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Rotational properties of nearly spherical nuclei are discussed in terms of the statistical
model including pairing interaction. The possibility of appearance of back-bending in the
moment of inertia within the shell model approach is shown. The yrast states are calculated
and discussed.

1. Introduction

The rotations of paired nuclei from the spherical region, with finite angular momenta
have been discussed in terms of the statistical model including the BCS Hamiltonian [1].
These rotations are not connected with definite rotational quantum states and are con-
sidered to be “classical” in nature in so far as the rotational energy is shared among all
states with angular momentum. The model parameters like the angular velocity and the
moment of inertia were calculated in Ref. [1] with the use of three different single-particle
level schemes. It has been stated that the equidistant single-particle levels with constant
spin projections lead to a strong back-bending in the plot of the moment of inertia versus
the square of the angular velocity, whereas more realistic spin projection distributions
like the rectangular distribution as well as the shell model orbital spin projections wash
out the effects of a sudden transition between the superfluid and the normal phase. This
conclusion drawn by Moretto in Ref. [1] does not seem to be generally valid. We have
shown that the back-bending of the moment of inertia may appear also within the shell
model level scheme. In addition the yrast levels which are of primary interest in determining
the angular momentum effects at higher excitation energies have been calculated and
discussed.
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2. Calculations and results

In the calculations we have used the statistical functions describing the number of
nucleons N and the angular momentum projection M, derived in Refs. [2, 3]:
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where E = E,+som, with E, = [(g,—24)2+42]* being the quasiparticle excitation
energy and s = =+ 1 defining the sign of the spin projection m, of the single-particle state ¢,.
The energy gap parameter 4, the chemical potential 4, the collective angular velocity w
and B, the inverse of the nuclear temperature 7, are related by the gap equation:
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In order to obtain the quantities describing the whole nucleus it was assumed that
the proton and neutron gas are in termal and rotational equilibrium, e.g. T, = T, and
®, = o,, and the total angular momentum / was substituted with the sum of the angular
momentum projection of protons M, and neutrons M,. The identification [ = M limits
the consideration to spherical nuclei only [3].

Equations (1), (2) and (3) were solved at fixed T, N, N,, I, providing 4,, 4,, 4,, 4,
and w. The fact that equation (3) is no longer. valid for w(T) surpassing the critical angular
velocity 0. (T), obtained from equations (1) and (3) with 4 = 0, was taken into account.

The moment of inertia # was calculated from the relation:

I = Jo. 4

It depends not only on the temperature of the excited nucleus but also on the angular
momentum, which influences the intrinsic state of the superfluid phase through the depen-
dence of the gap parameter 4 upon the angular velocity.

In the calculations performed use was made of the Nilsson single-particle levels at
zero deformation. The number of shells taken into consideration and the corresponding
pairing constants G, and G, were taken the same as in the paper of Decowski et al. [4].

The calculated dependence of the angular velocity on the angular momentum at
different temperatures is shown in figure 1. In the case of 75Se this dependence follows
the isotherms obtained by Moretto [1]. For *¢Fe and 1°®Pd the display of w as a function
of angular momentum shows that in the region close to w,, the angular velocity decreases
with angular momentum. This implies a back-bending in the display of the moment of
inertia as a function of square of the angular velocity as shown in figure 2. These results
seem to indicate that in the realistic shell model scheme the effective single-particle spins
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Fig. 1. Angular velocity as a function of angular momentum for 36Fe, 7Se and '°®Pd nuclei. Each curve
corresponds to different nuclear temperature given in MeV. The positions of the critical angular velocities,
for neutrons and protons, for various tempertures are also shown
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Fig. 2. Moment of inertia as a function of the square of angular velocity for *¢Fe, 7°Se and '°®Pd nuclei
at various temperatures. The curves are labelled with the temperature given in MeV
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distribution shows an intermediate shape bstween the two extreme models, the constant
spin and the rectangular distribution, considered in Ref. [1].

The dramatic changes of the superfluid phase produced by the shell model demonstrate
themselves in the dependence of the energy gap parameters for protons and neutrons on
the temperature and angular momentum. This dependence is shown in figure 3. It is
visible that these are mainly protons, which contribute to the formation of the total
angular momentum of the '°®Pd nucleus in the range 5—30 . Only at higher angular
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Fig. 3. Energy gap for neutrons and protons in the '°®Pd nucleus, as a function of temrerature, for various

total angular momenta. The angular momenta are given in #, the temperature is given as a fraction of its

critical value. The subscripts M and T labelling the energy gap parameter 4 denote the angular momentum
projection and the temperature, respectively

momenta the reduction of the neutron pairing correlation is noticeable. This is connected
with the proximity of the proton chemical potential 4, to the 1gy,, shell. The effects shown
should be present along the yrast line and higher isotherms of nearly spherical nuclei.

The behaviour of the moment of inertia along the yrast line is of particular interest
in application to the determination of the angular momentum dependence of the level
density. In order to define the yrast line equations (1)>—(3) have to be solved in the zero
temperature limit, where they undergo the following modifications
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Again equation (5) is not valid for w > w,, where w, corresponds to 4, = 0 or
E, = |g,—4ol. By solving equations (5) and (6) at given w values, 4, and 1, were extracted
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and the effective rotational energy was calculated from the expressions originally given
by Kammuri [2],

Z 43 )
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as a function of the total angular momentum / = M (for the whole nucleus both £ and M
are composed of the contributions due to protons and neutrons).
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Fig. 4. Yrast states calculated for different nuclei

Such calculations when omitting some spurious solutions provide the yrast states
shown in figure 4. For practical purposes the calculated yrast lines may be approximated
by the following expression

Eyrast = aI:‘rast + nyrast' (1 1)
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Here a is a simple function of the mass number 4 of the nucleus, a = 0.072 exp
[—0.02039 4], and b is constant b = 0.26. This formula has proved satisfactory in reproduc-
ing the results of microscopic calculations performed by Grover and Gilat [5-7], in the
nuclear mass range 40 < 4 < 210.

Discussions with Dr P. Decowski and Professor J. Turkiewicz are greatly appreciated
by the authors.
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