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RELATIVISTIC RADIAL EQUATIONS FOLLOWING FROM THE
SALPETER EQUATION*
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The relativistic radial equations for two spin-1/2 particles, consistent with the hole
theory, are derived from the one-time Salpeter equation. They may be of much help in
relativistic calculations for leptonium and quarkonium.

The Salpeter equation is a relativistic one-time equation for two spin-1/2 particles
with an instantaneous interaction consistent with the hole theory [1, 2]%,
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is the hole theory projector which makes this equation different from the Breit equation
valid in the single particle theory [3]. The potential ¥(r) in Eq. (1) may have the Breit-like
form

2
r

ey (. @
V() = V()-BV'(), B=1 [50» PO @M], &

* Work supported in part by NSF under Grant GF-42060.

** Address: Instytut Fizyki Teoretycznej UW, Hoza 69, 00-681 Warszawa, Poland.

! The one-time Salpeter equation was obtained from the two-time Bethe—Salpeter equation in Ref. [1].
In general, the one-time approach to the relativistic two-body problem was derived from the two-time
approach and also from the formal field theory in Refs. [2]. Full retardation was included. Also a general
method of eliminating angular coordinates was described there. It was applied to the Breit equation in Refs.
[6]. For another method of elimination cf. Ref. [8]. For the problem of reduction of the Bethe-Salpeter
equation cf. Refs. [9].
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which includes the lowest-order retardation. In the case of electromagnetic interactions
V(r) = V'(r) = Fafr, where o = e?/4rn.

The projector (2) causes that effective calculations using the Salpeter equation (1)
are much more difficult than those with the Breit equation, even in the electromagnetic
case [4] or in the momentum space {5]. In particular, the radial equations following from
the Salpeter equation seem to be not known in the literature, though they may be of
much help in relativistic calculations for leptonium 1-I* and quarkonium qq. In this note
we derive the relativistic radial equations from Eq. (1) in a similar way as it was done
previously in the case of the Breit equation [6]. Due to the projector (2), the new radial
equations are integro-differential equations, even in the purely static case when V(r) = V(r).

First, we: eliminate angular coordinates from Eq. (1) with the potential (3) by means
of the unitary transformation
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and the substitution (allowed by rotational invariance of Eq. (1))
IR
y(r) = N Zj(cos O)p(r), (5)
where
— 1—oMal® 1+0{e®
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are the spinorial spherical harmonics corresponding to m; = 0 [2, 6]. Here P;f"z(cos 0)
are the spherical harmonics normalized to 1.

After calculations, we get in the case of m'" = m'®(=m) the following radial
equation:

<{E+z(oz‘” 2 4. 14+ (00" +o5Vas?)
( dr

-
o0V j(+1)

- l(a(l) (2))

—(BV+pPym— Veff} w(r) =0, )]

where

d 1+ a(l) (2)+a(1) (2)
Veeew(P) ={ () — o) [;l; (

"
+ i(oc(ll) __a(zz)) a(zl)a(zl) \/j(f'l'D +(ﬁ(”+ﬁ(2))m}
= 10> [V (=3 G- &® +aaP)WV ()] 9(r). (8)

xz {jol N
P+



441

We can write here the formula
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Here J,, ;(kr) are the Bessel functions and ¢ = V2 +m?. In Egs. (9-11) we make use of
the orthogonality relation

[ araeiery = 3 252, jgen) = NE (12)
0

Next, we split the radial equation (7) into the system of 16 radial equations, taking
into account the following representation of Dirac matrices:

oV =g;x0, x1x1, o = 1x0,x03x1,
o) = o, xIx1xay, a8 = o, x03x1%x 0y,
al’ = o, x0, x1x1, aP = 1x0,x0,%x1,
B =0, x0;x1x0;, [BP =1xo,x0,x1, 13)

where ¢’s and 1 are Pauli matrices.
We write Eq. (7) in this representation and combine the resulting radial components
y’s according to the scheme '

