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GEOMETRY AT INFINITY

By A. H. KrLot1z

Department of Applied Mathematics, University of Sydney*
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The geometry of the space-time at coordinate infinity is considered. It is shown that
time becomes absolute in the limit and that the spatial section of the manifold there is an
euclidean two sphere.

1. Introduction

In a recent work (Ref. [1]) it was shown that as a local observer’s radial distance r
tends to infinity (in his equally local view), the metric of the space-time becomes

ds® = dt* —r3(d6* +sin® 0d¢?), (1)

where r, is a constant. In other words, the spatial part of the space-time manifold of any
observer is, “at infinity””, an Euclidean sphere of constant and finite radius. It is the
observer’s limit or boundary of the universe. This seems to be an almost inevitable
consequence of a new interpretation of the non-symmeztric unified field theory (Ref. [2])
in which the metric of a “background”’, Riemannian space is determined by a physically
meaningful law. We say “almost inevitable” because the conclusion is based on
a restricted (spherically symmetric, static) solution of the field equations.

It is the purpose of this note to discuss in some detail the geometry of the manifold
with the metric given by (1). In particular, we shall determine the groups of motion allowed
by the latter. Let us denote the above manifold by 1. We can evidently choose units so that
we also have ro = 1, and we shall adopt these units from now on.

It is immediately obvious from (1) (with ro = 1) that I admits minimum varieties.
(Ref. [3]) given respectively by

¢ = B, a constant, and 6 = a, a constant. 2)

On these sections we have usual (special) Lorentz transformations relating ¢ and (the arc.

measure) 0 with ¢’ and 0’ in the first, and ¢ and ¢ with ¢ and ¢’, in the second case. The

“velocity of light” is 1 for the former, but cosec a for the latter type of transformation.
We shall show that in the general case, I requires an absolute time.
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2. Killing vectors of I

In the sequel we shall use a co-ordinate notation in which

', x%, x%) = (1,0, 9), €))

so that, for example ¢, , = 0&,/06 for the derivative of the time like component of
a vector ¢, with respect to 0. Our first step is to determine the Killing vectors “¢* and the
infinitesimal generators of the group of motions allowed by I. Greek indices go from 1
to 3 and will be used as tensor indices. Latin indices will be used to distinguish different
Killing vectors we may obtain. The equations we have to solve are

é}.;u‘*—éu;}. = 0. (4)
Now in the manifold I only two Christoffel brackets are not identically zero, namely
I3 = —sinfcos, I3, = cotb. (5)

In spite of its extreme simplicity / is not a space of constant curvature (though its space-like
part, of course, is). This may be immediately verified since the only significant, non-zero
component of the Riemannian-Christoffel tensor is R,35, = sin?8, and so, the condition
R, = K(g1,8,x—881:) 15 not satisfied when, for example A=v =1, u=x=2
(g, is the metric tensor of I: diag (1, —1, —sin?6).)

After this aside, the Killing equations (4) become

€10=0, &2+ =0, &5+85,=0&,=0
£r3+E&3,—2cos 08 =0, &5 5+sinfcos O, =0. (6)
From the first form of these equations it follows easily that
¢y = —fo+g,  Ly=ft+h, &= (f0-g)t+w(d,0), )
where f, g and % are at most functions of ¢ only; dashes denote differentiation with respect

to ¢ while w is, as indicated, a function of 6 and @. Substituting (7) into the last two of the
equations (6), we obtain:

3}
Sft+h' +ft+ —%— ~2cotO[(f'0—-gHt+w] =0,
C

(f"0—g" )+ % +sin 0 cos O(ft+h) = 0. (8)

Equations (8) can be satisfied only if f = 0 and g is constant = g, say, when they become
respectively,

ow ow
— —2cotOw+h' =0, — +hsinfcosf =0. 9
%0 cot Ow + 3% si 9)
The condition of integrability, 0%w/000¢ = 0?w[é¢00, implies immediately that
K +h =0, or

h = hg cos (@+e), (10)
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where #, and ¢ are constants. It is then easy to integrate equations (9) for w, the result being
w = —Hhg sin (¢ +¢) sin 0 cos 0+ k, sin? 0, (1)
where k, is yet another constant. Thus the general solution of the Killing equation is
& = (go, ho cos (@ +¢), —hg sin (@ +¢) sin 8 cos 0+ k, sin? 9), (12)
¢ is clearly a linear combination of the four basic, covariant, Killing vectors
¢, =1(1,0,0), 2, =(0,cos ¢, —sin ¢ sin 0 cos 0),
3, = (0, —sin @, —cos @ sin fcos §), *&, = (0,0, —sin? 0). (13)

