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ANALYTIC PERTURBATION THEORY FOR SCREENED
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An analytic perturbation theory developed previously is used to find a continuum
screened-Coulomb wave function characterized by definite asymptotic momentum. This
wave function satisfies an inhomogeneous partial differential equation which is solved in
parabolic coordinates; the solution depends on both parabolic variables. We calculate partial
wave projections of this solution and show that we can choose to add a solution of the
homogeneous equation such that the partial wave projections become equal to the normalized
continuum radial function found previously. However, finding the unique solution with
given asymptotic linear momentum will require either using boundary conditions to deter~
mine the unique needed solution of the homogeneous equation or equivalently specifying
the screened-Coulomb phase-shifts.

1. Introduction

In the analytic perturbation theory developed recently {1, 2] nonrelativistic radial
wave functions for screened-Coulomb potentials have been found. The method is based
on the following expansion of the potential

, a ; 221, 2 :
V() = — —(1+AVir+4"Vor 4+ L), (1)
r

whera a = aZ with « — the fine-structure constant and Z — the atomic number. A (x aZ*/3)
is a small parameter characterizing the screening and V), are the expansion coefficients
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which are of the order of unity. The series (1) converges rapidly in the interior of an atom
i.e. for Ar < 1. Screened radial wave functions for both bound and continuum states
are given as series in 4 and give good approximation to the exact wave functions known
numerically in the interior of an atom. The screened radial wave function found in Refs
[1, 2] have been further used to the calculation of photoeffect cross-section in the non-
relativistic dipole approximation [3]. The results agree with numerical nonrelativistic
dipole calculations and also with the full relativistic screened calculations for photon
energies up to 100 keV. This unexpected agreement with the relativistic results is due to
various cancellations which occur between relativistic and multipole effects in the ex-
pression for the total cross-section [7]. It thus appears that the results of Ref. [3] are very
good in the energy range for which the major contribution to the matrix element arises
within the interior of an atom. One anticipates that the perturbation theory described
in Ref. [1] should be useful for any atomic process for which the contribution to the matrix
element is dominated by the contribution from the interior of an atom.

In this note we want to demonstrate the application of the analytic perturbation theory
to the problem of the screened continuum wave function describing an electron moving
with given asymptotic momentum k = (0, 0, k) and with the kinetic energy 7" = k?/2m.
This solution of the Schrédinger equation is needed for the description of the processes
such as electron bremsstrahlung, annihilation of a positron with an atomic electron etc.
In particular, analytic calculations of the screened bremsstrahlung cross-section are now
in progress.

As in the point-Coulomb case we use parabolic coordinates. We find that corrections
to the point-Coulomb wave function satisfy inhomogeneous partial differential equations
with their left-hand side given by the Schrodinger differential operator with the Coulomb
potential. Solutions of these equations can be easily found with the use of connections
between contiguous confluent hypergeometric functions [4, 5].

Corrections to the point-Coulomb function in the first, second and third order in A
are found in Section 2. In Section 3 we calculate partial wave projections of our solution
for arbitrary / and discuss the solution of the homogeneous equation which should be
added to the particular solution obtained in Section 2. This solution can be chosen so
that the partial wave projection of inhomogeneous plus homogeneous solution is equal
to the radial wave function found in Ref. {2]. However, to obtain the unique wave function
characterized by definite asymptotic momentum one would have to add an additional
homogeneous solution to produce the proper but unknown phase-shifts. Nevertheless,
the present solution can be used in the calculations of features of atomic processes which
do not depend on this phase information.

2. Solution of the Schrédinger equation in parabolic coordinates

Together with the expansion of the potential (1) we assume expansion of the energy
in the form
Vi

. a2 A 2 VZ 3 V3
T= Tc+_2_ A——;C‘l—’-l ?C2+/1 a? C3+ = Tlc'*"(ST, (2)
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where the parameters c; are in principle arbitrary. It has been pointed out in Ref. [1]
that the description of many atomic processes may be considerably simplified with the
use of the expansion (2). In atomic units the Schrodinger equation can now be writ-
ten as

(—24+V.=T)yp = (6T -V)y, 3)
where ¥, = —ajr is the point-Coulomb potential and §V = V—V_. Expanding the wave
function

Y= p.+AiB,+1*B,+A*Bs+ ..., 4

where . is the point-Coulomb solution, we get in the first order in 1
(=2 4+V,~T)B, = (aV,+3 aVic))y.. (5)

