Vol. B10 (1979) ACTA PHYSICA POLONICA Ne §

ON THE MASS-GROUP ASSOCIATED TO HADRONIC MASS-
-SPECTRUM. THE ROLE AND THE PROBLEMS OF SL(2, R)
AND SL(2,2)*
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This paper is concerned with the study of the SL(2, R) group as a hadronic mass-group
(= group, one of whose generators is the mass squared operator M2). It is shown that, besides
dual models, also conformal invariant quantum field models admit SL(2, R) as a mass-group.
The mass-algebra is explicitly constructed and its representation on the field derived. The
separation between kinematical and dynamical degrees of freedom results from the con-
struction and the dynamical content of the theory is shown to be specified by the choice of
unitary, irreducible representations of the mass-group appearing in the spectrum. The problem
of interpreting the modular group invariance of dual mass-spectra is considered from the
point of view of breakdown of SL(2, R) mass-group and a no-go theorem is proved. Therefore
it is shown that the physical intepretation of the modular group in hadron physics must be
indirect, in the sense that it is the shadow, on the 2-point function, of another, so far, hidden
symmetry.

1. Introduction

The present investigation has been stimulated by the results of two recent rather
different approaches to the study of the hadronic mass-spectrum, which, nevertheless, in
my opinion, imply a common point of view. The first stimulus was the successful classifi-
cation of mass-spectra of dual string models carried on by Nahm through the use of
modular functions [1]. This approach shows that for all known dual models there is
a discrete, for infinite, non-abelian subgroup of the projective group, invariance under
which fully determines the mass-spectrum.

The second stimulus has been the algebraic construction devised by Stern and Leutwy-
ler to study composite models of hadrons giving rise to Poincaré invariant theories [2].

* This work has been supported by Deutsche Forschung Gemeinschaft, wken the author was at
the University of Bielefeld, Federal Republic of Germany.
** Address: Istituto di Fisica Teorica, Universitd di Torino, C. SO M. d’Azeglio 42, 10125 Torino,
Italy.

(383)



384

This latter work is based on a non-linear decomposition of Poincaré algebra decoupling an
external from an internal algebra D, which contains the mass-squared operator together
with three spin operators spanning the SU(2) algebra. If nothing else than Poincaré in-
variance is required, the mass-squared operator M2, which commutes with the spin operators
Ji1, J3, J3, stays alone in an abelian algebra and no information on the spectrum is obtain-
able algebraically. However it is tempting to assume that M? has a few partners and that
together they span a non-abelian algebra. If an infinity of masses is to be accomodated
in a unitary irreducible representation (UIR) the algebra must be non-compact. In this
case the algebra determines the properties of the spectrum. We call mass-algebra the Lie
algebra which M? belongs to and mass-group the group generated by it.

The hypothesis that the mass-group is non-compact and non-abelian matches the
situation of dual models (SU(1,1) ~ SL(2, R)) and, I am going to show, also of irreducible
conformal field models. From this point of view the results of paper [1] are both encouraging
and intriguing; in fact:

(i) the spectrum is associated to a group, yet

(ii) the spectrum determining group is non-Lie and does not coincide with the mass-
-group. However it is at least isomorphic to a subgroup of the mass-group itself. In fact
it is a discrete subgroup of SL(2, R).

This suggests that the classifying groups discovered by Nahm could be the outcome
of breaking an SL(2, R) symmetry group and the question is how this latter is implemented
on the states, related to the mass-group and finally broken. I have not yet found the answer
to all these questions, however I have the following two clusters of results and problems
to present.

First cluster (Mass-group). Both dual models and conformal invariant field models
admit SL(2, R) as mass-group. The two theories differ in the use they make of the group
generators: the first one associates the mass-squared operator with the compact
subgroup O(2) generator and therefore obtains a discrete spectrum. The second one
associates M2 with a non-compact subgroup and therefore generates a continuous spectrum.
The continuity of the spectrum for the conformal model is, on the other hand, a necessary
consequence of the fact that conformal symmetry is not the direct product of Poincaré
group with an internal group [14]. Therefore what distinguishes the two theories is the
connection between the mass-algebra and the space-time algebra which, while is clear
by construction for conformal models, is still obscure for dual models.

If the field (dual or conformal) belongs to the discrete series of UIR of SL(2, R) then
the complete Fock-space of the theory necessarily contains an infinite number of UIR
or the theory is free. In any case the two and three point invariant functions are calculated
and exhibited.

Second cluster (Modular subgroups). We have two possibilities of interpreting them.
Either they are subgrups of the full mass-group surviving its breakdown as a symmetry of
the system, or they act at a different level and are related' to the mass group in an indirect
way. I show that the second is the only acceptable interpretation because the first is ruled
out by a no-go theorem. The proof of the theorem also shows that modular invariance of
the two-point function is similar to the requirement of an infinity of periodic boundary
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conditions, which, however, the theorem forbids to implement on the states in a simple
way. The implementation of the modular conditions in Fock-space and the consequent phys-
ical interpretation of the modular function weight (critical dimension of dual models)
seems a rather difficult unsolved problem which needs a breakthrough in understanding.

The paper is organized as follows. In Section 2 I introduce the non-abelian mass-
-group and confront the situation of dual and conformal models. In Section 3 I connect
the UIR of the mass-group with the fields transformation laws. Two- and three-point
functions are derived in Section 4. The discussion of the modular two-point fuctions in the
context emerging from the previous sections is effected in Section 5. In the same section I
give the proof of the no-go theorem. Section 6 is devoted to conclusions.

2. Non-abelian mass-group in dual and conformal models

In Ref. [2] the concept of dynamical algebra arises from the following construction.
Let P,, M,, be the generators of Poincaré group satisfying

[P;n Pv] = 0’ [Mi.w Pv] = i(guvP)._‘g).qu)’
[lwuv, Mga] == i(gunga+ gvaMup_ gnguu—' g;vao)’ (21)

and let the light-plane components of Lorentz vectors and tensors be defined in the usual
way; for any v, and in space-time dimensions d

1 12
Uy = —=Vg+04_y), V- = —=(Ug—=04-1)s U, = (Ugy eisUps ey Ug_2). 2.2
+ \/2(0 i-1) \/2(0 i-1) L = i-2) 2.2)

We can rewrite the Lie algebra (2.1) in a new form if we introduce the notations

Mo, +M,_y,
S, =M, ort Ma-1r
V2
s = Mr.v B, = M—-,ra N3 = —M+,— = _MO,d—-ls Pu = (P-HP—’PJ_)‘ (23)

The generators P, P,,S,, J,;, N3 span a subalgebra K, (the kinematical algebra) of
dimension (4(d—1)+(d—2) (d—3))/2 which generates the stability subgroup of the
light-like plane

X4 = 0 (2.4)

and has the following Lie structure

[P+ers] = [P+=Sr] =[P+9P_L] =[P_L’N3] =,0’

L5} ] = () - 15)

[Pr’ Ss] = i6r3P+9 [N33 P+] = iP+’ [N.’n Sr] = isr' (25)
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The remaining three generators lying outside K (P_, B, ) satisfy the following commutation
relations among themselves and with the elements of K

