as representing the gravitational fields of spinning masses. Not long
ago the Kerr metric [1] has been the only known example of this type of solutions of the
Einstein equations. It is generally accepted that this metric describes space-time outside
a gravitational mass m with specific angular momentum g reiated to the total angular
momentum by L = ma, and to the quadrupole momentum by Q = ma?®. It is still not
clear what is the physical nature of the Kerr metric’s source (see, for example, [2, 3]). There-
fore, the a? and higher order terms are dubious to some extent (in the linear approximation
the Kerr metric coincides with the Lense-Thirring solution, being interpreted as a gravita-
tional field of a slowly rotating mass).

For this reason it is interesting to calculate the crucial effects of General Relativity
with greater accuracy by including higher powcrs of m and a. An experimental test of
these effects may help to decide whether the Kerr metic is suitable for describing the
gravitational fields of real celestial objects. Such an investigation is necessary because the
opinion is sometimes expressed, that the Kerr metric does not describe the gravitational
field outside the Sun [4]. In fact, if @ = L /m the quadrupole momentum corresponding
to the Kerr metric is equal to Q@ = 5-10-1° ré (ro being the Sun radius), that is much less
than the observed upper limit Q , < 10~ r [4]. (Of course, such a situation may be changed
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after more accurate measurements of L, and Q. through SOREL or “solar probe”
programs [S, 61.)

In view of the above mentioned deficiencies of the Kerr metric, it is desirable to
investigate the geodesic motion in recently discovered Tomimatsu-Sato (TS) family of
solutions [7, 8]. The remarkable feature of these space-times is that the quadrupole
momentum Qs for TS metrics increases with the growth of the dimensionless parameter
& (the parameter which classifies a member of the TS series) related to the quadrupole
momentum of the source. The Kerr metric is the simplest member of the TS series and
corresponds to 6 = 1. The geodesic motion in the cases § = 2, 3 has already been in-
vestigated by some authors but primarily by numerical methods. Besides, these results
have only a qualitative character (see, for example, [9, 10]).

This article deals with the geodesic motion of test particles and four crucial effects of
General Relativity in the equatorial planes of 6 = 1 and § = 2 TS space-times, which
correspond to the Kerr and the first Tomimatsu-Sato metrics respectively. In Section 2
we find the line elements for these metrics with an accuracy up to (m/r)*. In Sections 3-6
the expressions for perihelion precession, deflection of the light ray, time-delay and redshift
are obtained with an accuracy up to (m/r)3. In Sections 3-5 we also discuss a new method
for solving the trajectory differential equation and calculating the crucial effects. Section 7
deals with an analysis of the obtained results.

2. TS metrics for 6 =1 and 6 =2

The most general line element for a stationary axi-symmetric space-time may be written
in the Weyl-Papapetrou form

ds? = f(dx® —wdg)? —f " [e*(do® +dz*) +o%d¢?], 1

by use of canonical cylindrical coordinates ¢ and z. Here f, @ and y-are functions of p
and z only. The TS family of space-times is defined by the following expressions:
A 2mgq

A
f=5. 0="20-C &=

5, T R (2
A p25(x2 _ yZ)é

where p and ¢ are dimensionless parameters related to each other by p?+4¢* = 1, and the
polynomials 4, B and C are as follows:

d=1 A=p(x®~-1)—¢¥(1—»%), B=(px+1)?+4%73, = —(px+1), (a)
8=2: A=p(P=-1)+g*(1-y)*-2"(x*-1) (1-)*) [2(x*-1)?
+2(1 -y +3(x* = D) (1 -»?),
B = [p*(x*—1)—q*(1 —y*) +2px(x* —~ D +4¢%y*[px(x*~1)
+(px+1) 1-pHP,
C = —px(x*=1) 2(x*~ D+ (x2+3) 1 —pD] = p2(x2—1) [4x3(x2 1)
+(3x2+1) (1 =y)1+ g% (px+1) (1—p?)2. (3b)
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The prolate spheroidal coordinates (x, y) may be related to cylindrical coordinates (g, z)
and Schwarzschild-like coordinates (r, ) through the relations
02 = D*(xX*—1) (1—y?) = (r2—2mr+m?q?) sin? 6,
z=Dxy=(@r-m)cosf, D=mps?. 4
For futher investigations it is more convenient to use (r, 6). After substituting Eq. (4)
into (1) the line element transforms as follows
ds® = f(dx° —wdp)* —f ~'e*E(dr* + Ad0*)—f "' A sin” 0d¢?, )
where
E = 14+m?p?4-1sin? 0, 4 = r2-2mr+m?q>.