Choosidg now ¢; = —2 we can put B; = 0 and therefore we have no first order correction
to the wave function, as in the case of the radial functions [1, 2] (see also Ref. [6]).
Picking up second order terms in (3) we get

(=2 4+V.—T)B, = (aVyr+7 Vac)y.. (6)
Normalizing on the energy scale we can write for the point-Coulomb wave function

1/2

(2n)*?

w(r) = e”r(1 —iv)M(iv,, 1; ik (r —z))e™*e, (7

where T, = k22, v, = alk, and M(a, b; x) is the regular confluent hypergeometric
function. To find the solution to Eq. (6) we use parabolic variables defined by ¢ = r+4z,
n = r—z and we write the wave function v in the form

ike(§—n)/2

() =e w(n, ¢). (®)

Using further the dimensionless variables y = ik £ and x = ik.y we can write the general
equation (3) in the form

? e ) 17 . &? ) 0
X —3 —-X) - — =3 ) =
. ox 'V°+yay2 +( +))6y w(x, »)

1
= (x+y) (6T =3V)w(x, »). ©)

From (7) we see that

K

AVe/2 7 SONRALIL 4. LA PRV
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and using (6) we get in the second order

o2 a2 0
6 — +(1— x)—— —iv, +ya 5 +(1+y)5; w,

-5 +y>[2k ] (i1

Using now the well known relations between contiguous confluent hypergeometric func-
tions [5, 6]

xM(a, b; x) = aM(a+1, b; x)+(b—2a)M(a, b; x)+(a—b)M(a—1, b; x), (12)

we write Eq. (11) as

1/2

givcwz = (27:)3/2

e™?r(1—iv,) E a2 (ive, YIM(ive+n, 1; x), (13)

n=-2

where we denote by 9,,_ the partial differential operator on the L.H.S. of (11), and o2
are polynomials in y of the order 2— |n|:

iaV.
at, = — k32 (iv.— 1) (iv,—2),
: ial, 2 Vaca(ive—1) B iaV,(iv,~1)
oy = k3 ( Ve— ) + 4k§ 2k3 pE)
laVz 1 Zlv V2C2 iaV. 2 V202 laV2 2
2—6v2—6iv, + 1-2i ,
aic GOm0+ o T | e 2O 4
iaV iv.V,c aVyv, iaV, ,
a? = k32 2y 4k22 2 2k23 y, of= 4k3 iv(iv,+1). (14)

The right-hand side can be further expressed in terms of the Laguerre polynomials
M(~n,1; —y) due to the relations

M@O,1; —y) =1, —MQO,1; —»)+M(—1,1;-y) =y,
2M©0,1; —y)—4M(—1,1; =) +2M(-2,1; —y) = y* (15)

Using (15) we write equation (13) as

VZ . . 2 VZ . . -
Dy Wy = — —5 (e +1—iv,—3v))W(0,0)+ 5 iv(1—iv)W(—-1, —1)
° 2k? 2k
V,
4k2

(1—=iv) [e, —=2iv (1 —2iv )W (0, —1)— 2% iv.(1—iv) (2—iv, )W(0, —2)
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v,
+ @3{ ive[c, + 2iv (1 +2iv)]JW(O, 1)

V. V.
+ =S VL ivIW (0, 2)+ — [ea+2iv(1+2iv)]W(—1, 0)
4k 4k
Vs V, .
-+ —2~k§ VfW(—l, 1)_ 2k3 lch('—2a 0)9 (16)
where
kl/’Z
W(m, n) = @ f)3/2 e ?r(1—iv)M(m, 1; —y)M(iv.+n, 1; x). an
n

One can also arrive at the equation (16) by writing (10) as
1/2

Gy & T IM(O, 15 = )M(ive, 15%) (102)

we(x, y) =

and then using the relation (12) with respect to the variable y. In the R.H.S. of (16) we have
now two types of terms:

1) terms proportional to W/(0, 0) and W(—1, —1) which are solutions of the homo-
geneous equation D, f =0,

2) terms proportional to W(n, m) with n # m.
The part of the solution for w, which produces the second type of terms can be easily
found due to the obvious relation

Dy, W(n, m) = (m—n)W(n, m). (18)

