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The metric of a cosmology implied by the non-symmetric unified field theory is studied

in various coordinate systems. 1t is shown that a form of it exists leading to a Hubble law
of expansion in a first approximation.

1. Introduction

It has been shown previously (Ref. [1]) that the nonsymmetric unified field theory
(UFT, Ref. [2]) suggests, if indeed it does not unambiguously prove, that the cosmological
world metric is

2 4d 2 2.2
ds* = (l— —T) di*— ol - %& (d6* +sin? Gdg?), ¢}
4]

where m and r, are constants. Metric (1) represents a possible cosmology. “‘Possible” means
that it does not lead to immediate conclusions in conflict with observed facts. In particular,
a Hubble law of expansion is obtained (approximately) in the range

2m <r <r,. )

This, as well as electromagnetic considerations (Ref. [2]) and study of geometry as r tends
to infinity published separately (Ref. [3]), imply that r, must be regarded as the distance
of the Hubble horizon from any observer. The isotropy of the universe described by our
metric will be demonstrated below. Although the UFT-universe appears to be radically
different from the cosmologies hitherto considered, its geometry bears a considerable
resemblance to a de Sitter space-time. Chief differences occur locally where the geometry
is Schwarzschild and at infinity. The logic of UFT cosmology is entirely new. The model
is independent of any cosmological principle in the recognised sense of the word. It is also
independent of the general relativistic field equations. In fact, because of its origin as
a consequence of the unified field theory, it is quite incorrect to attempt to describe matter
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in terms of the geometry contained in (1). This does not mean that geometrisation of physics
is abandoned. Laws of measurement (for example, metric (1) itself) are affected, and indeed,
determined by the physical fields present in the world but not through the equations of
General Relativity (GR). This leads to an important conclusion.

Unified field theory collapses into GR when skew-symmetry (the electromagnetic
field) is removed but its field equations then become the empty space equations of Einstein.
Adoption of the UFT cosmology therefore implies rejection of such things as the interior
Schwarzschild solution, the Einstein—-Maxwell theory and the like. It implies that a universal
existence and subsistence of an electromagnetic field is explicitly predicted. A pure
gravitational field can only exist locally. The fact that metric (1) gives a local Schwarzschild
field can be regarded therefore as demonstrating the logical consistency of the theory
although this may throw doubt on the previous, tentative interpretation of 2m as the
Schwarzschild radius of primeval fire-ball. Actually this is not so and the interpretation
may be retained as far as the universe is concerned if it is stressed that Einstein’s GR
equations (R, = 0 = R, ) are strictly locally valid only. And a general relativistic cosmology
is, on the basis of the present theory, meaningless. Equations (19) of Ref. [1] must therefore
be seen as a purely heuristic, and logically wrong, attempt to see what matter would be
like were GR equations with matter (G,, = —«T,,) correct, and nothing more.

An objection to the cosmological interpretation of (1) was raised by Professor Szekeres
(Ref. [4]) that rather than the present speculation, it should be regarded as a prediction
of a peculiar structure of the global electromagnetic field. The objection appears to be
a matter of taste rather than of science. I prefer to speculate about structure of the universe
than about that of electromagnetism. More to the point however, it must be pointed out
that the alternative interpretation (a cut-off of the electromagnetic field at some, difficult
to specify theoretically, point) is virtually untestable. On the other hand, a cosmological
interpretation offers a chance of testing not only particular cosmological predictions but
also the unified field theory from which it arises.

The main problem investigated below depends on the interpretation of the coordinate
r as the “radial distance” from a local observer. The problem is best discussed by expressing
(1) in different coordinate systems and drawing appropriate conclusions. We shall also
consider the problem of the red-shift from extragalactic sources.

2. The light tracks (null geodesics)

We can easily write down the equations of geodesics of the space-time whose metric
is given by (1). If dots denote derivatives with respect to the parameter s, we have

- 2m ;
—— b F
r(r—2m)

’

2r m 2 . m .
— P2 (r—2 92 : 29 2 e =2 2 2 tz =0,
(r(2)+r2 + r(r—2m)) 72— {(r—2m) (6 +sin” 0¢°) + v (r=2m)(ro+r°)
_20 N9 in0cos 067 =0, g+ _ 20 Nigiacotodg =0. (3)
+ r(ra+r?) ro—sin o r(ri+r?) -
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As in Schwarzschild case, if initially § = 0, 0 = %, coplanar orbits result and

prir’
2

———=h a constant. 4
ra+r ’ )

Also

dt kr
= )

ds  r—2m’

where k is another constant. Hence, from the identity 1 = g, %"%’, using (4), (5),

2 4 .2 2, .2
k*r rorf ro+re

T r—2m (r2+ 1) (r—2m) B rar?

