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Assuming the octonionic quark fields the multiquark string-like states — recently
advocated in the dual unitarisation programme — are obtained. An explanation of the
n-jet structure in hadron production processes follows naturally from the underlying algebra
of octonions. The difference between the schemes of Low-Nussinov and Veneziano can be
understood as the difference between standard QCD which allows colour multiplets of
higher dimensionality and the octonion algebra where only triplet and antitriplet states are
possible.

Construction of dual amplitudes with baryons as external particles has been a dif-
ficulty since the beginning of dual models. Recently, within the topological expansion of
dual models there have been some proposals of how to define dual baryons {1-3]. In
particular the baryon resembling the Y-shaped string was proposed [2] and the new
baryonium states were predicted [2, 3]. The topological considerations that have led
to dual diagrams for baryon-baryon, baryon-antibaryon scattering predict also a specific
n-jet structure of final states in hadron production processes with n depending on the
type of the initial colliding particles [2].

These models should be contrasted with those based on standard QCD where the
production of particles occurs from a single jet (or bag) [4, 5]. There has been a long lasting
misunderstanding between dualists who talk about diagrams and people who believe
in QCD and to whom the n-jet dual structure is not understandable. This difficulty can
be easily seen by considering this part of meson-meson scattering, the shadow of which
gives rise to the Pomeron and which leads to the production of multihadron final states.
In the dual picture we have two qq jets, whereas from the arguments based on QCD it
seems more natural to have one expanding bag with two qg-pairs in octet representation
each one at one end of the bag. The dualists do not consider these interference effects when
two quarks act as a single entity in their multijet picture. On the physical grounds with
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experience gained from QED it would seem that such effects should be taken into account
and nobody really understands why they are neglected in the dual language. The dualists
argue that only some of the diagrams of QCD are allowed. The rule which governs this
selection is based on an additional assumption concerning the allowed intermediate states.
Let us recall that according to the Veneziano proposal the intermediate multiquark states
have the global colour structure of the operators:

eE™ (G A ... A (A ... (A ... DA ... AQ.(A ... Ag),,
epne™(qA ... A(AA ... DI(AA ... DA ... AQ), )

for M} and M} members of the baryonium family and similarly for other states. It is
the aim of this note to sketch briefly how it is possible to obtain such states from the octonion
algebra.

First, let us briefly review the concept of the octonionic Hilbert space, the octonion
algebra and its connection with SU(3),. Besides the usual “explanation” of quark confine-
ment as an infrared slavery effect there is a different approach in which unobservability
of free quarks emerges from the assumption that Hilbert space has octonionic components.
In the approach of Giirsey and Giinaydin [6, 7] the usual Hilbert space is enlarged to
the octonionic Hilbert space H, which can be divided into two spaces Hy, H; (longitudinal
and transverse). Only one, H is observable. The quarks belong to the *““fictitious Hilbert
space” H; and, consequently, they are not observable. The octonionic Hilbert space
can be understood as an enlargement of the usual complex Hilbert space. One introduces
seven different imaginary units ey, ..., e;: ¢ = —1 and defines an octonion algebra which
in terms of the so-called split octonions

% 1
k

U, = ”21‘(ek+iek+3), Uy = 5 (ex—iegy3),

Uy = 3 (eo+iey), u?; = %(eo—ie7), (k=1,2,3;¢ = 1) (2)
has the following multiplication rules

% 2
U, = g, We =0, uy = uy Ul = u, (2a-d)

uut = =, Uy =u;, ugg =0, ugu; =0, (2e-h)
(plus complex conjugate relations).

7

The Hilbert space is spanned by states vectors |a) = Y ae; with o; real octonion
i/0
components [7] which written in terms of the split octonion units are

3
) = ugiad = ¥ (o), (3)
k=0
where |a), are complex vectors.
The longitudinal Hilbert space is spanned by vectors with nonzero real components
in 1 and/or e, direction (u3). The remaining states belong to the transverse Hilbert space,
and are not observable. This unobservability of states follows from the propositional
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calculus developed by Birhkoff and von Neumann [8] and is due to the nonassociativity
of the algebra of octonions.

From the unobservable quark fields (we suppress flavour indices)

v =

i

M
Me
.Mw

d)i=

1 i

ziiu :k ] (4)

3
qiu;, ¥ = z 5:‘ =
i=1 i

1 1

fi

we can form states which lie in the longitudinal Hilbert space. The u; can be interpreted
as annihilation and uf as creation operators when acting on the vacuum ugy 0).

It is easy to check that the automorphisms of the octonion algebra (2) which leave
unit e, invariant form SU(3) group which is identified with usual SU(3) colour.

The operators that create mesons and baryons are

M(x) = YOOP(x) = —qi(x)q(x)uo,

B(x) = P(x) (P(x)P(X)) = — &394 (x)q(x). )

Let us notice that there is no octet component in the composed (point-like) mesonic
field as it would be in the usual SU(3):

3x3=1,3%x3=3,3x(3x3)=1. 6)

In such a way we get an algebraic suppression of colour excitations. This is crucial
in understanding the fundamental difference between the models based on standard
QCD and those based on the octonion algebra which, in turn, have suggestive similarly
to the dual string picture.

Let us now try to construct nonlocal gauge invariant operators following the ideas of
Veneziano and Rossi. We need to know the octonionic counterpart of the gluonic field.
The standard QCD equations for the quark fields ¢,(x) can be written in terms of the
octonionic quark fields ¥(x) = Y g(x)u; as follows [6]

i

(740, + m)¥(x)—igB,(x)y,¥(x) = 0, @)
where
B,(x) = —R,.BI(x)L,; BI"(x)=0.