On the other hand part of w, which produces terms of the first type can be also obtained
in a simple manner with the use of the method described in Refs [2, 6]. Differentiating
the homogeneous equation

Dy W(n,n) =0 (19)

with respect to iv, we get

U%Xa)WMn) W(n, n). (20)

Taking into account (18) and (20) we see that the solution of the inhomogeneous equation
(16) is given by

mh

V. 0
(x, y) = — Eéivc(cz—!-l—-ivc—%f) X w(0, 0)

.\

Va V.
uETe ivg(1— tvc)a( e W(—1, -1+ EZ? (1=ivy) [ep—2ive(L —2iv)]W(O, —1)
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1A
+ el iv(1—iv) 2 —iv)W(0, —2)+ el ive[es+2iv (1 +2iv)JW(0, 1)

kZ

Vs
g 21+ iv) W(0, 2)+ 4k2 Lez+2iv.(1+2iv)]W(—1, 0)
+ —2 VW(=1,1)— RIS W(-2,0) (1)
4k ° ’ 4Kz e e

Equation (21) can be written in the compact form

wih(x, y) = 3—’ Bra(vOW (m, n)+ 2/&,( Vo) —— W(—m, —m), (22)

where the coefficients f2, can be arranged in the five-dimensional matrix

0 0 Bi,, O 0 ]
0 0 ﬁilo ﬂill 0

[ﬂfm]z ﬁ(z),—z ﬁg,—1 0 ﬁgl 532 . (23)

0 0 0 0 0
0 0 0 0 0

Third order terms in the equation (9) give

Do w5, ¥) = <x+.v)2V; [es—v2(x + 1)TW(0, 0). (24)

22

Using the relation (12) several times we get

<

V 4
Dy wy = — 43;; 2iv, [ij— —(4—3ivc—5vf)] w(0, 0)

Vs": . . , C3 3 , 2
— w(l—wc)&ch(— , ) =z —3 (4—06iv.—5v)) | W(O, —1)

Vyvd Vyvd

31 —iv )’ (2—iv)W(0, —2)+ % (—iv)(2—iv) B—ivoW (0, —3)
443 4a®

4
Vi
+ 22y [C—z —3 (344iv +5v )] WO, 1)+ 28 31vc(1+zv) W(0, 2)
a Vv

[
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on

V3v

Vvt
v(L+iv) 2+ VWO, B+ 23 Vave [f; —-3(2+ivc—3vf)] W(~1, 0)
Ve

Va" , . V3V: .
1 (1 iv)Q—iv)W(~1, —2)+ -4—3— 6iv, (1 +iv)W(—-1,1)
a

LN

Viv

4q°

4

Va": . ViV,
+ —4‘—17 (1 ~ivW(—-2, —1)— ype

Va":
Jiv.W(-2,1)— ) IW(-3,0). (25)
a

The solution of this equation can be written immediately:

w(0, 0)

c

m V}V: . C3 .
Y(x, y) = i 2iv, [7 —-(4—31vc—5vc2)] PTS

V3°6 - O w1, —1 Vave 3 (4—6iv.—5v3) | W(0, —1
Ry ive( )%‘—c) )+ e {1 ”’)[—”*( ive—5v;) | W(0, — 1)

C

V3v: vV V: 1 . . .
i 3 (]—-lv) (2—iv)W(0, —2)— 03 +(1—=iv)(2—iv)(3—iv)W(0, —3)

w

Vive €3 2 v vﬁ 3 iy )2
+ 2 ive| — —3 (3+4iv,—5v2) | W(O, 1)+ at iv(1+iv)*W(0, 2)
a v2

C

V3V4 Vs < . 2 —
iy +iv.(1+iv) 2+iv)W(0, )+ —— id v— -3Q2+iv,—3v)) | W(-1,0)

Viv - o Vave .
+ - 2 3 S A=iv)Q—iv)W(—1, =2)+ Y Jiv(1+iv)W (-1, 1)
a

VSV: 1 i V3 <
— —— 7 iv(1+iv)W(-1,2)+ — (1 +iv)W(—2,0)
4a 443
4

. ch V3 Ve
+ 4 3 3(1 voW(=2, —1)— Y v W(=2,1)— “aa W(-3,0). (26)

This solution can also be written in the compact form

wit(x, y) = Zﬁmn(»c)w(m n)+ Z Balve) 6( ) W(—m, —m), @7

m#n
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where the coefficients 2, can be arranged in the matrix form