(6

Using (6), writing as usual ¥ = 1/r, and denoting by dashes derivatives of u with respect
to ¢, we get

242 k*—1 +2mu +2mu 2 1 .
u U = -—a -+ — + — mu’— —
h2 h2 7(2) ré ()
whence
17 m m 2
u +u=———2—+—2+3mu. (8)
h rs

The term m/r? is the only difference between (8) and the usual orbit (from which the motion
of the perihelion of Mercury, for example, is calculated) of a Schwarzschild space. We get
Schwarzschild orbit exactly if », — co. However, with the cosmological interpretation of
the metric this is of less interest than the corresponding null geodesic obtained by letting

ds -0 so that A - oo. )]
Then
m
u'tu = — +3mu’. (10)
To

Hence the light tracks are no longer straight lines as in a de Sitter world.

; 7
If we suppress the angular coordinates entirely (putting ¢ = 0 as well as 0 = Tk
f = 0) then for a “radial” null geodesic
radr?
0 = di*— 0 11

2m\?’
(r3+r2)2 (1—- ——)
r
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from which, letting o = r—2m,

2 .~ 2m)2 r
mrg [ (r—2m) +—°tan"’—] +constant. (12)

t=+
("’ +73 m o

T ory+4m?

From (12) we can use Eddington’s method (Ref. [5]) to get a first estimate for the extraga-
lactic Doppler red shift of a pulse of light emitted from a position g at coordinate time ¢
which reaches an observer at time ¢’. Thus, if a similar source at the origin where the
observer is situated, emits light at the rate Az, then

4ar \/ F N mr} 2 2r—ry—4m+4m* \/——r— dr (13)
Aty Nr—2m ' ri+dm*|r—2m r*4ry r—2m dt’

with the second term corresponding to the required red shift. A more accurate calculation
in terms of a different coordinate system will be given in the last section of the work.

3. Isotropy
Let us now show that for r > 2m, the UFT metric (1) can be put in the isotropic form

ds* = f*(g)dt* —g*(o) (do® + °dQ?), (14)
where dQ? = d6?+sin? 0d¢?. Thus we require

2d . ]
gd() == — 77777__{01,):,_7‘ and gQ — / 'er -,
(r2+r2)\/1-_2_m Vro+
0 ;
or
d@ rodl' (15)
o "G o
Let
az+f
= < , B, v, 6 constant).
' yz+68 7 S )
Then
(x6—yP)dz
dr = ————5-,
(yz+9)
and
de ro(ad —yB)dz

o ;,/Eff,(yz +8)2 +(az+B)?] [oz+ 8] [(x—2my)z+ [~ 2m6j

B ~\ro dz
\/(22 +4m?) (z+1¢) ’
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if @ = 2my, r36+2mp = 0, B = 2mr,yy. A further substitution z = {—ro/3 reduces this to

do _ —/rod{
e V-G ri—am)i+E ro(ri+36m?)
or
0 = €Xp “‘22/3 \/r_o- S{)*I(C’ g2, g3)’ (16)
where g, = 223 (3 r2—4m?), g, = — ro(ri+36m?), and p is the Weierstrass® elliptic

function (Ref. [7]). Hence g and f can be determined easily as functions of . It follows
that the UFT universe is isotropic in the usual coordinate sense.

4. Kruskal-Szekeres form

We shall now determine the analogue of the Kruskal-Szekeres coordinates for the
UFT metric. As is well known (for example, Ref, [6]) if

t+r —t t -
u=21vVr=2m exp—»-expr—- , Uv=% [r=2m | ex i+ex r-t
2 p 4m P ’

dm 4m dm
then
r
rexp — 2
2 2 d
A —dv? = — o (1= ) arr— -2
16m r 2m
r
so that the Schwarzschild metric transforms into
d 2____d 2
16m? L 240 4 sin® 0dg?),
r
e RN
r exp 2m

with r defined in terms of u and » by the implicit relation

r
(r—2m) exp — = v —u>.