Raising the index with the help of the metric tensor of I, the corresponding contravariant
Killing vectors are

lfl = (1: 0, 0), 261 = (0, —COS ¢, sin ¢ cot 0),
3¢% = (0, sin @, cos g cot §), “¢* = (0,0, 1). (14)

Using vectors (14) we can construct (Ref. [3]) the infinitesimal generators of the complete
group G, of motions in I:

X, = “C‘axA 13)
In fact
X, = i, X, = —-cos¢2 +sin¢cot0~-a~,
ot 00 0
X3=sin¢a—(z+cos¢cot0(%, X4=a—i;. (16)
Hence
(X1, X)) =0, 17
while
(X3 X3) = X,, (X3,Xy) =X, (X4 Xy)=X,. (18)

Thus the G, splits (as was perhaps intuitively obvious) into a translation G, in ¢ and the
euclidean rotation G; or O;. This proves also the last statement of the Introduction that
time in [ is absolute in the sense that only simple translations (choice of origin) in it are
permitted.

In the next section we shall record for the sake of completeness the finite equations
of transformation of 7 into itself.
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3. Finite automorphisms

To determine finite equations of the automorphisms of 7 it turns out to be simplest
to write (Ref. [3])
oxt

== (19)

axl\'
and to solve the equations of transformation of the affine connection

pau,v = r’:vpal_rgypﬂupyv’ (20)

where I'' 2, = ~—sin 8’ cos 0', I'' ;5 = cot §'. Indeed, it follows immediately from equations

(20) (as well as from the result of the last section) that ¢ = ¢’ +const. Consequently we
have
pa=p's=p =0 =0, 1)

and the equations to be solved reduce to

0% sin0cos 0y 2" = cot §'x+sin 6 cos
~—— == sin O cos By, —— = cot 8'x+sin 0 cos Oyz,
%0 Vo o y
Ox £ 0'x+sin 6 cos 0 ox in 0’ cos §'w+sin 0 cos 0z
= CO X -+ Sin U Cos z, 0 = —S1n costvw-tsmuv cos §z7,
%0’ Y5 58
oy 2cot 0 % _ ot 0z—cot B(wz+xy)
—— = —2cotlfwy, ——- = CoO —C z ,
P y o6 z—cot O(wz +xy
0z , oz . ,
27 = cot 8’z —cot B(wz +xy), 676’ = —sin 0’ cos 8’y —2 cot Oxz, (22)

where we have written

w=p*, x=p’, yv=p, and z=p’, (23)

Integrability conditions
o*w o*w
——— at
o0'dg’ 0’06

c.,

of equations (22) give now the following relations

Y ., w sin’ 0 x ) z
xy—wz = —sin?@ = — — —— = -cosec’ = — —, (24)
x z sin“g y w

whence

zsin@ = wsin @', x = —ysinfsin g,



311

or
zsinf = —wsinf’, x = +ysinfsinf’, 25)
and
y2sin? 04+w? = 1 = cosec? §'(x2+ 22 sin® 6), (26)

Let us consider the first pair of the equations (25). From the fifth of equations (22), dy/d6’
= —2cot Owy, we get

y = f'(¢') cosec? 0, @7

where f' = df/d¢’ is a function of ¢’ only. The second of the equations (25)
(x = —ysin @ sin 8’) now becomes

00  , sinf’ dcos

or = sin &',

675’— sin@ ’

whence
cos 0 = fsin 0" +g(0).

Substituting this result into the first of the equations (26) we find readily that

g=0, f=cos(¢'+¢), (28)
where ¢’y is a constant. Thus
cos 0 = cos (¢'+¢,) sin &' 29)

becomes the first of our finite automorphism equations as we might have expected.
From the first equation (25)
o 00 sin 0’ cos (@' +¢o') sin 8 cos ¢’
a¢' 90’ sing sin” 0 ’

and equation (27)
op _ sin(@'+oo)

00 sin? 0

Hence ¢ is given by the partial differential equation

tan (¢’ + @) _;% = sin §' cos 6’ %?7 , (30)
or
09 _ 9
FE = 6_11 > 31

where

E=Intan 0, n = Insin(¢'+@,). 32
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The general solution

¢ = @ +n) = ¢(Insin (¢’ +@,) tan ') = @(sin (¢' +@,') tan ).
But, if we fet z = £+, then

of _ _sin(@+do) __ sin(¢+d) 0 _df 1
o0’ sin® 1—cos® (¢’ + @) sin> 8" dz sin6 cos '’
d¢ et _ e
dz 142€D — 7 e
and
tan (@ # @) = —sin (@ +¢,) tan §'. (33)

Equations (29) and (33) give now the required general transformations for which
d0? +sin? 0dg? = dO'? +sin? 0'dg'2.
The solution to the second set of the equations (25) is obtained by letting
80— -0 and ¢- —¢. (349
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