[0 0 0 B O 0 0 ]
0 0 Braoy Bl B2; O 0
0 Bl._, 0 Bl B B2 O
(Bond = | Bo-3 Bo-2 Bo-y O Bor  Bo:  B3s |- (28)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 |

3. Partial wave projections of w'™

In this section we calculate partial wave projections of the solution of the inhomo-
geneous equation and discuss the solution of the homogeneous equation which should
be added to w'™. We start in second order, where the quantity we are looking for is

B, (r) = [ d9 sin 9e**wiPB(x, y)P(cos 9). 29)
o]

The details of the calculation are given in the Appendix. Using (21) and formulae (A9)—(A11)
in the Appendix we find

kM rd+t—iv, .
( ) envc/Z(zl»kcr)le—lkcr

Bul) = 2 50557 Taing)

2
Vlvc
4q?

{—% v+ 1+ iv) U2+ iv)M(~ )+ (I + 1+ iv) [c3+2iv (iv. + 1)]M(=1)

+(I+1=iv)) [e; +2iv,Qive— DIM(D) +5 iv(I+ 1 —iv) (1 +2 —iv))M(2)}

ka? rd+1—iv) _ , o V,v?
< CS o nve/ 2k I —iker <
@0 raizy ¢ Gikne ™ 4

x {- v [3vZ+ U1+ 1) —c,] [im+ 29+ 1 = iv Y IM(O) + 2iv [3v2 + I(I+ 1) —¢,]

0 I(i+1

X ——— M(0)+2iv, G - ) M)}, (30)
a(iv,) 1—iv,

where M(n) = M(I+1—iv,—n, 21+2;2ik.r) and v is the logarithmic derivative of the

I'-function y = I'"/l". The term in (30) which contains solution of the homogeneous

radial equation M(0) and its v.-derivative 9/d(iv.)M(0) results from the derivative terms
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in (21). The first expression in the second bracket can be written as

iv, iv,
[3vf+l(l+1)——~c2] [Q,—- 5 pP+l—iv)— 5 w(l+14 ivc):| s (31
where
1
( 27y, + 2v? ~
Ql - e2xvc_1 n2+Vf 2 ( )
n=0

(cf. Ref. [2] formula (13)). o, gives the real part of (31) and the imaginary part contributes
to the phase-shift (see formula (40) below). Expression (30) has to be compared with the
second order normalized radial wave function [2]. It is given by (formulae (11a) and (12)
in Ref. [2])

Ry = "le_ikcrAz("),

2
2Ve

V.
A0 = - S5 {% ivo(l+ 1+ iv)) (14 24 iv)M(—2)

— (414 ive) [ea+2iv Rive + 1)]M(— 1) = [3v2(21+ 3) = 2(I + 1)e, ]M(0)

=2iv 32+ 114+ 1) —c,] M(0)—(I+1—iv.) [e; + 2ive(2iv,+ 1)]M(1)

da(iv,)
—tiv(I+1—iv)(I+2—- ivc)M(Z)} s (33a)
and the normalization factor is
E\Y? V2v2
N, = (f) N, —4&-{- A+ D) QI+ D+[3vi+ 1+ D—c} (g —21-1)} (33b)

(with the factor (k./k)'/? we normalize on the energy scale [2]). N, is the point-Coulomb
normalization of the continuum wave function

N, = 202k )T+ 1+ iv,)|e™?|F(21+2). (34)

We see that terms with M(n), n # 0 in B,, reproduce exactly analogous terms in the radial
wave function. Also the derivative term is the same in B,; and R,, and the only part of B,,
which requires modification is that containing M(0). The real part of (31) gives part of
the normalization contribution (32). First, we shall find the solution of the homogeneous
equation (9) whose partial wave projection will cancel the terms 2v2I(/+ 1)/(1 — iv )M(0).
Looking at the formulae (A9) and (A10) we see that the desired solution is

2
Vlvc

H(Z) -
! 2a?

v [W(=1, —=1)= W(0, 0)]. (35)
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The terms left unaccounted for in (33a), including the remaining normalization contri-
bution, are

kK2 rd+1—iv) vl
2n)** T Q1+2)

(2ik_r)e

x {—(3v2—¢;) 214+ 1) +[3v3(21+3)=2(1+ De, ]}

2

ke rd+1-iv) , s
N Q' TrCi+2) e (2ik r)'e” e M(O) < (6v2—c,). (36)