By calculating the Christoffel symbols I'*,, it is not difficult to conclude that the
equatorial geodesic lines are plane curves. In fact, the geodesic equation (the dot means
differentiation with respect to the affine parameter)

1%, X% =0
for a test particle with the initial values 0 = n/2 and 6 = 0 gives d™0/ds™ = 0 for an
arbitrary n > 2. So, there is no departure of the test particle from the equatorial plane,
which is present, for example, in the Newman-Unti-Tamburino space-time {11]. Therefore,
we shall restrict ourselves to geodesic motion in the equatorial plane y = 0.
In the equatorial plane polynomials 4, B and C read:

0=1: A=p*(x>2-1)—¢q?, B=(px+1)*, C= —(px+1), (6a)
0=2: A=p*(?-1D*+¢*-2p2¢*(x*—1) R(x2—1)?+3x*—-1]},

B = [p*(x*—1)—¢*+2px(x* - 1)I?,

C = —p3x(x?—1) [2(x* — D+ x2+ 3] —p2(x* — 1) [4x2(x*> 1)

+3x2+ 11+ ¢*(px+1). (6b)
By taking into account y = 0 we have from Eq. (4)
x2—1 =AD",
Substituting this to Eqs. (6a), (6b) we find the polynomials 4, B and C in the next form:
r? 2m r? r
=1 A=-—{l-—]), B=-—, C=-——, (7a)
m r m m

and with necessary accuracy:

pr® 8m  3m?*(8+4¢%) 2m*(16+9¢%) m*(128+285¢%+27g%)
§ = 2: A=~B—8— 1—'7"}' rz - r3 + 81‘4 >
p*r® 6m  3m*(4+¢>) m*(314+49¢%) 3m*(—2+33¢°+9q%)
B="olle— " — T + . ,
D r r 4r 8r

mp*r’ [ 6m N m?(49+11¢%) N m3(41 +179q2):l (7b)

C=-— 1— -
p* | v 4r? 16r°
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Therefore, for the functions f, ® and e*’ defined by Eq. (2) one finds

2m 2m*q 2m\ ! ) 2m m\ "2
d=1: f=1—--—; o= — (——) 3 eV?=(1=—){1- -} ,
r r r r r

(8a)
52 f= _;’-_'f+m3(qz—1)+m‘(qz—1)
B F ar® 44
2m? 2m (g2 —17
r r 4r
and
g m _2m’ 3mie-9)
e = — — — e . el

r? r gr*

The line elements for 8 = 1 and 6 = 2 TS space-times, which are called the TS1 and TS2
metrics hereafter, are given by the following expressions:

2 2 2 2 -1 2
dsisy = (1- _m) [dx°+ m 4 (1— _nz) d(p]
r r r
2 1____ 2 -2 2 -1
—[1+ 'f—(A ‘”](1-?) dr2#4(1—f-"-) o,
r ¥

2 3 2__’1 4 2_1 2 2 2 2 2_17 32
h&zp_ﬂ+m@ ), ™ q%y+ﬂﬁﬁ+ﬂ_ﬁﬁﬂwqw}
; :

r 453 4r4 ' 4r?
2 1 . 2 2 2 3 3 4, 2 _9 2 3,2 - 1
m1+y;y[hg_gﬁ¢ﬂgg o2, ma =
A r r 8r r 473

4r*

F 4r3 4r*

m“(qz-1):|‘l ay [1- 2m N m3(g*-1) . m“(qz—l)]“

Putting the quadrupole momentum for TS series as follows (see [7, 12])

Ors = m® §*—1
TSé — 35

p2+q2>, )
we obtain
Orsy = m*q%,  Qrs; = M’ +3 m*(1—q°) = Qp5 +Q,

where Q is an additional quadrupole momentum associated with the growth of the value
of 6. Then, one can easily find that

Q m’ 2mQq 3mQ
Jrs2 = frs1+ = 1+ 7) > UWrsz = Wrsy— -3 exl, = e + Pyl

These expressions are suitable to compare the line elements of investigated metrics.
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3. Calculation of time-like geodesics