Here L, , (R,,.) are the operators of multiplications by u,(«;) from the left (right). We
therefore expect the gauge phase to become also an operator

0(x) = =R, ™)L, 3)
It is straightforward to check that
Ou, = ¢"'u;, ub =0, Buf =0, ufd=0%7. ®
The bilinear form ¥YY¥ is invariant under gauge transformations

¥ - ¥'(x) = exp (~if(x)¥(x) = UO))¥(x) = [exp (= i8N qu()um  (10)
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Let us now consider the field Ug(xl, x,3)¥(x;), where U,‘,f is some path — C — de-
pendent string operator. We want the product US ¥ to transform like a ¥ field at the
point x; undet the gauge transformation 6. We must therefore have

UB(x )US(xy, x,) = Ug (x4, x)U0(x,)). (11a)
For
Ug(x,, x,) = Texp(—ig T Eu(x)dx") (11b)
we have
6B, = [By—B], = — —;—aué—i[b, B,]. (11¢)

This gives the standard transformation of the gauge fields B™ if we write Eq. (11¢) in the
matrix representation

1
OB = — " 0,0 —i[[0, B,]]*". (12)

Now, our mesonic gauge invariant operator has the structure
Y(x)U5(x1, X2)¥(x2). (13)

The gauge invariance of baryonic operators is due to the rule (2a) according to which
the product (¥¥) transform like ¥.

We may write down in the octonionic form the gauge invariant operators from ref. (2)
for

a) gluonium

u exp (—ig § B(x)dx"yu,, (14)
b) baryon
((Ug(x1, X2)¥(x2)) (Ug(x, x )P (x))Up(x, x3)¥(x3),
¢) baryonium M}
(U (%, %) P(x1)) (Up(x, x2)P(x2))) (Up(x, ¥) (F(x3)Us(x3, 1)) (P(x)Us(x4, YD),
d) baryonium M}
(e )Up(x15 X) ((umU5 (v, X)) (Up(y, x2) V2D U5y, X)),
e) baryonium M}
i UG (%15 X2) (U5 (e, %)) (@it ) UG (x4, X2)))-

The nontrivial content of this note is better seen when going to the more complicated
multiquark objects (c, d, ¢). We see that the prescription for constructing baryonium
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operators follows naturally from octonion algebra. There is no room for “mock’ baryonium
states (Ref. [9]) since two quarks can couple only in the colour — antitriplet state.
Our main statement is therefore that: there is a striking similarity between the dual
string picture and the models based on the underlying octonion algebra.
Now we turn to the discussion of the differences between the scheme of Veneziano
[1, 2] and Low-Nussinov [4, 5] especially concerning the jet structure of multiparticle
production processes in both schemes, and the existence or nonexistence of interference

3@ )3
3¢ 93

Fig. 1

effects. Recently the universality of quark jets in hadron production reactions was tested
carefully and found to be consistent with the data [10]. Many different types of processes
involving mesons, baryons, leptons as well as their antiparticles as initial particles were
studied [10]. For our purposes it is enough to discuss for instance meson-meson scattering.
The picture one has in mind here can be visualized as in Fig. 1. The quark-antiquark
pairs after colliding start moving in opposite directions. After some time we have two
quark-antiquark pairs. Each pair consists of a quark and an antiquark from different
mesons in such a way that it is in a colour singlet state (Fig. 1). The main objection one
could pose to such a picture is: why after the collision the initial quark-antiquark pair do
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not act a one entity when this pair is separated from the other pair by a large distance {5}.
It seems natural that octet separation should be at work here. On the other side, in the
octonionic picture there is no octet at all! Let us discuss it in some detail and imagine
soft gluon exchange between two mesons (Fig. 2). In the initial state we have two mesons,
each of which can be written as

Mo

M ~ ¢i5i‘

1

i

i

After the gluonic exchange has taken place the two initial quark-antiquark pairs have
the octonionic structure

~ ¢, P,

i
ik
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Such a pair cannot be treated as one physical object since u,u; = 0 for k # i.! Therefore
we must couple quarks in the manner indicated in Fig. 2. This is the only way in which one
can couple quarks and antiquarks to obtain physical nonzero amplitude (we neglect at the
moment the possible baryonium création process). In such a way we get highly excited super-
clusters which are of the type g4 A4...Aqu,. In the case of baryon-antibaryon scattering
when different baryonium states can be formed in the direct channel the situation is more
complicated (the “junction” appears) but the essence of our reasoning remains unchanged.

We see that two different realisations of the colour confinement dogma lead to different
predictions concerning the average multiplicities in hadron production reactions. It is obvious
that at present it is not possible to distinguish on the experimental level between 9/4 and 2
(octonions predict n,,/n,. = 2 as opposed to the QCD, where octet separation arguments
[Slgive n,,/n.. = 9/4). However, the differences of the two-particle correlations in processes
involving different initial particles could help in claryfing what is the underlying physics
of colour [11].

The picture favoured by dualists (strings, Y-shaped baryons, different number of
jets depending on the type of the initial colliding particles) has an intriguing similarity to
the models based on the octonion algebra. It is therefore of high importance to know
whether the production of hadron multiparticie states proceeds via formation of universal
3-3 jets [10, 11]. The confirmation of this pattern would favour the octonionic solution
to the quark puzzle and the exceptional groups.

I would like to thank S. Jadach, M. Jezabek and J. Kwiecinski for interesting dis-
cussions.
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! If k = i then after projecting the result of the action of the gluon operator onto the colour singlet
state Z‘Pi@i of such a pair the only contribution could come from the term ZB“(x) which is, however,
7 1
zero.