This expression can be included by adding the additional solution of the homogeneous
equation

2) Vave ,
H3 = ——(6v. —¢;)W(0, 0). 37)
4a
Hence, up to the second order, we must add the following solution of the homogeneous
equation
Vo

hom 3 2, €2 [
Wo = 2a2_ [(3"3 + v, — 5) W(Oa O)— e W(_ I’ - l)] (38)

if we are to project out precisely the radial wave functions determined previously, and
the second order wave function takes on the form

Bz(r) — elkc (Wxnh+wgom X (39)

However, this is not yet the particular solution characterized by definite asymptotic
momentum since we did not take into account the phase-shifts. In fact we must have

§ d9 sin Sy, (r)P,(cos 9) = 2P R,(r). (40)
0

Assuming now the existence of perturbation expansions for R, normalization constant
and 9, (apart from an overall /-independent term) we see that we have included in v,
only the solution of the homogeneous equation which contributes to the normalization
corrections on the R.H.S. of (40). If, apart from an /independent term, &, = §.,+ Ad!"
+725{P + ... where J,, is the point-Coulomb phase-shift, then on the R.H.S. of (40) we
must also have terms of the type i5{2M(0) and this requires that an additional solution
of the homogeneous equation be added to y,. But, since we do not know the screened
phase-shifts, this solution of the homogeneous equation cannot be specified. This trouble
is, of course, connected with the incorrect behaviour of our perturbative wave functions
for r — oo (they are good approximations only in the interior of an atom) and so cannot
directly be used to determine the phase-shifts. On the other hand our perturbative solution
of definite asymptotic momentum also behaves incorrectly at large distances, so that the
necessary solution of the homogeneous equation cannot be directly determined from the
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requirement that the wave function behaves like a plane wave plus outgoing spherical

waves.
In the third order we have

By, = | d8sin e™“wi™(x, y)P (cos 9)
0

. 1/2 _ 4
— g e F(H,FI o) e (2ikrYe Jave
@n)’? rQl+2) 4a®

X{=Lt(+1+iv) (I 42+iv) U+3+ivoM(=3)+3 (1+iv) (I +1+iv) (1+2+iv.)M(—=2)

+%(l+1+ivc)[—lSivc(l+ivc)+3l(l+1)—6+.2 c;]M(—u
v

<

c

+Ld+1—iv) [15@(1 —iv)+ 3+ 1)~ 642 c—j] M(1)
vV

+3(L=iv) (I +1—iv) (42— iv)MQ2)— % (L+ 1= iv)) (+2—iv) (143 — iv)M(3)}

kY2 rid+1—ivy) - Vvt

T /2 2ik - kT <
e rQi+2) Qiker)e ™ 5

{ 6iv, l( +D M(0) +2iv, [ Sv 41310+ 1) — ——] — M(0)
1— VC Ve ( c)
—iv, [—5v52+ 1=3l(l+1)— g;] lin+2yp(l+1- ivc)]M(O)} . 41)

Again, the term containing M(0) and 0/6(iv.)M(0) results from the derivative term in (26).
The third term in the second bracket can be written as

[—5vf+1-31(1+1)— i’—] [g,_ V';f Wl +1—iv)— ';f w(l+1+ivc)] M©), (42)
"C

and its real part contributes to the normalization of the third order radial function [2].
Expression (41) has to be compared with the third order normalized radial function (Ref. [2]
formulae (11b) and (13)).

Vyvd
A (r) = — ~43a3 {-% +14iv)d+24+iv) (I+3+ivM(~3)

+1 (l+1+ivc)[—15ivc(1+ivc)+3l(l+1)—6+2 E;.] M(—1)
¥

Y

+2 (1+ivy) I+ 1+iv) (I+2+iv)M(=2)
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- [10vf(l+2)+% (+1) (87 —131—6)—2(1+1) f%] M(©0)
v,

[

+2ivc|: 5v241-31(0+1)— —] (a )M(O)

+L(+1—iv) [ISivc(I —iv)+ 310+ 1)~ 6+2 c—i] M)
v,

c

+2(A—iv) (I +1=iv) (I +2 = iv)MQ2)~L I+ 1—iv) (I+2—iv) (I+3— ivc)M(3)} , (43a)

and the third order normalization

k\'? Vyvd
N; = —<—5) N, °{ I(I+1)21+1)