Let us consider the geodesic motion of test particles in the equatorial planes of TS1
and TS2 gravitational fields. Putting the Lagrangian of test particle in TS metric (5) into

the following form, L = —4 g, %"%", we obtain a set of first integrals of motion
1 = f(x°~wg)’ —f1eMEF ~f 1497,  (4f T —foP)p+wfi® = b,
fx°—w¢) = k, (10)

where the constants & and A denote respectively the energy and z-component of the
particle’s angular momentum divided by the particle’s proper mass. As a consequence
of the elimination of time from Egs. (10) ard the introduction of a new variable u = 1/r
the trajectory differential equation for an arbitrary value of é is derived

du\> A [ A(K*—
duyo AN AN e (1)
do Ee*?| (h~wk)*f
In particular cases of TSl and TS2 metrics and in assumption that wk/h < 1 the last
equation transforms to

du \? k*—1 2m 2mqk(k*—1) 3m?g*(k*—1) 8migk®
—) ==+l |u—|1- 3 +
dg )i = W T h h h 2

_ 2m*q*k*(k* 1) 2 pom| 14 3m?q*k® N 8m3qk N 12m*q%k?
x wrem 02 8 0

2m3q(4+3gH)k(k*—1 6m?
_m q(4+397)k( ):l u3—2n12q2( " >u4, (12a)

3 =57

du\? K—1 2m 2mak(k*~1) 3m*q*(k*—~1)  8mqk®
T = 3 + T2 1— ¥ fu—{ 1~ 3 + 3
do Jrsa h h h h h

B 12m*q*k*(k* —1) ol 1+ m*(g*>—1) N m*(11¢% +1)k* B 8m3qk
h* 8h® 4h? n?

4 2,2 3 2v7.01.2 20472

12m g k _m q(17+11c13 Ye(k l)il B —om? [qz— m (43q2+5):] W (12b)
h 2h 8h

by taking into account Egs. (8a), (8b).

We shall utilize a simple method which has recently been developed in [13, 14] to
solve Eqs. (12a), (12b) approximately. It is based on Darwin’s idea [15], that is to decompose
equations of this type into two algebraic equations which give the relationship between
(k, k) and the source and trajectory parameters, and a differential equation in order to
find the relativistic anomaly. Some realizations of this idea were proposed in [16, 17]
Here we shall follow the alternative approach from (13, 14].
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Let us express the solution of Egs. (12a), (12b) as a quasiconical section

1 1
u=—=—(l4+ecos y), (13)

r p
where p and e are respectively the focal parameter and the eccentricity. The relativistic
anomaly v = y(g) is an unknown function of the classical anomaly ¢. By substituting
Eq. (13) into (12a) (or (12b)) and setting in the resultant equation cos ¢ = +1 and

cos p = — 1 we obtain two independent algebraic equations:
K*—1 2m 2mgk(k*— 1) (1 te 3Im’g*(k*—1)  8migk®
P gk(k"—1)1(1xe) [, 3 q(2 )+m;1
h h h p h h
2m*q* KA (k> - 1)) (1 +e)? 3m*q’k*  8mgk  12m*q*k?
Bk G |G AP U L o L
h )4 h h h

2mq(4+3¢*)k(k*— 1)} (1+e)® 2 2 6m*\ (1+e)*
- i S Uy A
which after the addition and subtraction may be rewritten as following system to determine

k, h through p, e and vice versa:

KB—-1 2 2magk(k*—1 3ImPg*(k*—1) 8m’gk®
0= 2+n221_mq( )—1—"”1(2 )+m;1
h ph* | h h h
12m*? kA (kA= 1)) 14¢*  2m(1+3€%) 3mPq*k*  8migk  12m*q’k?
- k4~ pl +_p3 1+ hZ - h3 + h4 -
2m3q(4+ 3512)k(k2 -1 2m?q? 6m?
- 3 ] - —— 1= -»}»17)(1+6e2+e4),
o="T, 2mak(k*—1) 1 . 3m?q¥(k*—1) 8miqk® 12m*q*k*(k*—1)
Sl I R IS e SR & i
m(3+e%) 3Im?q%k?*  8mgk  12m*g*k®  2m3q(4+3gHk(K*—1)
+ 1 n? T + P n3
4m*q® 6m? 2
- 1— —- J(1+€Y). 14
a ( k2)< &) a4

(For the sake of simplicity only the equations for TSI are written down.) The solution
of this system is found to be

m(l—e?) . m?(1—é%)?