[Bn P—] = [Br’ Bs] = 0’ [S,, P—] = [Br’ P+] = _iPn [Pr’ Bs] = iérsp—a
[N;,B] = —iB,, [S, B]= —iJ, +i5,N,. (2.6)

Now let D be a Lie algebra with the following properties
D =SopM?* [M?*S5]=0, 2.7

where M? is a one-dimensional abelian algebra generated by an operator M2 and S is an
SO(d—1) algebra generated by (d—1)(d—2)/2 spin operators J;. In the case d = 4, for
instance the Lie algebra D 1s

(M2%,0] =0, [JuJ;]=ieds (2.8)
If the algebra D commutes with the kinematical algebra
[D,K] =0 2.9

the authors of [2] prove the following:

Poincaré invariance reconstruction theorem: If H is the carrying space of a unitary (in
general reducible) representation of the stability subgroup generated by K and H is the
carrying space of a unitary (in general reducible) representation of the group generated
by D, then the space # = H ® H carries a unitary (in general reducible) representation
of the Poincaré¢ group. The three operators (P, B|) which are required, for instance in
the case d = 4, to close Poincaré algebra are represented in the following way in #

P_'=(Pi +M>)2P,, (2.10a)
B, = [P_S,—P,Ny—&,(PJy+ M2 J)]/P.. (2.10b)

Moreover the following identification is made
Jy = Q3 = J +(S,P,—SP)/P,, (2.11)

where @, is the Casimir operator of the Lie algebra K. From the point of view of this
theorem all the information about the spectrum of a relativistic system comes from the
study of the dynamical algebra D. On the other hand, at this stage, any spectrum can be
accomodated because the only requirement is that M? commutes with S and therefore
it is a perfectly arbitrary operator. However M2, in a hadronic theory, must be an infinite
rank operator with an infinite spectrum of eigenvalues. Moreover, as the hadrons interact
with each other, the theory must contain additional operators 7, (i belonging to an appro-
priate set of indices) which connect different mass-states. It follows that the 7; do not
commute with M?2,

[T, M?] # 0, (2.12)
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and are not Poincaré invariant operators. The first statement is self-evident; to prove
the second assume, for instance, that the 7; commute at least with the kinematical algebra

[T, K] =0, (2.13)

then it follows:
[T, P_] = [T, M*]2P,, (2.14a)
[T B]] = P{'[T, P_1S,~¢,P3 [T,V M2 J]. (2.14b)

So Poincaré invariance of T, is consistent only with {7}, M2] = 0, which contradicts (2.12).

We can conclude that, in a hadronic theory the mass-squared operator M? belongs
to a non-abelian algebraic structure containing operators 7; with non-trivial Poincaré
transformations. It is very much tempting to assume that the set {M?, T,} closes a Lie
algebra. In this case we would have a new dynamical algebra D’ such that

D =SoM?* (2.15)

where M?' is now a non-abelian algebra containing M?2. 1 call it the non-abelian mass-
-algebra. In this more general case it is not necessary that § commutes with the whole M
but we only require that it commutes with M?2. Therefore in general we have

[S,M*1< D, [S, M?]=0. (2.16)

However, as I am mainly interested in M?' 1 forget, for the moment, about § and { behave
as if all the hadrons were spinless (this means that I select the trivial identity representation
of SU(2)).

As I already pointed out, in order to accomodate an infinite spectrum M?' must
be non-compact. The smallest non-abelian, non-compact algebra is that of traceless
2-dimensional matrices, which is isomorph to the Lie algebra of the groups SU(, 1),
SL(2, R) and O(2, 1). It is rather remarkable that we have indeed two classes of models
with such a mass-group, namely dual models and conformal invariant field models.

For dual models (Veneziano model for instance) we write [3]

a0 d-2
2 1 i
Mg = - n a, a,—ogfo, (2.17)
o
n=1 i=1

where x is a universal scale-fixing parameter (Regge-slope), d is the number of space-time
dimensions and the transverse mode operators satisfy the following Weyl algebra

[a:v a{nf] = 5ijdrln1' (218)

In the theory one also introduces two other operators

4] d-2

T, = Y Vnn+1) ¥ di.d, (2.192)
n=1 i=1
o0 - d=-2 . .

T.= Y Vnin-1) ¥ ab a, (2.19b)
n=2 i=1
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which, together with the operator

T, = aM3+aq, (2.20)
as a consequence of (2.18) satisfy the algebra
[T, T-]= 2Ty, [To, T:]= %7y, (2.21)
and the relations
Ti=17., TI=T,. (2.22)

The set of equations (2.21) and (2.22) implies that the Hilbert space on which the T; act
carriers a unitary, in general reducible, representation of the SL(2, R) group and that T,
is the generator of the maximal compact subgroup O(2) [4, 5]. Hence the spectrum
of T, is discrete and equally spaced. The relation of the operators 7T; with the usual Virasoro
operators of dual models and space-time generators is the following:

T, = L§—pla, (2.23a)
T, =L, —a{"" p, Ju, (2.23b)
T_-=1L% —p, a¥ Ju, (2.23¢c)

where the symbol “tr”” means that we have taken only the contribution from the trans-
verse modes.

The Poincaré transformation properties of the operators 7. are intricate as it is
evident from Eqs (2.23) because of the simultaneous gauge invariance of the model. The
generators of the physical mass-group, as previously defined, are however the 7T; and
not the Poincaré invariant L, so that the merging of Poincaré group and gauge group seems
to be the non-trivial mechanism which defines correct transformation laws of T, consistent
with M ? = T, and hence with the discrete mass-spectrum. The subtleties which must be
involved become apparent if we confront Eqgs (2.21), (2.22) with their analogues emerging
in a conformal field model.

Let me enlarge the space-time algebra (2.1) by adding the generators of special con-
formal transformations K, and the dilatation generator D. The full conformal algebra is
given by the following commutation relations together with those reported in (2.1) (I follow
the notations of Ref. [6])

[K;u Kv] = [D’ Muv] =0, [D’ Ku] = iKu’ [D’ Pu] = _iPu’

I:KQ’ Muv] = i(ggqu_ gavKu)s [Kus Pv] = —21(guvD+Mpv) (2'24)

Now considering the light-plane components of the vector operator K, using (2.5), (2.6)
and (2.24), it is lenghty, but straightforward to prove that the following operators

T . = M?= PP (2.25a)
i v
To =5 D+Ns=5 P[P+ —, (2:25b)

T_ = 3 (K.[P,—S%[PY), (2.250)
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(where v = (d—2)/2) satisfy SL(2, R) algebra in the form
(7., 1= 2T [T0.T:]=+T,, (2.26)
and commute with the generators of the kinematical algebra
[7.K]=0. (.27

We see therefore that for a system having conformal symmetry the mass-operators M?
is embedded in an SL(2, R) algebra. However the difference with the dual case is also
apparent. Here we have in fact

Ty=-9, IL=9, Mi=7,, (2.28)

which is to be compared with (2.20), (2.21), (2.22).