I 4q°

Cy *
> ] 21+1 —g,)} . (43b)

c

+ [—5v§—3z(z+1)+1—

We again see that the terms with M(n), n # 0 in (41) are the same as analogous terms
in (43a) and also the derivative terms are identical in both formulae. Now we may find
the solution of the homogeneous equation, partial wave projection of which cancels the
term —6iv I([+1)/(1 —iv))M(0) in (41). From (A9) and (A10) we see that the desired
solution is

H = VoY 6v[W( 1, — )= W(0, 0)]. (44)

4q 3
Tt follows from (42) and (43b) that part of the normalization contribution is already included
in (41) and terms unaccounted for, including remaining part of the normalization, are
given by

K2 ord+1-iv) iz |

2 k ~ikor
2 TCI+2) @ikerYe™™ 5

X {—10v§(l+2)-—(l+1)(812-131—6) 2(1+1) -3 I+D QI+

C

[=5v 41310+ 1)] (22+1)—(2l+1)%} M(0)

<

kM* rd+1-—-iv) Vyve
_ e o ™22k FYe *er 3¢ 1 _ 15 11 —_— 0). 45
G raiesy Ok | ST 0 D= S MO, (49)
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This expression is equal to the partial wave projection of

Vvt c
ng’) = —43;3‘1 {[—15v3+1—- v—i —%(I—ivc)] W(0,0)+3 (1 —iv)W(—1, —1)}. (46)

<

Hence
Vv
whem = H® 4P = 22 {( —15v2—Y iy +2— —c—}) w(0, 0)
4a Vg
+3 (Tive+ W (-1, —1)}, 47)
and finally
By(r) = (w5t +w5m). (48)

4. Conclusions

We have tried to find the perturbation expansion of a screened continuum wave
function characterized by definite asymptotic linear momentum. The Schrédinger equa-
tion for a screened-Coulomb potential was solved in parabolic coordinates; partial wave
projections of the solution found correspond to the radial wave functions of Ref. [2].
However, this solution is not yet the desired solution which would include further homo-
geneous terms which produce the phase-shifts (cf. Eq. (40)) on projections. The problem
of finding the screened phase-shifts in this perturbation scheme still remains open. Neverthe-
less, the wave function found in this paper is adequate for certain calculations which do
not depend on this phase-shift information, for example the calculation of the brems-
strahlung energy spectrum integrated over angles.

APPENDIX
Here we calculate the partial wave projections of B, and B;. Since
B; = e™*w(x, y)
we see that basic quantity is
1

1/2

i %
Wi(m, n) = J due™"P(u) G €21 —iv)M(m, 1; — y)M(iv,+n, 1; x), (A1)
¥

-1

where u = cos $, z = r cos 9 and P,(u) is the Legendre polynomial. For the point-Coulomb
solution i.e. for m = n = 0 we get radial wave function of the hydrogen atom.
kl? rd+1—iv,)

— < Tve/2 . 1 —iker . «9;
W,(0,0)—(zn)s/ze 2Q2ik.r)e WM(Z+1+1vc,2l+2,2zkcr). (A2)
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Next, we calculate W(m,n) for m = —1 and negative integer n(n = —p = 0, ~1,
—2,...). Applying Kummer’s identity [4, 5] to M(x) we have
k1/2
© nve/2 . ikor
W(—1, —p) = G e™2r(1 —iv,)e*
1
X j duP(M(—1, 1; =y )M +pu—iv,, 1; x). (A3)
-1

This integral will be calculated with the use of the Mellin-Barnes type contour integral
representation [4] of the confluent hypergeometric function

SR NIC) T R a+s) e
M(a,c:x) = S T@ Tlers) s (A4)

y—iw

with y < 0. Substituting (A4) into (A3) and using explicit form of the polynomial
M(—-1,1; -y) we get

ther 1 I(=s)[(14+p—i
W(—1, — ) = N—e——.— 1 ‘.ds (=s)[(1+p—iv.+s)
F(14+p—iv,) 2mi r(1+s)
C
1
x (ik,r)® | duPfu) [ +2ika—ik (1 —u)] (1—u)’, (AS)
1

where the variables x and y have been expressed in terms of the integration variable u, C
denotes the integration contour (cf. (A4)) and N = k}/2(2m)™32e™<'* (1 —iv,). Since

1

J P(u) (1 —u)’du = 2°*!