k%sx = k%sz =1- 2 s
P P
m(3+e* 2m3?q(3+¢€%)
B, = ki, = mp [H— ( : ) _ ;’(, , (15)
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with reasonable accuracy. After substitution of Eqs (13), (15) into (12a) and (12b) the:

differential equations with respect to y follow:
3m?q*(k*-1) N 8m’qk®  12m*q*k*(k*—1)

dy’ 2 o1
d(p)m B h? K h*

3m*g*k*  8miqk  12m*q*k*  2miq(4+3¢Hk(k*—1)
-2m| 1+ e B x - B3 i
1

]3+ecos p
p

6+4e cos p+ e’ +e” cos?
orfecosy v (16a)

6m?

12m*q2k3 (k> —1 (g2 -1
m'q 47( )—Zm 1+m(q7~-—)
h 8h

dtp)z | 3m2qz(k2—1)+8m3qk3
dols, K B3

TS2
3+ecos y

m*(11g* +1)k? 8m3qk+12m4q2k2 m2q(17 +11gH)k(k*—1)
r? h* 2hn® P

45

m2(43g%+5)] 6 +4e cos y+e* +e? cos®
_m )] 4 Y 4N, (i6b)
p

2 2
+2m [q Teh? 5
Let us integrate these equations according to the scheme
2n+ do 2n
N 3N* 5N? )

dp= | dy(1—~ + o -
J v f’”( 2t s T e T
1] o

taking into account N < 1. Then, using Eq. (15) for the perihelion precession in TSI

and TS2 we find
Ag 3m 4m3? 9m 3m? 2
S I m~3—2—q ———) + =5 (9+a*+ —
27 Jsi p p P . 2p 2
3"13 4 2 3 2.2 15 2 17
+2p3(5+25q—qe+~2—e), (17a)
Adg 3m  4m*?q 9m 3m? (37435 €&
o === {1+ + 55| - Y
2n Jrs2 P p” p 2p 4 2
3m® (97+43q* )
It is interesting to see that
7426
ad _ (4% 3Q2 3( t ) (18):
27 Jre2 27 Jqg1  2mp p

as a consequence of the growth of parameter o.
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4. Deflection of null geodesics

The differential trajectory equation for the massless particles (null geodesics) may
be obtained from Eq. (11) or (12a), (12b) by standard procedures in the limit k, & — oo
and (k*—1)h~2 = b2 [18], where b is an impact parameter. Then equations for the time-like
geodesics lead to the following differential equations:

(d_“2 _p2dmia [ _3mid’ 8miq( 3mq\] ,
de /1s1 b’ b? b3 2b

m?q*  2m3q(3q*+4)
b b3

d 2 4 2 3 2.2 8 3 3
u _p2_ 7713qu_ - m2q + m3q {— mq 2
dp Jrss b b b 2b
m*(11g*+1)  m3q(17+114%)
2 -
+ m[1+ a7 253

3
+2m [I+ ]u3—2m2q2u4, (19a)

] ud—2m2q*u*. (19b)

Similarly as in Section 3 we put the solution of Eqs. (19a), (19b) into the form of (13).
After repeating the procedure described above we may represent the focal parameter
and the eccentricity for null geodesics as functions of the source’s characteristics and
impact parameter:

b? 2mg  m*8—q® 16mg
PTS:=—‘[1+_"‘ + },

m b b? b*
b 2mgq m*(11—-34%) m3q(q®+11)
= 1+ 2 , 20
o181 m[ + b b? + b3 (20a)
s - 2mq  m*(33-34%) N m3q(q®+31)
Prs2 = m b 4p? 2b® ’
b 2mqg  m*(23-7¢%) 3mPq(¢*+7)
€152 = _[1+ —_b— - 4b2 + 2b3 : (20b)