To understand the implications of (2.28) it is covenient to consider the relation of
the operators (2.21) and (2.28) with the three independent generators of O(2, 1) ~ SU(1,1)
in its standard form. This latter is given by three pseudo-spin operators satisfying [7]

1X07 Xl] = ina [XOa X2] = _ins [Xb X2] = —iXO' (229)

X, generates the compact O(2) subgroup of rotations of the xy-plane, while X, and X,
generate the O(1, 1) subgroups of Lorentz transformations in the x and y direction respec-
tively. The lowest dimensional representation of the Lie-algebra (2.29) is given by the
following 2 x 2 matrices:

12 0
xo=—to= (7 ). (2300
X, =g, = O 12 (2.30b)
17227 212 0 ) '
X,=tg = O T2 (2.30¢)
2_2”1"(—1'/2 o) '

where (64, 05, 03) are the usual Pauli matrices. The representation (2.30) of the algebra
generates the defining representation of the group SU(, 1) [7] and we have the three
standard one-parameter subgroups

in/2 0
exp (inX,) = (g e_,»,,,z), (2:312)
. __ (cosh v/2 i sinh v/2
exp (ivX,) = (—i sinh v/2 cosh v/2 ) (2.31b)
, __{cosh /2 sinh /2
exp (i£X,) = (sinh £2 cosh ¢ /2) . (2.31¢)
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In a unitary representation of SU(1, 1) the spin-operators X are represented by hermitean
operators and it is an easy task to verify that defining

To = Xo, Ty = X, + iX,, (2.32)
we satisfy the equations (2.21), (2.22), while defining
To=—iX,, T,=Xo-X:, IT_=—-X;—X,, (2.33)

we satisfy the equations (2.26) and (2.28). So from the algebraic point of view we have:
In dual models

M2 = Xo—ap/a  (compact). (2.34)
In conformal models
M= X,—X, (non-compact). (2.35)

The mathematical structure of the two models is therefore similar although the physical
interpretation of the mathematical entities is different. In the next two sections I discuss
how the mass group is implemented on the fields and the physical states.

3. Unitary irreducible representations of the mass-group and the fields

The UIR of the group SL(2, R) are very well known [4, 5, 7]. They are classified
according to the value of the Casimir operator

Q=X +X5—-X3 (3.1

and the spectrum of the eigenvalues x4, of X,,. Parametrizing the eigenvalue ¢ of Q in the
following way:

q = (1-kj2k/2 (3.2)

all possible cases are listed below:
A) Continuous class, non exceptional interval, integral case C;)

14 g< w(h=14i0,6€R), xo = +0, +1, +2, ...
B) Continuous class, non exceptional interval, half~imégra1 case Cq'

/A<qg<x(k=14i0,6€R), xo, = +}, +(+1), ...
C) Continuous class exceptional interval E,

O<qg<l/d(keR 0O<k<?2), xg=+0, +1, +2, ...

D) Discrete class D,
k=1,2,3 ..., g=k2(0=ki2), xo = kJ2, kj2+1, k]2+2, ...
E) Discrete class, D,

k=1,2,3, .., qg=k21-k2), xg = —k/2, —kj2—1, ...
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For the discussion of mass-group only the discrete class and the continuous class in the
exceptional interval are relevant because (a) in dual models the operator X, is M2 and the
positivity of the mass-spectrum requires x, to be bounded from below. This selects the
class Dy of representations. (b) In conformal models & is the anomaly of the scale dimension
which must be real positive. So only E, and D are admitted. The statement (b) must
be proved. Actually I shall show that for a conformal field there are two different regimes.
If k£ < 2 the mass-states fall off in a UIR of type E, and a field of scale dimension

| = vk _d=2
= v+ <v = —2——> 3.3

can be coupled to itself in a non trivial three-point function. On the other hand if k > 2
then the mass-states necessarily fall off in a UIR of type D, and the expansion of
the two fields product contains only fields of higher scale dimension. The field is not
coupled to itself.

Let me then consider a quantum field ¢, (x) which transforms irreducibly under
conformal algebra. For simplicity let me take ¢,(x) scalar and hermitean. I can write [6]

[P $u(x)] = i0,84(x), (3.4a)
[M,,, $(x)] = i(x,0,—x,0,)p:(x), (3.4b)
[K,» d(x)] = iQ2x,x - 0—x70,+2Ix ) $i(x), (3.4¢)
[D, ¢(x)] = i{x - 6+ D@(x), (3.4d)
where the scale dimension / is given in (3.3). Hermiticity of ¢,(x) yields
B(x) = 8,700 + 8,7 (), (3.5)
where
. [ d'p
2109 = | e ©0 (Fip - 920, (3.62)
g O = g7, (3.6b)
and the negative frequency part ¢, )(x) annihilates the vacuum state
$(x) 10> = 0. (3.7

Making use of the light-plane variables (2.2) I rewrite

P (x) = j dpy'=(p, x) j dpt em(iiﬂ ;x-+‘> 2, ), (3-8)
v p. :
0

where p = (p+, p,) and the integration measure is

d
dp = P

d*p .
£ 2p+ KN
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The kinematical wave-functions ')( P, x) have the form

- A . x
w(i)(l,’ x) = (2n) "% exp I:? i (}px+pfL j)] (3.10)
+
and
pX =pix_—p, "x,. .11

The notation (3.8) inspires the definition of a new operator valued distribution

AP(u, p) = g dp exp (—ip) g™ (u, p), (3.12)

which 1 can use to rewrite the field in the amusing form

$H(x) = jdgw‘*’(g, x)A‘i’(;: , p)- (3.13)

Now let fe & where & is the test-function space for the field @,(x). The states

If> = | df(x)e{ (x) 10) (3.14)

form a pre-Hilbert space which, after completion, becomes the one-particle sector. The
scalar product is

{Solfide = _‘.ddx1 j ddxzfl(xl)Ak(xla x2)f2(x2), (3.15)

where

Ax1, x5) = 0| (x,)8 (%) 10D (3.16)
is the 2-point function.
If we introduce the transformation

©
2

d +
fp,w) = Idu exp (—iuu) J‘(Tnj% exp (il»?+i p;p K x+>f(x), 3.17)

+
0

the states (3.14) admit the representations
> =Jdp Jz duf(p, ) A" (u, p) 10> (3.18)
and the scalar product becomes
alfide=[dpfdg ij: du, ij: dus f(p, u) AP, 4, uy, ufa(g, uz),  (3.19)

where

AP, g, u1, 1) = <01A7X(g, u2) AL (p, uy) |0). (3:20)
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Poincaré invariance of the vacuum gives

0lgs (D)t (p) 10 = 3%(p—pe(p?), (3.21)

where ¢,(p?) is a distribution in squared mass only. From Eq. (3.21) it follows that

0147 (g, u) A (p, u1) 10> = 2p,6(p—g)Giluz —uy), (3:22)

where

Gu(u—uy) = 6‘ dy exp [ip(u, —us)]e(n)- (3.23)

Now let by(p) be an orthonormal basis in the space L2(R*** ") with the integration measure
(3.9). We can write

) = 3 bapI), (324

and the scalar product decomposes in the following way:

falfide = NZO (val): X%IZ))IU (3.25)
where
+ w0 + o
(val)’ Xg))k = J du, _j dungvl)(“l)Gk(ul—“z)xgvz)(uz)- (3.26)
This suggests to define
®o§P(w) = | dpby(p)AL"(u, p), (3.27a)
®oi (W) = Vo (u)t, (3.27v)
and write
A, p) = Y PO w)by(p). (3.28)
N=0

The field operators Ox(1) have the following vacuum expectation value
<0|(k)0§v_)(“2)(k)0§;)(“1) 0> = 5N,MGk(u1 —uy). (3.29)

Eq. (3.29) follows from (3.27) and (3.22).