2m
The singularity of the Kruskal-Szekeres space it at the “origin” r = 0, but, of course r
is not the radial coordinate. We have seen (Ref. [1]) that putting r = r, tan z/ry, A = 2m/r,,
transforms (1) into

d 2
ds? = ( 1—4 cot i) df— — 2 _j2sin® Z (6% +sin? 0dg?). (17
To

ro z
1—Acot—
Yo
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Let us now suppose that X and g are functions of z such that

b & dz? a%dXx?
l—-Acot— = —, = s
r z
° & 1—4Acot— &
ro

A , 2
— cosec” —
i __d_g To o _ + 3 — 1
g dZ z 7
1—Acot— 1—Acot—
ro Yo
Hence
z 2 d
lng(l—lcotf—>=i—j z
o a ) z
1—4Acot—
L)

If we take the + sign on the right hand side of equation (20) and let

Airg
14427
then
1—(1+42) cos? —
o 2z
8= €xp o
zZ
144 cot — 0
ro
X2 = (1-—,1 cot i) 2(2),
To
and
X2dt*—a%dXx?
gst = =T AR 2 Gn2 2 (402 +sin? 0dg?).
g(z) ¥o

The u, v coordinates can be introduced by letting
t R t
v=aXcosh—, u=aXsinh—,
a a

and then

du® —dv? r2r?
ds* = R rz‘; - (d6? +sin® 0d¢?),
0

(18)

19)

(20)

€3]

(22)

(23)

(24)

(25)

(26)
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F=2my\ [r2—2%r} 2 r
2_42 - g2 0 e Ztan~t L ,
Y )\ ré Rl i ro @7

but g(r) vanishes when r = 2m so that the transformation does not shift the singular
surface as in the case of Schwarzschild geometry.
A more convenient coordinate is obtained by simply letting

2m
o= [1— 0 (28}

16m*dg? 4m? 2 .2 2
(=125 - A=y i (d0” +sin” 0dg*), 29

where

when

ds* = p?dt*—

and apparently p can go from 0 to co. But if we adhere to regarding r as a distance measure,
then for r < 2m, p becomes imaginary and ¢ and g reverse roles. If we then put r = R and
¢ = iT, the metric becomes

16m?dT? 22 am?

TR~
((1+T2)2+}»2)2 (1+T2)2+;f,2

(d0* +sin? 0dg?). (30)

d . .
This leads to a geodesic equation —d—T 2R = 0 or T?R = k, a constant, while for a nult
S

geodesic, suppressing angular dependence

dR dm R k

dT T T(U+TH 4T T TIT

Hence
amTT P 3
(1I+T32+22 7 G
so that
14+ T* = Atan E— (s—55), (32)
2m

and equation (31) gives an approximate measure of the red shift

At—4s  K[(1+TH*+2%]
As T

1. (33)

5. Lemaitre coordinates

Perhaps the most informative form of the metric (1) is one in which the coefficient
of dr? is reduced to unity. Let us write our metric as

2
ds® = ydi* — l”: dr? — wr*(d0? +sin? 0dg?), (34)
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where y = 1=2m|r, w = r2/(ri+r?). Let us introduce new coordinates (¢, r, 0, ), by
7= exp (ki+h(r)), 1= 1+g(r), (39)

where, as indicated, g and % are functions of r only and & is a constant. Then, dashes denoting

derivatives with respect to r, drjr = ds (say) = kdt+h'dr, dt = dt+g'dr, and

1 . - 1 _
dt = —(Wdt—g'ds), dr=—(ds—kdr), p=h—kg.
p p

We require
y2h'2—w2k? = yp?, and y*H'g —kw? =0, (36)

assuming, of course, that y $ 0 # p. Eliminating g’ between the two equations (36)
we get

2 k4 4
Y=y —Ik*w? <— -1) '+ ? =0,
Y Y
whence, y # 1(r < ), H'? = k*w?/y or k*w?/y*(1—7y). The first of these implies p = 0,
0 that

kw wi1-
h':i-/—, g ==- ?, 3N
yV1—y Y

and we can take the +wve sign without loss of generality. From equation (37)

mk F—J2rro+r 2rrg
i \/ ToTTo +2tan"“—/-—rf3],

/1\/2_,1,_nr+\/:27f(;+r0 ro—r

h—kg = (38)

and from the second of the equations (38)

P T_*_ . U 2 T
\/mro [(1_‘_}')] __u +\/211n(\/r \/m) +2(1 A)tan”l M]’
Fo—F

&= 2(1+4%) r4+/2rro+r, Jr+m

(39)

so that # may be written down from equation (38) at once. We must now calculate the
coefficient of dr? in the new coordinates. Using equations (35), (36), (37) and (38) we easily
find that

r—J2rrg+r 2rrg - 221
—\/*ZLJ exp 2 tan™! m = r'exp| — v t) , (40)
r+\/2rr0+ro Fo—T7 o

where y = 4 \/Z_A/mk, and that the required coefficient is

_ 1)

k*re?’
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so that
_ 2m
dS?' = dt2~ —5 =3
k2rr?