-1

r(1+s)r{—s)

0, (A6)
I'(—s)I'l+2+s)

equation (AS5) becomes

vVl(—]-’ "—‘U) = 2N

Hher 1 r(—s)r(l+p—iv.+
e {J\ds (I—s)F(1+pu—iv, s)(2ikcr)s

F(1+p—iv,) 2z rd+2+s)
(o}

Qikry+!

J‘ Ir(d—s)yr(l+pu—iv,+s)

I'(l+2+5)
c

J’ T(=1=5)(1+s)’T(1+p—iv.+5)
+ 1 ds
T(+3+s)

Qik)** 1} . (A7)

C

In the first integral in (A7) we introduce new integration variable s’ = s—/ and in the
second and third integrals s" = s—/+1,
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Then
Qik.re* 1 J' I'(—=s)r+1+u—iv,+s)
W(—~1, —p) =2N ———— 2|4 2ik r)*
=1 =m) M+p—ivy2n )™ [Ql12+s) (2iker)
J,
r(=s) [+ =sQI+1+)II+p—ive+s)
+ j ds rGli2+s) (2ikry’s . (A8)

s
Using the identity
A+ =sQl+145) = I+ D)+ p—iv.—(+p—iv,+s)

and comparing with (A4) we find
W1, — ) = [ 1) v Jon BTV
-1, - P _lvc —— e

‘ K K rQ2i+2)
I'(l+p—iv)

Ir(+p—iv)

We still need partial wave projections of W(m, n) with m = 0, —2, —3. In the same way
as for W(—1, —pu) we get

M(+2—p+ivg, 21+2; 2ik,r). (A9)

Qik.r)e ™ F(I+1+p—ivy)
rQ2i+2) I'(1+up—iv,)

X M(I4+1—p+iv,, 21+2; 2ik.r), (A10)
W(—=2, —p) = N[IBI-1D)*+2QP +1+pu—iv)) (I—1+p—iv)]

Qik)e * " r(—1+p—iv,)
rQI+2) T +p—iv,)

Wi(—3, —p) = § N{PP(1-1)’(1-2)* +3[3P(-1)*

W0, —u) = 2N

M@ +3—pu+iv, 21+2; 2ik,.r), (Al1)

+2(I+p—iv)(I—t+pu—iv) (I =2+ p—ivy)}
Qik rYe ™ " r(1—-2+p—iv,)
rQi+2y I(l+up—iv)

MI+4—p+iv, 214 2; 2ik.r). (A12)
Results (A9)-(A11) are sufficient for calculating partial wave projection of wi™ and wi™,
We include also the result for m = 1 to indicate the type of the result for m > 0.
(=2ik.) e ™®" r(l4pu+iv,)
W1, u) = 2N M +p+iv,, 214+2; 2ik.r). Al3
«d 1 r@is) Tty 0+ > Al
We see that the formula for m > 0 contains the factor (—1)' which is absent in (A9)—(A12).
In each case when m = n the partial wave projection is proportional to the point-Coulomb
radial function

Qik.P'e  * M +1+iv,, 21+2; 2ik,r).
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This result is, in fact, true for any m = n. To prove it let us assume that y, is a regular
solution of the Schrédinger equation, not necessarily well behaved at infinity
[4—2V(r)+k*Jy, = 0. (Al4)

Its partial wave projection R,(r) is given by
R(r) = % i7'e7™ [ d9 sin Sy, (r)P(cos 9). (A15)
0
We want to prove that for any such y; R, satisfies the homogeneous radial Schrodinger

equation which, we know, is true for the particular vy, given asymptotically by a plane
wave plus outgoing spherical waves

1 d? l l+1 :
[~ —r— ( ) ]R,(r) = PR, = 0. (A16)
r dr
We have
DR =%i"le”™ ; d3 sin 99, ;i (r)Py(cos 9). (A17)

The right-hand side of this equation can be split into two parts

T

1 &
RHS. = Li% jd‘gsmg[ 7 2r—2V(r)+k2jl wi(r)
¥
0

T

1 0 0
x P(cos 9)+1 ite™ i J~d9 sin Sy(r) Ton 5 5% sin 9 3 P(cos 9). (A18)

0

Integrating the second expression twice by parts we get

1 d*
DRy =507 _'a'jdé) sin .9[7 il
o

1 G, 0
I r sin 8 5§ sin § — 33 2V(r)+k2] '!Pk(r)Pz(COS 8)3 (A19)

and due to (A14) we obtain (A16). Since for V' = —a/fr the only regular solution of the
radial equation is given by r' exp (—ikr)M(I+1+iv, 21+ 2; 2ikr) we have thus demon-
strated that the partial wave projection of W(m, m) is of this form.