The field is therefore decomposed into the sum of an infinite number of orthogonal
components which, however, as we shall presently see, behave in an isomorphic way
under the mass-group. To prove the last statement let me consider the generalized states

A{P(u, p)|0), and look for the representation of the mass-group generators (2.25) on them.
I can write

T A u, p) 10) = [T, AL (u, p)] 10>+ AL (u, p)T,10). (3.30)
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If the vacuum is conformal invariant, the second term in the r.h.s. of Eq. (3.30) is known
and the transformation laws (3.4) of the field induce the behaviour of A" )(u, p) under 7
In the appendix A I show that

d
T LA, p) 10y = i AV (u, p) 10D, (3.31a)
+ d k +)
Todi M, p) 10> = —{u- - + — | A (u, p) 10D, (3.31b)
> du 2 ~
+ d (+
T _A(u, p) 10) = i Zf +ku A (u, p) (0D, (3.31¢)

where k is the anomaly of the scale dimension introduced in Eq. (3.3). From Eq. (3.31)
I can conclude that for any N the generalized states ®O§")(1)|0) transform according to
an irreducible unitary representation of the group SL(2, R). In fact using the relations
(2.34) we obtain the representation of the standard generators X,, X,, X,

X0 W) 10> = [(1+u ) — +ku] ®oCH () 10, (3.32a)
d k

X, ®0(Pw) 10> = [u s 2] ®oLH W) 10, (3.32b)

X, 00w 0> = — —[(I—u )f ](k)0(+)(u) 10>, (3.32¢)

and by confrontation with the results collected in appendix B you see that those on the
r.h.s. of Eq. (3.32 a—c) are the infinitesimal generators of the representation D, for k in-
teger and larger than zero and of the representation E, for k real in the interval from
Zero to two.

Once this has been checked it opens the possibility of con structing the whole Fock
space of the theory by purely group theoretical tools. In fact the one particle states created
by the field

®oyw) = o))+ P00\ (u) (3.33)

due to the transformation laws (3.32), must fill up the carrying space of the UIR selected
by the value of k. The one-particle sector is therefore fully determined. The many-particle
states, on the other hand, are created from the vacuum by the polynomials of the field
and their limit points. They are therefore Kronecker products of irreducible states and can
be decomposed into irreducible components once the Clebsch-Gordan coefficients {(CGc)
are known. The N-point functions are all determined as appropriate combinations of
CGec. The three-point function in particular is just proportional to such a coefficient.
The details of this programme are developed in the next section.
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4. Two- and three-point functions and the Fock-space

I have already introduced the two-point function in Eq. (3.29). It is the metric of the
one particle sector. The index N is unaffected by the action of the mass-group and therefore I
shall drop it. In the following ¥O®)(1) will denote any N-th component of the field
A{T)(u) and x(u) any N-th component of a test-function (3.24). Following a method by
Riihl [9] I want to show that G,(u,, u,) is fully determined by group-theory. For this
purpose let Ry, R\, RY denote the differential operators representing X, X;, X, in
Eq. (3.32) and let me introduce the states

+ —
> = | dux@)®0(w) 0. 4.1)
Using Eq. (3.32) and integrating by parts I obtain
+ o I
X, x> = | dux(@RP0(w) |05 = *RCp> “42)

where the operators *R{ are the so called shadows of R{®J A very elementary algebra
shows that

*R® = R, k* =2—k (4.3)

So if the field transforms according to the representation k the test functions transform
according to the representation k*; the difference between the two regimes k < 2 and
k > 2 is evident at this level. In the first case the representations k and k* are unitarily
equivalent because they correspond to the same value of the Casimir and have the same
spectrum. In the second case if k is positive £* must be negative and, although the Casimir
has the same value, the representations cannot be unitarily equivalent; the representation k
has in fact the spectrum bounded from below, while k* has the spectrum bounded from
above (discrete series of type Dt and D). The second case is the less usual but more interest-
ing for the present considerations because the representation involved is the same as in
dual models.

As I have recalled in appendix B, the representation D; is realized in a Hilbert space
of holomorphic (or antiholomorphic) functions f(w) defined over the upper complex
plane. The scalar product is local and is given in Eq. (B11). However, as shown by Riihl [9],
the elements of this space, called #,, are completely specified by their boundary values
on the real axis, which are interpreted as distributions. The connection with field theory
is provided by an intertwining operator which maps the space of these boundary values
into the space of test functions y(x). It turns out that such an intertwining operator is just
the inverse of the two-point function.

I proceed as follows. 1 consider two arbitrary elements f;, f, € #,. Their scalar
product is

+w <)

k-1 J du jdvv"‘zfl(u + i0)f(u + iv). (4.4)
n
- 0

k—2

2
(fnfz)k =
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Introducing a Fourier-Laplace representation for f; and f,

fra@) = :fdu exp (in)gy, (1), .5)

where
w = u+iv, 4.6)

and inserting (4.5) into (4.4) one obtains a new representation of the scalar product

0

_ 'k
(fis o = f g1(Wg. (1) ;?(—_2‘ dp. 4.7

0

The boundary values of f; and f, can be defined from (4.5) by posing v = 0

Fra() = 6( dp exp (inu)g, (1) (4.8)

In terms of the boundary values we have a third reprentation of the scalar product

oo

(fis 2 = _j du, _f d“zfl(ul)sk(“l““2)}2(“2)» 4.9

o0

where

fe2d

k) o TRre—k @?

Sy —uy) = jdy exp [in(u, —u,)] S [ —u, 1" (4.10)
]
I can consider S (u, —u,) as the kernel of an integral operator
[S:1 () = IZ Suluns —u)f(u)du, @11
and denoting by (( , )) the usual scalar product of L*(R):
G = ] s (412)
I can write:
(i ol = (F1s Sif2)- (4.13)

The differential operators R% representing the generators X, are self-adjoint with respect
to the scalar product of #,. This means

(R;(xk)fl’fz)k = (f1 Rr(;k)fz)k- (4.14)
Inserting (4.13) into (4.14) and integrating by parts I obtain

((f 1» *R.(.k)skf 2)) = ((f 15 Ska.k)fz)), (4.15)
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which shows that S intertwines between the representation generated by R and that
generated by *R{", Because of this property of S; we can identify the boundary values f(x)
with the images of the test-functions under Sj;*

Flw) = S x(w). (4.16)

The scalar product of two test-functions is determined by the two-point function G(u; —u,)
and has been given in Eq. (3.26). On the other hand, as the mass-group is unitarily and
irreducibly reproduced in the one-particle sector, we must have

bt = Gyo e = (FruSid)) = (1> Geara))s (4.17)
which finally gives the two-point function
G(u,—u,) = S '(u,—u,) = i"(ul—u2+i8)"‘. (4.18)

Comparing (4.18) with (3.23) 1 also obtain the spectral function g,(u)

/Jk—l

HON

ol(p) = (4.19)
Eq. (4.19) is a standard result for conformal invariant field theories [10, 11]. Anyhow,
the performed exercise shows that Eqs (4.18), (4.19) are a consequence of the SL(2, R)
group structure and do not depend on the interpretation of the parameter p as mass
squared which is typical of conformal models where we have X, — X, = M (see Eqs (2.34),
(2.35)). The structural analogy between the two models (dual and conformal) becomes
fully evident when the field is expanded in eigenfunctions forming an orthonormal basis
of the representation space.