The differential equations for relativistic anomalies are given as

(@ 2 1 3m*q*  8m’q - ﬁn_q) Coml 14 3n12;q2 B 2m3q(3;12+4) 3+ecosy
dp 2b b b

181 ‘ b? b

p
2 2.2
+ mzq (6+4e cos p+e*+e* cos® y) = 14 My, (21a)
p
dyp\? 3m*q>  8m? 3m m*(11¢*> +1
(—”’ _qo e Sy dma ] e A
g ) s b b 2b 4b

mq(17+11g*)7] 3 +ec 2m*q®
_md( e 4 )] Fecosy + mzq (6+4e cos p+e® +e? cos® y) = 1+ Mys,.  (21b)
p 14
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In the developed approach the angle of null ray deflection from a straight line may
be composited of two parts. The first is the angle between the asymptotes of the hyperbola
in the coordinate system (r, y). Then from Eq. (13) we find

which for TS1 and TS2 gives

2m  4mPq m

(Oo)1s1 = TR + sl (%3 +59%), (22a)
2m  4m*q m® 9q
(Oo)rs2 = BT + B ( + 7) (22b)

in the case of equatorial null geodesics. The second part of the total deflection is determined
by intergrating Eqs. (21a) ans 21b) and corresponds to the rotation of coordinate system

(r. ) with respect to (r, ). Therefore, the last part of deflection may be found in accordance
with the following rule:

+7/2+40 w2
‘ J p M . 3M* sm?
J PEI AT T T s T )
-2 w1
where y; = —n/2—~e¢"! and y, = n/2+e! are the approximate expressions for the roots

of the equation 1+4ecosy = O which corresponds to infinite values for the radial
coordinate r. After approximate integration by taking into consideration Egs. (20a),
(20b) we obtain

2m  15nm?> m?
Alps, = - pTE < (% ~10ng—q%), (23a)
2m 15am?  m? 3g°—1
= — %% _10ng— . 23b
A0y, b ab2 b3 (3 nq 2 ) (23b)

The total angles of deflection in TS1 and TS2 are easily given as

4m m? /15% m3
Ors1 = (O +40)15; = —b_ b2 K 4 “4‘1> 7(1%8—1071‘14'4‘12), (24a)

4m

12 (157 m> ,
OTSZ = (60+A0)TSZ = T + —l‘)‘z— “4— —4q -+ ?‘( 5 ——10nq+3q ) (24b)

Thus, deflections in the Kerr and first TS metrics are connected by the following relation

40

Opsy = Opsy + s

(25)

as a consequence of the difference in d’s.
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5. Retardation of radar signal

The time-delay formula for equatorial null geodesics may be deduced by using the
expression ds? = 0 which gives the system of first integrals

do\? dr\? do\?
0 =f2 <1—wﬁ> —Eezy('ﬁ> _A<d—z)> N

[(Af_l—fwz)% +wf:| %0 = h, f<1~w %) =k

in place of Egs. (10). Using these equations we obtain

dr\*  Af[A-fHb-0)"]
(;z“xﬁ) T EPA+of((b—w)]?’ @9
d
Ez'f% = fHb—w) [A+f’o(b—-w)] . @n

Having in mind the really observed situation when the impact parameter b is unknown,
we must introduce the minimal distance r, between the ray and the source of the TS field.
It may be found from Eq. (26) that

b= awo+fs ' /4o (28)
by taking into account
(dr/dx®),-,, = 0.

Here f,, w, and 4, are functions of r, only. The substitution of Egs. (8a), (8b) into (28)
gives the approximate expressions

m mi(g®+3 2m? 2m m3(5+ 34>
buss =r0|:1+—+ @+ q<1+—)+——(—“f—):|,, (29a)

ro 2r ra To 2r3
m  m*qg*+3) 2m? 2m m3(1145¢°
brsz=ro‘:1+_+ (‘12 )— zq(1+—)+—(—3‘q)]' (29b)
ro 2rg ro To 4ry

Now the time of the signal’s propagation may be determined from Eq. (27). Substituting
(28) into (27) we obtain the relation

4 A\l dy

dx® = I:w+ — (wo~w+ \/_Q) ] LY , (30)
f Jo V1 +M

where the value M is represented by Eq. (21a) or (21b). The angular coordinates y; and v,

of the source of radiation at the point (r,, ¥, 6; = 7/2) and the observer at the point
{r2, w,, 0, = n/2) may be found as follows:

T 1{p , T 1/p
’/’1=—?+—(——1>, 1/’22’:“"‘<—_1)-
e \r; 2 e \r,
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In view of the above remark it is necessary to make use of the quantities e and p, expressed
in the form

r m 2m m 2m3(2 8m?
AP T I I P
m o To o ro re
2 2 2
r 2m  2m m 2m (2— m~q(7+ 8m
Prsi = — 1+‘““+—2 1-—) = (ZQ)“}‘ q(3q“)+*‘§‘, (31a)
m ro o o s ry re
P PN 2mgq LAY m*(17-94%) m*q(13+3¢%) m*(17~4?%)
52 ro To o 4r(2, 21'(3, 2r§ ’

rg . 2m  2mgq m m*(17—9¢% m*q(13+3¢>) m*(17—4%)
+ + 1 - Z + A3 _+ 3 >
4rg 2ry 2ry
(31b)

which follows from Eqgs. (20a), (20b) after the substitution of (29a), (29b). Substitutirig
Egs. (13), (31a), (31b) into (30) we obtain

r? m 2 5m sm?  m(19+4¢%)
d‘x‘TSL = dy) 1_‘ — + m q 1"‘ . + _—(—“‘—q—)‘l
l"o Iy "0 o

2 3
2rg 2rg

5 —

mr” cos 2m  4m? 23m? m?r?(3—2g%) cos? 1 3m
+ —————w {1 + q + ] + ( 7) w(l )

ré o ré 2r2 2r3 ro
5—64?) cos® 2mr 5m? 8 2m?r cos
r(5-6ahcos’y LIS RIPS Sl P 1 | Pl 4
2rd ro o 2rd 5 o
m _ m’r(3 —2¢7) cos’ mi(4+q° m 10m®
x[l—-—(2+q)-J __(_ﬁ‘l) N X q)(l___>_ i
To ro o Ty o
[2m2q m3(4+q%) 4m3(2+q2)] 4m’q }
- - — - 5 cos y— cos® p
To Fo Fo 0
r? m  2m?q 5m sm*  m3(39+74%)
A, = dp !l 1= B A 2y, n
e {[ o1 ( ) 28 = an
mr? cos 2m  AmPq  m*(47—q®] m*r(3—-2¢*) cos’ y 3m
|-t t 2 3 (1— N
rg ro ro 4rg 2ry o
m?ri(5—6q*) cos®* vy  2mr 5m? 8q 2m?r cos y
+ o 1- —(+g9)+ 14— )|+ —5——
2rg To [ 0( ! 20( 5)] o
m m3r(3—2¢%) cos? m2(4+q° m 10m>
x[l__(2+q)]+ ( Z) vy m( “(1———-)— v
o To Fo To Fo

0o 2

[Zmzq m*(4+q%) m3(17+7q2)] 4m3q }
— - cos p— cos®
ro rg 2rg

0
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which gives after integration the final expressions for the time of propagation

rof 1 i 4r 1;2 1 1
XPs1 = X953 = Fy+ry— T\ + = +2m| 1+In 2 —mr, - +-r—
i 2 i} 1 2

4m? 157
- 1+2¢- </ (32)

To

It must be noted that the relations

were used. The first two terms in Eq. (32) have a Newtonian nature and must be neglected
in the time-delay. Therefore, for general relativistic retardation of the null signal in the
TS fields we find

4 1 1 4m* 15
4x3%, = Ax3s; = 2m <1+1n r1r2> —mry (— + .._> - wnf‘<1+2q_ hgf) (33)

"o ry ra Ty

Thus, the time~delays in TS1 and TS2 metrics are identical up to the order (m/ry)3. Of
course, these expressions may be distinguished in higher order terms.

6. The gravitational redshift

As it has recently been shown in [20, 21], the higher order gravitational redshift may
be measured in the near future owing to the new experimental possibilities (high-stability
clocks). The first-order redshift is connected, to a great extent, with the equivalence
principle and is not produced by field equations. But the last statement is not true for the
higher order terms. Let us calculate this effect in the TS fields and reveal the influence of
the rotation and the oblateness of the source of gravitation.

According to [22] the Doppler effect in the gravitational field with metric g;, is
determined by the following relation

A+da dx$ dx* dx° dx* dx®\"Y?
e (dx )(g,m dx® dx° ) (g’w?i;a 717) ’ (34)
[x2# Jx1#
where x% denotes the coordinates of the emitter with proper wavelenght 4, x7 means
coordinates of the observer, and the derivative (dx3/dx}) describes the relation between
the moments of emitting and receiving a pulse of radiation. When the emitter and observer
move in the equatorial plane of the TS space-time (5) we obtain from Eq. (26)

xg=x1+f o VE dtof’(b-0)
fo \/A-f b- w)

(33

After differentiation we may find the derivative (dx3/dx}) and calculate the Doppler
effect as a consequence of Eq. (34). For the sake of simplicity we shall consider the static
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emitter and observer at infinity (that is, r, > r,). In this case the general formula (34) reduces
to the expression for the gravitational redshift
A+di
=