dr* —w?r(d0* +sin? 0dg¢?), (42)

(with r given by (40) in terms of r and f). An approximate explicit expression for r may be
obtained from equation (40) when r € ro,. In fact expanding the left hand side of (40)
in terms of r/ry, and retaining the (lowest order) term (r/ro)** only, we find that

_ 222\
r=(2)"ro (] —r' exp ( - —\/~~~ t>> , (43)
ro
whence
r~ exp kt 44
for the approximation to be valid. This condition on the (dimensionless) r again has the

appearance of a Hubble law at least in an approximate form. If we write r/r, instead of r,
so that

r = roexp (kt+h(r)), 45)
the “law” becomes
r = ro exp kt+&(1), (46)

where ¢2 < g, and the “Hubble constant” becomes
H ~ rok. (C))

In the de Sitter case we have, as is well known, w = 1,y = 1 —r?/r2, and the transformation
_ r ~ e
r= o expkt, t=1t—rolnv1=rri, kry=1
V1-r?/r}

maps the metric into

ds? = di* —e™ (dr? + FX(d0” +sin® 0dg?)),

but in our case we cannot obtain explicitly the inverse expressions for r and ¢ in terms of
r and .

We may note, however, that in terms of “Lemaitre coordinates we obtain the expansion
law when r(not r) < r, and not as before equation (1) when 2m < r as well. This is rather
curious. Absense of a lower limit for the approximation enables us to avoid having to
speculate on the meaning of the constant 2m (‘“‘Schwarzschild radius of the primeval atom”
or the like). Of course, from the point of view of completeness, we have to say what 2m
(or 1) is meant to be but any such speculation appears to be irrelevant as far as the inter-
pretation of the extragalactic red shift is concerned.

We shall conclude the present study with a note on integration of the radial geodesic
equation in the original, r—t coordinates.
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6. The r—t equation

If we suppress 0, ¢ dependence in the original form (1) of the metric, we obtain
immediately, as in Schwarzchild geometry

. k [ 2m g dry?\ .,
f=— 1= [1=" Y i I P23
1 2m r 2 42y (1_’ Zm) dt

d Vki—1 2u\ 72 2 2
ar_ (1+ —ﬁ) (1- ——“) <1+ %) (48)
t k r r re

where u = mj(k*—1), (in Ref. [1] we took k* = 4/3 but we shall only assume here that
k? > 1, if k? < 1 then r is confined to a meaningless, finite range and k2 = 1 is clearly
a special case; although we can clearly put k? = 1 by choosing units of time suitably,
were we then to require also, say, that.dr/dt = 1 when r = ry, we would get r, = 4m.
This or any such hypothetical relation would prevent us from assuming freely a convenient

interpretation of the constants r, and 2m.) Substitution { = v 14+2u/r now gives

ac  _
— = FA@ =) -2+, (“49)
where
k2__1 5/2 k2 4 2
A=(‘—‘—)~—, 22=?, v2=1+’£t2_.
mk k*—~1 ro
Hence
FA(—1ty) = Y+2_AZ nCZ—yC+v i néi/—1
0 4yv Cayl+v 24 (-4
i R "

+ _Ftan - 2 (50)
—)242 \/ ——
(v +2) . [v ,

where f, is a constant and yZ = 2(1+v).

7. Conclusions

We have considered in this work various forms of the cosmological metric (1) accord-
ing to the choice of the coordinate system. As in most cosmological models the main
problem, and indeed one which can only be settled by an hypothesis and eventual com-
parison with observational data, is to decide what is to represent the radial distance from
an observer. It is therefore a problem of measurement, which we have not attempted to
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solve here. Considerations derived from the unified field theory seem to imply that r in (1)
is the appropriate radial coordinate but then the metric recorded here acquire a somewhat
unfamiliar form. Of coursg, the coefficient of d0% +sin? 0 d¢? in both the equations (26) and
(40) can be made equal to R2. In the former case

R2
(1+,12)7 -1 5 R
g(r) = gR) = ————>— exp+ - tan™! ——x
4 JiZ—R?

A -
1+ —~rZ=R?
RY™

and

g(ro) = A2 exp ;r .

v

If Ris regarded as the radial distance from an observer then g(R) vanishes (the coordinate

system bzcomes singular) when R = ro/\/ 1+2. An outstanding problem also is a definite
identification of the constant 2m. This cannot be resolved until the problem of matter
(that is, definition of an energy-momentum tensor) in unified field theory is settled. Since
the latter geometrises both the gravitational and electromagnetic fields in the general
relativistic sense though not by the methods of GR, the problem is far from being simple.
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