As explained in appendix B, the Hilbert space #, is separable and an orthonormal
discrete basis is provided by the eigenfunctions of the compact generator X, which are
given in Eq. (B23). If I call /(1) the boundary values of these eigenfunctions on the real
axis and &,(u) their representatives in the space of test-functions

() = [Sih,] (w) (4.20)

I can introduce the normal mode operators

+ w0
©ot = [ due,(w)P0t(w), (4.21a)
Va, = (P, (4.21b)
which, because of the orthonormaiity of the &,(u) satisfy
0| W ad |0y = 5, (4.22)

Rewriting (4.21a) in the form

ot = ((h?, siPoh), (4.23)
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it becomes evident that af is the coefficient of #, in the expansion of the field O(x) in R{?
eigenfunctions

B
®otw) = Y PathP(u). (4.24)
n=0

Hence, recalling that YO¥(u) is any N-th component of the field A*)(u, p) I can write

A (u, p) = NZ_O Z_:o ©o, by (p)h(p), (4.25)
where
<0|(k)aN,n(k)aL,m‘0> = 5N,M6n,m; (426)

the operators ®ay , are completely analogous to the normal mode operators of dual
models recalled in Eq. (2.18). Indeed they have an external index N which transforms
under the kinematical group as the transverse index of the a, transforms under SO(d— 2), and
an internal index n which, as the n of 4} transforms irreducibly under the mass-group
SL(2, R). The difference is that in dual models n is a quantum of mass, while in conformal
models it is a quantum of the following physical quantity

Xo=3(T+-T.), (4.27)
that is

Xo =4 (M*+1 K, P7' -1 51P77). (4.28)

A distinction between the two cases still comes from the fact that Eq. (4.26) holds true,
for the moment, only as vacuum expectation value, while Eq. (2.15) is an operator identity.
This depends on having used only invariance arguments which enforce only weak-topology
relations. The strong-topology version of Eq. (4.26) is a dynamical assumption equivalent
to considering Oy(u) as a generalized free field (c-numeric field commutator) [8]

[(k) (k)“N n] = ON,MOnm < [(k)Ogl_ )(”2), (k)0§n+)(“ 1)] = 5N,MGk(“1 —uy). (4.29)

However if we assume (4.29) then the structure of the conformal model matches completely
that of dual models, because in that case the Fock space of the quantum field ¢,(x) is
just the space spanned by the harmonic oscillators ®'a; . Indeed, recalling (3.18), an
arbitrary multiparticle state can be rewritten

+wo I

Ui f> = [f H dp'du'f(p’, u) A (u;, py) 10, (4.30)

—w i=

On the other hand a test function f; admits the decomposition

flp u) = Z Z C(N")bN(P)'f..(u), (4.31)

N=0 n=0

so Eq. (4.30) becomes

1

s oo > = H {Z CVm @t 10D, (4.32)
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which is a linear combination of states of the form
¢ k k
Ny n}y = Wak , Ood Gt 10D, (4.33)

Hence the states (4.33), analogous to dual states, span the entire Fock space of the general-
ized free conformal field ¢,(x). From the group-theoretical point of view the states
(4.33) are just Kronecker products of states of the UIR D, which can be decomposed
into irreducible components via CGc.

The CGc of the discrete series of UIR of SL(2, R) have been derived in Ref. [5] with
a spinorial method. The result is the following. Let |k, n)> be the eigenstates of the
compact generator X, in the the representation D,

Xolk,n) = (% +n) ik, n>. (4.34)

They are an orthonormal basis for the representation Hilbert space. If we introduce the
basis of Dy, ® Dy,

ki, 1y ko ) = |k, n1) @ |ka, n2), (4.35)
then the CGc are
Clkanslking; kony) = <ksnslk,, ny; kyynyd (4.36)
and have the following properties. They are different from zero only if
@) ky=ki+k,+2I
@) ny = ny+n,—1, 4.37)

where / is any positive integer. Moreover we have

Ckanys kg nptky+ky+20L ni+n,—0

Z( ( N3(ky+1, ny— 1+ AN (ky+1, ny—1) 433)
N(kl, n)N(ky, n,)N(ky +ky +21, 1 +ny—1)° '

where B, is a normalization factor depending only on [ and N(k, /) is the normalizer of
the irreducible states introduced in appendix B, Eq. (B22).

From Eq. (4.37) it follows that the reduction of the two-particle sector spanned by
aly . Fals 10> takes contributions only from the representations D,., where

2(—k) = k}, I = integral. (4.39)

Introducing new creation-annihilation operators for the basis states of these representa-
tions:

k)

[“2ty ot ] = Oy O (4.40)

we can write the operator product expansion

n+m

*ogt, Kol —-Z%(LlMN) Z Clk, n+m—1kins k;m)* e 0 (4.41)
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where: )
k! = k;+k;+21, (4.42)

and ¥(L|MN) is an appropriate CGe for the kinematical group generated by K. The
explicit structure of €(L|MN) is irrelevant for the concern of this paper and has not been
studied here. A new field can be associated to each representation k, by defining, in analogy
to Eq. (4.25)

ALV (u, p) = v;o ZO b(p)ESN (u)* o, ,, (4.43)
A7, p) = (AL @, pTF, (4.44)
and then, in analogy to (3.13)
X
W) = Jdgw(i)(p, x)A‘*’(z—*, g). (4.45)
+

Now let H be the full Fock-space of the quantum field-theory

H= & H, (4.46)
=0

where H, is the r particle sector

H,. = H1®H1® vee ®H1®H1, (4.47)

(r times (symmetrized))

and J#, the carrying spaces of the UIR of the series D, (k, = k) we have

H, = #,, (4.48)
and by the previous results
H, = ® #,, (4.49)
1=0

Considering the three-particle sector and using twice the Clebsch—Gordan decomposition
(4.41) we find that the representations contributing to its reduction have the form

k' = 2ko+21+ko+2p, (4.50)

where / and p are arbitrary positive integers. At this point we have two possibilities. If &,
is even k' is still of the form (4.39):

k' = 2ko+20 (4.51)

for any / and p. So all the spaces appearing in the reduction of the three, and hence r-par-
ticle sector are already contained in the reduction of the two particle sector. For &, even
we obtain:

H=1®0#, ® #,, (4.52)
=0
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If ko is odd k' is either of the form (4.51) or of the form:

k' = 2ko+20+1, (4.53)
in this case calling:
k, = 2ko+21+1 (4.53a)
we have for k, odd
H=1®#,, ® #, & #;, (4.54)
1=0 =0

The complete description of the theory is obtained once the vertex function connecting
the particles belonging to different representations is explicitly given. From (4.41)
it follows:

O NG, gl Eigt 10> = GLIMN) <kiin+m—Ilkn; k;m),  (4.55)
hence recalling (4.24)
<0105z} )™ 04 (u,) (05
= GLIMN) Y <K, ndm—Ilkn; k;mOR&)_ (u)hE(u)h%(wuy)  (4.56)

n+mzl

and inserting the explicit form of the CGec given in Eq. (4.38) I obtain the explicit form of
the vertex function

0/ 08 X (u3)*0F (uy)* 04 (us) 10>
= GLINMYC(D) (u3—u,) Uy ~uy) ™My —uy) (4.57)

5. SL(2, R) mass-group and modular functions

In the previous sections I have tried to enlighten the mathematical analogy between
the dual and conformal models due to the isomorphism of their mass-groups. The purpose
of the present section is to discuss the results of Ref. [1] in the context emerging from the
considerations of Sections 2, 3, 4.