-1/2
In particular cases of TSI and TS2 fields with an accuracy up to (m/r)® it follows

dAN _m 3m? + 5m? 36
/1)151 T + 2rr 2,3 a)

, (36b)

A

(dft) m 3m* m’Q2l—g%
A J1s2

i r E? o 8r?

that is,
dz) (dnl) )
— ={— + —5. £Y))
( A J1s2 2 J1s1 2r (

7. The physical discussion

The expressions for the crucial effects of General Relativity in the TS1 and TS2 metrics
are calculated with an accuracy up to the terms of the order of m® and ¢2. The second-order
terms in Eqs. (17a), (17b) are more exact than the expressions for the perihelion precession
calculated in [23, 24]. The light deflections (24a), (24b) in the low orders are the same as
calculated in [19]. The results from [23, 25] for light deflections are apparently wrong.

On the basis of Egs. (18), (25), (33) and (37) it may be concluded that the perihelion
precession in TS fields is more sensitive to the change of the quadrupole properties of the
source. On the other hand, the time-delay effect is unchanged to the order of (m/ry)3.

The values of the additional terms in Eqs. (18), (25) and (37) depend on the parameter g,
which is related to the parameters of the gravitational source as ¢ = a/m. For ¢ < 1 all
terms stipulated by an additional quadrupole momentum @ are positive and the effects
for & = 2 are greater than for 6 = 1. In the case of the TS naked singularity with ¢ > 1
all these terms are negative, that is, the values of the effects in TS2 are smaller than in TSI,
It is interesting to note that this situation must be realized in Sun’s (a, = 1.26 m [24])
and Earth’s (ay = 763.88 nix [26]) gravitational fields. Therefore, after the experimental
investigation of the higher order perihelion precession, light deflection and redshift, it would
be possible to choose the appropriate metric for the description of these fields. Of course,
the TS-corrections to the known and measured effects for the Schwarzschild field (g = 0)
are extremely small and undetzctzd by means of contemporary expzarimental tools.

As it is already known [7, 8], in the limit ¢ — 1 all metrics of the TS series coincide
with the extreme Kerr space-time. It is also true for calculated effects. In fact, all the
expressions for crucial effects in the TS1 are the same as those for TS2 when ¢ = 1.

It should be noted that the first three calculated effects depend on the direction of
the gravitational mass rotation or, strictly speeking, on the direction of the test particle
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and light ray motion with respect to the direction of the source rotation. In this paper
the counter-clockwise rotation of mass m as seen from the positive direction of z-axis
was supposed. For the clockwise rotation in the terms of the odd orders of @ the sign
must be replaced by its opposite. All effects in this paper for corotating test particles and
null signals are given. As it follows from Egs. (17a), (17b), (24a) and (24b) the perihelion
precession and light deflection for corotating particles and rays are smaller than for
counterrotating (such peculiarity was already known).

In the case of the time-delay (33) the value of retardation for corotating radar signal
is smaller than for counter-rotating. This peculiarity ought to be discussed, in our opinion,
as an independent new test of General Relativity in the Sun’s system. The proposed gravita-
tional experiment would consist in the comparison of the time-delays for co- and counter-
rotating signals. The signal propagated from the Earth to two spacecrafts (or else from
the spacecrafts to the Earth) at the opposite sides of Sun’s rotation axis must be used
without the retransmission back to the Earth (or back to the spacecrafts) since for the
retransmitted signals the influence of the terms of odd orders of a on the total time-delay
are compensated.

In the limit of Lense-Thirring metric the time retardation of corotating signal with
respect to counterrotating must be equal to

Ax® A0 _ 16ma

co-rot — A *counter-rot

Fo

that approximately gives 2.1 - 10-1° seconds. It is interesting to point out, that a situation
of two spacecrafts forming the positive and negative angles with respect to the Sun—Earth
direction has already been realized in the “Mariner” relativistic experiment {27, 28]
but the time-delay was measured with accuracy to 1.2-10-%s [29]. Thus, the feasibility
of the proposed new experiment depends only on future improvements in the stabilities
of clocks and in radar astronomy techniques.

The authors would like to express their sincere thanks to Professor O. S. Ivanitskaya
for her encouragement and valuable discussions, and to the referee for useful comments.
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