Therefore we put (m > 0, integer)

. —ikor (l+1 lvc) . . \
W(—m, —m) = 2" ik r)e” % TEIEY DM(I+1+iv, 21+2; 2ik;r)  (A20)
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1
rQl+2) 1 & .
Dl = 21+11! F(l+1_ivc) J‘ du é’é—l [ee W(-m’ mm)](?:oPl(u)’ (A21)
-1
where ¢ = ik.r. In view of (17) we have
e“W(—m, —m) = Ne®*M(—m, 1; —y)M(iv,—m, 1; x). (A22)
Using now explicit form of the polynomial M(—y)
e ' (—=m), k k X
M(=m,1; —y) = )2 (=D (1+u), (A23)
k=0 )
and - the integral representation of M(x) [4]
1
1 .
M sy , 1, — d o(1+u)é pive—m—1 1__ —ivetm A24
(ive—m, 1; x) F(ivc—~m),-(1~ivc+m)J‘ ¢e ¢ 1=% (A24)
0
we get
D — rl+2) 1 (—m)(—1)F
! 27T P4+1—iv) (k?
1
X ! du(1+u)*P(u)
T(ve—mI(A—iv+m) J o THo
-1
. 1]
ive—m— —ivetm a u(l—
x Jdéiwc 1(1_3’:) ot b_g_,{eot (1 §)+¢]Qk}0=0. (AZS)
V]
After some calculations (A25) takes on the form
_ T2l+2) 1 (—m)(—1)* /1
P2 r+1-ivy) (k1)? k
k=0
1
% 1 [‘dé'ﬁivc—m—-l(l_ﬁy—ivc-i-m
(iv.—m)['(1 —iv +m) |
1
x f du(t+u){ul -+ Piw). (A26)
-1
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In the u integral only the /-th power of u contributes and in view of the relation

1

J duu'P(u) =

-1

214- 1(12)2
raei+2)

(A27)
we finally get

_ N - AN .
D, = P T E——— Z (—m)(—1) (k) rd—-k+m-—iv,). (A28)
k=0

Formulae (A20) and (A28) reproduce our previous results for W,(—m, —m) with
m=0,1,2,3. In the same way we put (m > 1, integer)

s TA+1—iv,
W(m, m) = N2'*Y(ik r)e ™ %—(ﬁ? CM(I+1+iv, 2I+2; 2ikr).  (A29)
Then
rQi+2) 1 &
L= PARRY ] F(l-{'—l— c) uPl(u) [ee W(m m)]q~0 (A30)

Using Kummer’s identity we write W(m, m) in the form
W(m, m) = Ne ’M(1—m, 1; YM(iv.+m, 1; x). (A31)

Substituting (A31) into (A30) and performing the calculations in the same way as previously

we find
_ N(-1f ; _ k(l .

C’_r(ivc+m)r(l+1—ivc)Z(l“"‘)k( 1) ~k>F(Wc+m+l---k)- (A32)
k=0

For m # n we need only note that, for instance, W(—m, —n) (m, n > 0, integer) is
a solution of the homogeneous equation with L.H.S. given by Eq. (9) but with iv_ replaced
by iv.+m—n. Therefore

wc( m, —n) 1vc+m n( m, '—m)9 (A33)

where the v.-dependence has been indicated by the subscript. Using (A33) we find at once

W(—m, —n) = N - 2'¥!(ikr)'e™ ™"

rQI+2)C(n+1—iv,)

l 2
x M(I+1+m—n+iv, 214+2; 2ik.r) Z (—m) (=1 (k> I'(l+n+1—k—iv), (A34)
k=0 i
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and
. -1
Wim, n) = N 2" (ikryle ™ — (1
I"(21+2)I‘(n+wc)
xM{+1—m+n+iv, 21+2; 2ik 1) Z (1= m)(~ 1) (k) Fiv,+n+1—K). (A35)
k=0
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