Ref. [1] deals with dual models and the author concentrates on the following generating
function

G(w) = Y d, exp (i2nam}w), 6.1
where dy is the degeneracy of a mass-level my and w is a parameter taking values in the
upper complex plane. The function G(w) has the following physical interpretation

G(w) = Tr,, exp (2nawM3), (5.2)

where M2 is the dual mass-squared operator and the trace Tnyp) is performed over all
states with a given, fixed, kinematical momentum p (see Eq. (3.9)). The main result of
[1] is that G(w) is, for all known dual models a modular function with respect to a con-
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venient subgroup I' of the modular group ¥ = SL(2,Z) (I' depends on the specific
model). This means the following.

Let .# be the vector space of meromorphic functions on the upper complex plane
and let D;f be a UIR of SL(2, R) belonging to the discrete class discussed in appendix B.
The carrying space 3, of Dy is a subspace of .# and the representation of SL(2, R) can
be extended to all .# allowing the operators U*(g) defined in Eq. (B12a), to act on any
element fe.#. So we have

Ve [USV(@)f] (@) = (a+bg ™' 0)f(g™ o). (5.3)

Eq. (5.3) is now meaningful also if k is negative integral, because the new poles introduced
by the multiplier when k& < 0 spoil holomorphicity but not meromorphicity. Then let
I' C¥% CSL(2,Z) be a discrete subgroup of SL(2, R) which is contained in the modular
group % and is of finite index in it (|%/I'|< o). We say that an element f, e .# is a
I'-modular function of weight k if

Vyel : U"Wifo = fo (5.4)

In [1] G(w) is seen to be I'-modular for I' = the invariance group of the lattice of periods
of the string and

(5.5)
where D, is the so called critical number of space-time dimensions of the model [3].
Recalling the results of Section 2 and in particular Eqs (2.20) and (2.33) I can write

G(w) = [Tr(z) exp (2nwXy)] exp (— 2rayw), (5.6)

where X, is the generator of the compact one-parameter subgroup of SU(1,1) given
explicitly in Eq. (2.31a). The SU(1, 1) group of which X, is a generator acts canonically
as a transformation group on the Koba—Nielsen variable [3]

z = exp (2niw). (5.7

The transformations are those given in appendix B, Eq. (B3)

dz+f
Bz+a’

gz = (5:8)

The subgroup (2.31a) generated by X, is therefore the subgroup of translations of 2rw
2n0" = 2nw— p. (5.9)
For each state of momentum p, mass

m? = nja, (5.10)
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and additional quantum numbers {4}, I can define a pair of creation-annihilation opera-
tors

[A{l)w n)? {(;)}(F." )] = Oy w 5{1} (A')> (5.11)

which will be convenient combinations of the operators (2.18), and with them I define
a field

Q(i)(P, w) = z A,(, {).;(P)eimz’m (5.12)

IIA

which will transform in a covariant, reducible way under SU(1, 1). If we now let @ approach
the real axis (v — 0 in @ = u+iv) we can reinterpret the trace (5.6) as the two point func-
tion of the field (5.12). In fact

MM TGy ~ ) = <010 (P, u)Q M (p, uy) 0>
= <010 (p, 0) exp (2rifuy ~u;1X6)Q (P, 0) 10 = Trepy exp [2mi(uy —up)Xo]. (5.13)

From the point of view of Eq. (5.13) it is natural to ask what is the relation between the
SU(1, 1) transformations of the field Q(p, ) and the modular transformations (5.4)
leaving the trace (5.13) invariant. I’ is in fact a subgroup of SL(2, R) which is globally
isomorphic to SU(1, 1) under the Cayley transformation (B4). However it is essential to
note that the modular transformations are implemented on the variable

1
U=u —u, = Zr;(]g z,—lg z,), (5.14)

and are of the type
du+c

bu+a

VyeI CSL(2,R):yu = (5.15)
Therefore due to the logarithm difference in Eq. (5.14) there is no hope that the rational
transformations (5.8) on the Koba-Nielsen variable induce rational transformations
(5.15) on the variable (5.14).1 can conclude that the modular transformations on the two
point function are the descendants of another type of transformation on the fields which
is not an element of the SU(l, 1) group of dual models, that is of the mass-group. In
particular these new transformations could connect different UIR of SU(1, 1) contained
in the theory. A very natural and attractive interpretation would be the following: (I) “The
modular transformations canonically implemented on the 2-point function are the descend-
ants of modular transformations canonically implemented on the fields”. (By canonically
implemented 1 mean that it is of the type (5.3) with g = ye ).

I want first to discuss why (I) is natural and attractive and then o show that it is ruled
out by a no-go theorem. If (1) were true we could always consider I as a subgroup of
SL(2, R) and start with a theory characterized by an SL(2, R) mass-group canonically
implemented on the variable # conjugate to mass-squared. This theory is the conformal
model with integral anomalous dimension k, described in Sections 2, 3, 4, so that the
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physical interpretation of the weight k& of the modular function would be fixed from the
beginning. As we know, the mass-spectrum of such a model is necessarily continuous
because the mass-operator is associated to I+ = X, — X, (see Egs (2.28), (2.36)) which,
in the fundamental representation (2.30) of the Lie algebra, is given by the following

matrix
- _ (12 i/2
T, = <i/2 _1/2> R (5.16)

and which generates the non-compact one-parameter subgroup of SU(I.ZI) isomorph to
the translation subgroup N, of SL(2, R)

u
i

where C is the Cayley matrix (B1) realizing the SU(l, 1) ~ SL(2, R) isomorphism.

If by an additional physical principle we enforce the quantization of the spectrum
of . = M?, we can do it only with an overall breakdown of the SL(2, R) symmetry.
In fact, for instance, the dilatation subgroup &

d(s) e D < d(s) = (f) S_ 1> (5.18)

must be broken in the presence of mass quantization. It is conceivable that the surviving
symmetry could be the discrete subgroup I' C SL(2, R) plus the translation subgroup N,
which must always be a symmetry of the system if the squared mass is to be a conserved
quantum number. Therefore the attitude underlying interpretation (I) is that the modular
mass-spectrum should result from the breakdown of conformal symmetry, performed in
a proper way. In this interpretation the parameter (5.5) would be related to the anomalous
dimension and the modular transformations (5.4) would be canonically implemented in
the Hilbert space of states.

Unfortunately interpretation (1) is impossible because of the following theorem:

No-go theorem: “Let H, be a Hilbert space on which the translation group N, is
unitarily represented. If a subgroup I' C ¢ C SL(2, R) of finite index in % is also unitarily
represented in H,, then the whole group SL(2, R) is unitarily represented in it.”