9-14,12—15,9+414, 12415 = f*, £, fo o fo
11—16,10—13,11+16,10+13 > g7, ¢F., 25, g7 (14)
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and
1_65 4"7’ 1+6a 4+7 —’f1_,f2.,f3+,f4+’

3—-8,2-5,3+8,2+5> g1, g5, 83, 84 (15)

(where the normalization coefficient is 1/,/ 2). Then, the new radial components f, and f,
correspond to s = 0, while the rest of f°s and all g’s — to s = 1. All /s have m, = 0,

while all g’s mix m; = +1 and m; = —1. The components “+” and “-—" refer to the
intrinsic parity # = +#n and ©= = —n, respectively, where
=y 8% = po, x1xo,x05, n*=1. (16)

The total parity P = n(—1)" is P = +#5 and P = —n for the components (14) and (15),
respectively. So, the system of 16 radial equations splits into two independent subsystems
of 8 equations containing the components (14) and (15), respectively. Here I = j for
s=0and/=j—-1,j,j+lfors=1if j>0( =sifj=0 orj=sif!/=0). The com-
ponents““1” and “2” have / = j, while “3” and “4” mix / =j—1and I = j+1ifj >0
(they have/ = 1ifj = 0).
After calculations, the resulting radial equations can be written in the form:
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where we use the abbreviations

F{ = [1+3 R(V=2V)]f{,
F3 = [1+3 RV +2V)1fS

g preg f r 7
Fi =[1+3 PV]fif— 5 S;(V—-Vgi,

. i e
Fi=[1+3PV]fi—- ES,-(l"+V)gg,

Gi = [1+3 R(V=1")]et,

Q
s

= [1+3 R,(V+V)]gs,

i -
GF = [1+ 0+ V"]eE + 5 S,V

R i _
G =[1+3 Q,(V—-V)]lgl+ Py S;VfF. (18)
Here
p = IRt U+DR;, _UFDR; - +jR;.,
! 2j+1 ! 2j+1
JTGAD R, R,
S; = v j(“’ ‘,,z_(,..ii‘:i_ﬁ,,!f ’,,) , (19)
2j+1

while the integral operator R, is defined in Eq. (11). We can see that the radial equations (17)
are integro-differential equations.
Let us notice that from Egs. (11) and (12) we get

1
R f(r)— ;f(r) (20)

if m — co. So, in this limit, the radial equations (17) become pure differential equations.
Then

Ffsf* Gfogf (i=1,234), €3))
- m+4m + + ) .
unless they are multiplied by T = m when mF;” and m G;” contain potential terms

additive to m. These terms cause that the Klein paradox, appearing in the Breit equation
with an infinitely rising static potential ¥(r) = ¥(r) [7, 6], does not occur in the Salpeter



444

equation with such a potential (at least in the limit of m — o0). The difference from the
Breit equation [6] stems from the fact that for Salpeter equation

Ve = 3 BV +FD) V(D=5 @V 22408 )V (1)] (22)

if m — oo (cf. Eq. (8)). The projector ¥ (") + ) introduces here the difference.

We hope that the relativistic radial equations (17), which are consistent with the
hole theory, will prove usefull in effective calculations for two spin-1/2 particles. In spite
of their complicated form (which unfortunately cannot be avoided) they are perfectly
tractable by numerical methods. In particular the kernel

oc

1 R .
Ki(r,v) = —= J‘deJ,H(\/sz— m? r)JH%(\/sz— m? r') (23)
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of the integral operator R, given in Eq. (11) can be readily tabulated. In the limit of m — 0
it takes the form

Ky [ A T . Flir ren 2042, 4" (24
) o | —— S — NES S e
Ard | (r )2 21+ D! * (r+v)? )

(involving the hypergeometrical function) which is cvidently regular for r # r’. On the
other hand, in the limit of m — oo it becomes

1 8(r—r)

K(r.v)y -
rr m

(25)

in consistency with Eq. (20). So, only in this unattainable limit two Dirac particles interact
as strictly point-like objects. In fact, they behave as extended objects due to the hole
theory.
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