Before proving the theorem I point out the consequences. The essence of the statement
is that either we have a modular invariant theory in which the mass is not a good quantum
number, which is physically unacceptable, or a fully SL(2, R) invariant theory with
continuous mass-spectrum, or a theory in which N, is a symmetry and the spectrum of
its generator, continuous or discrete, violates invariance of the theory under any discrete
subgroup of finite index in %. This latter statement does not forbid modularity of the
function (5.13) in the variable u, —u, but forbids to implement modular transformations
on the fields in the simple natural way. The modularity of (5.13) implies therefore that
there are more complicated and so far unknown representations of the modular group
on the fields which produce the simpler modularity of the two-point function. Although I
have no recipe to build them explicitly I believe that finding them would be a consistent
breakthrough in understanding.

exp (iug ,) = Ct (é ) C = ny(u)e Ny CSL (2, R), (5.17)
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Proof of the no-go theorem. The techniques which 1 shall use for the proof are based
on the very powerful concept of I'-cuspidal subgroups of SL(2, R) and have been developed
in Ref. [13], for instance. First I need some definitions and lemmas.

Definition 1: A one-parameter subgroup N C SL(2, R) is called unipotent if its generator
@ is nilpotent

62 = 0. (5.19).

Definition 2: Let I' be a disctete subgroup of SL(2, R). A I'-cuspidal subgroup of SL(2, R)
is a unipotent subgroup N such that

Iy=T AN # {e.

In other words I' contains at least a non identity element of N and hence all the cyclic
group generated by it.

Lemma I: The standard translation group (5.17) is unipotent and all the other possible
unipotent subgroups are the following conjugates of N

Nx=<i ?)NO( ! 0) 0<x< oo, (5.20a)

—x 1

— 0 1 0 -1

(For the proof see [13].)

Lemma 2: Let % be the modular group. A unipotent subgroup N, is #-cuspidal if and only
if x = g where ¢ is a rational number (proof see [13]).

Lemma 3: Let A" be the set of I'-cuspidal subgroups. They are all conjugate under some
element of I

and

YN,N e Iyel|N = yNy~! (5.21)

(proof see [13]).

Lemma 4: Let N, = yN,y~' be the conjugate of N, under the element y. Then we have
9 =7vq (5.22)

(proof by direct check).

Lemma 5: If T is of finite index in & then a unipotent sugroup N C SL(2, R) is I'-cuspidal

if and only if it is %-cuspidal (proof see [13]).
Lemma 6: The generator of the cuspidal subgroup N, is

0, = (1+4)Xo—29X,~(1—g»X,, (5.23)

where X, are the standard generators of SL(2, R) recalled in Eq. (2.29). (Proof: from

lemma 1
. (1 0 . {1 O\(1 u 1 0
exp (iu@,) = (0 1) +iu@, = (q 1) (O 1) (—q 1) (5.24)
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s0 we have
_(—ig i
o, = (—iq2 iq)' (5.25)
The decomposition of the matrix (5.25) in the basis provided by the Cayley transforms of
the generators (2.30) is just (5.23).)
Proof of the main theorem: Let H, be the Hilbert space which we are interested in and
let the scalar product of any two v, ¢ € H, be denoted by (v @). Let U(n,) be the unitary
operators representing the translation subgroup N, and U(y) be the unitary operators

representing the discrete subgroup I' of finite index in %. Because of unitarity we can
write

(U@) Uno) U=y, U Une) UG)8) = (Ulynoy ) w, Ulynoy™)@) = (v, ¢)  (5.26)

for any no € Ny and any ye I'. From Eq. (5.26) we deduce that the whole I'-conjugacy
class of the group N, is unitarily represented in H,. It follows that the generators 6,
of the cuspidal subgroups of this conjugacy class are hermitean operators in Hy. So is any
linear combination of them which therefore generates a unitary symmetry of the system.
On the other hand because of lemma 3 and 4 there are infinitely many elements in the
conjugacy class of N, (all N,, where g belongs to the orbit of zero under I'). So we have
infinitely many generators of the form (5.23), provided by lemma 6, which are symmetry
generators for the system. It follows by linear combination that any element of the Lie
algebra of SL(2, R) is self-adjoint and well-defined. The whole group is unitarily repre-
sented and this proves the no-go theorem.

From the technique used in the above proof we learn something very interesting.
Because of lemma 5 every %-cuspidal subgroup N, contains a subgroup I'y_of any I" of
finite index in 4. Therefore if G(w) is the 2-point function of type (5.1) which is modular
under a finite index I, it follows that G(w) is a periodic function with an infinite number
of periods (one for each cuspidal N,); these periods are not however independent, because
all the cuspidals belonging to the same conjugacy class determine the same period. Perio-
dicity of G(v)) in v means that in the Hilbert space for which G(u, —u,) is the metric, the
whole group 'y, is the identity. In fact let yo €'y, we have

+ o + @

(w1v0v2) = j du, du,p (u)G(uy —uy)wy(uy+ npg)

— o
+ >

,[ du,®(u)G(uy—uy—npe)y,(uz) = (vy, ¥2)s (5.27)

+ o
= | du,

S -
where p, is the period associated to I'y,. So the condition (5.27) streaming from modularity
is a sort of boundary condition on the allowed physical states. However this interpreta-
tion cannot be extended to the periods associated to the other subgroups. In the general
case in fact the transformation on u; or u, cannot be transferred to the difference u, —u,
because of the non-linearity. This is the essence of the no-go theorem. So we have learned
that modularity results from a sort of boundary conditions but so far we do not know
how to impose them on the state’s and the fields in a mean‘ngful way.
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6. Conclusions

In this paper it has been emphasized the possibility of approaching the hadronic mass-
-spectrum from a mass-group point of view. The case of SL(2, R) has been studied in
detail because it encludes two relevant cases (dual and conformal models). The very
attractive possibility of considering theories with dual type of mass-spectrum as broken
versions of conformal theories is however excluded and this, unfortunately, excludes also
the possibility of interpreting the weight of the modular functions introduced in Ref. [1]
as anomalous dimension of the field.

The mass-group approach shows that it is very critical to understand the Poincaré
transformation properties of the other members of the mass-algebra because it is on this
properties that the possibility of having a discrete mass-spectrum relies. I feel that the
solution of the problem of how the modular transformations are implemented on the
fields requires first an understanding of the previous problem.

The author is particularly grateful to Professor H. Satz for the hospitality at the
Department of Physics, University of Bielefeld where the major part of this work was
performed and to the Deutsche Forschung Gemeinschaft for financial support. Essential
and enlightening discussions with Dr. E. Etim during the whole development of the work
are also acknowledged.

APPENDIX A

The purpose of the present appendix is to show that Eqs (3.31) hold true. The ingre-
dients of the proof are Eqgs (3.30), (3.4), (3.12), (2.25) and the assumption of conformal
invariance of the vacuum

M, 10> = P,[0> = K, |0> = Di0) = 0. (Al)

In order to verify Eq. (3.30) it is convenient to start by checking the following identities,
which are a consequence of the definition (3.12) of A‘*)(u, p) and of the conformal trans-
formation laws (3.4)

; )
[S_L’ A(+)(ua p)] = _tp+ 5‘”« A(+)(“9 P), (Az)
£ P, ks
g 0
[D+N3s A(+)(M, P)] = i(2x+ —i —P, +l> A(+)(ua P)5 (A3)
0x . op,
1, 8 0
[K+, A, p)] = i(in o o) S s +2(5—V)x+) AT u, p). (A4)
= ax ., op, 0p, ~

Using also the invariance of the vacuum (A1) one obtains

} o 0
S2P724%(u, p) [0 = — Ao A (u, p) [0, (AS)
EN N
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=1 4(+) ; g (+)
S, PP A" (u,p)|0) = —il’ig;A (u, p) 10>, (A6)
L

+ . d +)
P,P*A ) (u, p) 10> = l—d—uA( (u, p) 10). (AT)

(A7) is already the first of Eqgs (3.31). The other ones are obtained inserting the results
{A2— A6) into (3.30) and using the conformal invariance of the vacuum. Note in particular
the role of the c-number part of F 4 : v/2. It contributes a term

v, _
5 AW, p) (0, (A8)

which cancels with the analogous term due to canonical part of the scale dimension /.

APPENDIX B

The UIR of the group SU(1, 1) SL(2, R) have been constructed long time ago in [4]
and are very well-known. In this appendix I have collected all the formulae which I need
in the main text and also the derivation of the form of representation basis functions in
mass-space which, although not used in this paper, could be useful elsewhere.

The isomorphism between SU(1, 1) and SL(2, R) is realized by the unitary Cayley

matrix
1 /1 i

An element of SU(, 1) is a complex 2x 2 matrix of the form

g= (; ﬁ) 2= 1% = 1, (B2)

and can be implemented as a projective transformation in the complex plane

az+p
Bz+a

8z (B3)

Under such a group of transformations the unit circle z|? < 1 is left invariant. If g € SU(1, 1)
and we define

= _ ot _ [ @ b
g = cgC (C d), (B4)

then g is an element of SL(2, R) that is a real 2 x 2 matrix of determinant one. The Cayley
matrix transforms the unit-circle into the upper complex plane

z4+i
Cz=—-i— =0 Imow>0Iifiz* <1, (BS)
Z—1
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and the group SL(2, R) becomes the group of projective transformations of this half
plane
dw+c

go = bo+a (B6)

The UIR of SU(1, 1) belonging to the discrete classes D; and D, are realized on a Hilbert
space J, of functions holomorphic inside the unit-circle and of finite norm with respect
to the following scalar product

k-1
(Fys Fo)e = — J (1-12*)* 7 *F y(2)F o (2)d’z. (B7)

[zj<1

The representation of the group elements is given by

(UL (9)F] (2) = (a+ g™ '2)"F(g™'2) (B8)
for the representation D, , and

(UL (@F](2) = (@+Bg* '2)'F(g* " '2) (B9)

for the representation D, . These representations are unitary with respect to the scalar
product (B7). If we define the Cayley transformation

flw) = (0+1)~"F(2), (B10)

where the relation between z and o is given by (B5), we map the space ), into the space #,
of analytic functions in the upper complex plane. The scalar product (B7) is transformed
into

+ w0 o

k=2,p N o
Sk = g-%j j dRew j d Im o(Im 0)*~*f;(0)f2(w), (B11)
A

0

and the representation of the group elements becomes

LU (@f ) (w) = (a+bg ')(g ™ w), {B12a)
[UO@] (@) = [@+cg ™ o)™ ), (B12b)
where
. aw+b
w = cw+d' . (B13)

Let X,, X, X, be the generators of the standard one-parameter subgroups introduced
in the main text in Eqs (2.26), (2.27), (2.28). Their representation in the spaces 5, and #,
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and for the classes D,/ and D, can be easily obtained by differentiation of Eqs (B8), (B9)

and (B12a), (B12b). The result is

Hy:

D; {

Dy

X F(z) = — (z:

d k F
& 5) ()

X ,F(z) = —%[(1 +zz)d—dz +kz]F(z) (B14)| X F(z) = %[(11}2) = +kz—] F(z)  (B16)

X,F(z) = — —Zi—[(l —z%) ;; —kz] F(2)

' d
X,F(z) = — %[(1-%) — —-kz] F(z)

Hy:

D} i

Dy

; d
X, f(w) = -2’- [(1-&-0)2) — +kw] f(w)

X, f(w) = —i(w—-‘i " g-)f(w) B15)| X, flw) = i(

dw

i d
Xaf@) = - -;-((1—«»2);1—(5 —ko)f(@) | Xafto) -

i
2

] d
Xof(@) = — -;[<1+w2> - +kw]f(w)

k

o—+ ——)f(w) (B17)

2

((1—w2) 4 —kw)f(w)
dow

The spaces #, and #, admit an orthonormal basis composed of eigenfunctions of the

compact generator X,

k
s = (o £)

for D and

X _ k
oln) = (—n— —2-) In>

for D, . We have

{nmy =1 n=01,2,3,..

in s, we have

ind = z"N(k, n) (—1),

(B18)

(B19)

(B20)

(B21)



where

I(k+n)

2 —
N m) = Forme D)

The corresponding states in 3, are obtained by Cayley transformation (B10)

Iy = (= i)'N(k, n) (0 +1) ™ (@—i)' = hy(w).

The inverse Cayley transformation gives
(—1)"N(k, n)z" = (z—1i)"*h,((2)).

Their correspondents in p-space are defined through

(@) = ? dit exp (ipeo)(p).

From (B24) we have
" e | z4i
2" = (z—1i) "J dp exp (u ‘Z:) e(1),
0
where

k(1)

on(1) = NG

The expansion ([12] page 1038)

o

conon(s22) =S s,

m=Q

A1) = (D)L P 2we™",
implies that g,(x) must be such that
g Ao (Wdp = Sy ms

which is solved by
o) = 20" e M (2w T Ly V(2u)

We obtain therefore

I'(n+1)

_ _nntk A
ka() = 2(=1) (F(k+n)r(k)

I'n+1)
I'k+n)’

1/2
) e LD (2,

4il

(B22)

(B23)

(B24)

(B25)

(B26)

(B27)

(B28)

(B29)

(B30)

(B31)

(B32)



412

where L*~P(2p) are Laguerre’s polynomials and (B32) is the orthonormal basis for the
space with the scalar product (4.7) of the main text.

The representations of the continuous class in the exceptional interval E, have also
two realizations: one in a Hilbert space of functions defined on the boundary of the unit
circle and one, obtained by Cayley transformation, in a Hilbert space of functions on the
real axis. In the two spaces the scalar products are of the form, respectively

(S, 9% = § dx § dyF ()L (x, NI0), (B33)
o™= | duy § dug a2y, upglus), (B34)

where Z(x, y) and (Lu,, u,) are the appropriate invariant densities. The infinitesimal
generators of the representation have the same form as in the representations of the
discrete class but with & restricted to the appropriate interval 0 < k < 2. I do not need
further details on this class of representations. The relevant point is that given the infini-
tesimal generators in the form (B16) or (B17) they can be integrated to a representation
of the class E, or D;f depending on the value of K.
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