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CONSERVATION OF ENERGY IN UNIFIED FIELD THEORY

By A. H. Krorz

Department of Applied Mathematics, University of Sydney*
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The problem of finding the energy-momentum tensor in the non-symmetric unified
field theory is investigated. It is shown that the definition of such a quasi-tensor due to Ein-
stein and Kaufman leads to the unlikely conclusion that the energy dénsity of matter in the
universe vanishes. A tentative solution of this difficulty which gives a non-zero distribution
of matter is proposed. The article contains a brief discussion of some unsolved problems
of the theory.

1. Introduction

There are now good reasons to believe (Ref. [1]) that the non-symmetric unified
field theory (Refs. [2-4]) of Einstein and Straus contained in the weak system of the field
equation

guv,/‘._fZ}.ga’v'—fg.vguo' = Oa Ruv = 0’ Ruv,i = 0, fu = 0: (1)

represent the correct generalisation of the theory of gravitation. I shall refer to it as UFT
and distinguish the Einstein—Straus affine connection I’ ﬁv from any other by the twiddle,
denoting by it also any tensor, such as Ricci or Riemann—Christoffel, formed from this
connection.

By ““correct” I mean logically consistent, free from most obvious contradictions
as far as physical reality is concerned, and offering some hope of eventual empirical confir-
mation or otherwise. I cannot see at present any alternative unified field theory of equal
merits, with the exception of Weyl’s which seems to be related to quantum mechanical
fields rather than to macroscopic gravitation and electromagnetism. The singular virtue
of the UFT lies in foundation on a meaningful physical hypothesis that the principle
of transposition invariance represents charge conjugation invariance and replaces the
equivalence principle of General Relativity in providing a means for choice of the field
equations.
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Empirical testing of the new theory presents grave difficulties. General Relativity
found its confirmation in a pure gravitational field or in the phenomena associated with
neutral electromagnetic radiation in such fields. Gravitational fields of sufficient strength
to yield observable deviations from classical predictions are readily available but com-
parable electromagnetic fields are not. Or, rather, they are, but investigation of their
geometrical nature involves a self-defeating, two-fold problem. Paucity of known solutions
of the field equations virtually necessitates operating with single particles, electrons if
you like. But isolated elementary particles are subject to quantum laws whose incorpora-
tion is beyond the scope of the theory either conceptually or empirically. Experiments
giving testable predictions can be devised (Ref. [5]) only if one ignores quantum effects
which may of course, influence validity of any results or conclusions. Moreover, the
proposed test employs exact equations of motion of a charged particle and these can only
be guessed at the present time. In view of these remarks it seems clear that confirmation
of the theory can be sought now only beyond a terrestrial laboratory and, because of its
apparently electrically quasi-neutral state, beyond the solar system. Similarly, because
of the interplay between concrete observations and their interpretation, it is unlikely
that a suitably convincing test of the interaction between electromagnetic and gravitational
fields indicated by UFT can be constructed immediately in the realm of current astrophysics.
Hence, any hope of subjecting the theory to a relevant test of physical validity appears
to be confined to cosmology.

I have shown recently (Ref. {6]) that UFT can be interpreted in such a way that it
forecasts a unique model of the universe at least if one confines oneself to static case in
which solutions of the field equations are known. As a consequence of this limitation it can-
not be insisted that the model obtained represents the actual universe. It is more important
that a unique mode! independent of ad hoc assumptions other than are vital to the complete-
ness of the theory (determination of the metric in Ref. [1]) should result at all. In any case,
whether we can already say anything about the validity of UFT (and of my metric assump-
tion) depends on knowing what is the predicted distribution of matter in the predicted
model. Some results of necessarily only preliminary calculations will be described in this
article.

It must be borne in mind that the problem of matter in the UFT is very different
than in General Relativity although it is solved by similar means of relying on the idea
of conservation. We write down the general relativistic field equations

= —«kT,

G v (2

because the Einstein-tensor G, is conserved in the invariant sense and the energy-momentum
tensor 7, 1s assumed to be so. It is of absolute importance to the UFT that there is no
known empirical confirmation of these equations. 1 assert that Einstein—-Maxwell theory
(when T is the electromagnetic energy-stress-momentum tensor) is simply wrong. Validity
of this assertion depends on equations (2) remaining unconfirmed and on an eventual
confirmation of the predictions of UFT.

We do not have in the latter an energy-momentum tensor, at least not as far as the
gravitational and electromagnetic fields are concerned. If these are the only macroscopic
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fields (and some quantum mechanical considerations seem to suggest that they are, Ref, [7])
then the structure of the universe will be completely described by the equations (1). As far
as UFT goes, physics, that is physical fields, are described by the fundamental tensor g,,,
(non-symmetric) and the contracted, skew-symmetric part I', of a generalised affine
connection. (It must be observed that it is this limiting assumption that may have to be
changed as knowledge accumulates. The assumption is good enough at present). Geom-
etry of the space-time manifold in which the physical fields subsist is described by the
affine connection I ﬁv related to the more general I fw by the (unsolvable) Schrédinger
equation (Ref. [4])
ry, =r.+3%3r, (3)
and the Riemann-Christoffel and Ricci tensors constructed from it. A posteriori (Ref. [1])
we also have the metric tensor a,,. The relativistic link between physics and geometry,
the UFT analogue of the principle of geometrization, 1s established through the field
equations. There is no room for the equivalence principle. It is completely replaced by
the concept of transposition invariance which determines selection of the field equa-
tions.
In these circumstances, matter or energy-momentum can only be introduced through
the variational principle by the method invented by Weyl. An advantage of this procedure
is that the resulting quantity will be automatically conserved without having to postulate

equations of state as in general relativity. But then UFT deals only with fields and equations
of state do not enter our considerations.

2. On symmetry of the Riemann—Christoffel tensor

Before attempting to calculate the energy-momentum expression (it is neither a tensor
nor a tensor density) in UFT it is necessary to correct a curious mistake in Einstein’s
presentation of the symmetries of the generalised Riemann-Christoffel tensor (Ref. [8])

A 2 A Fe Fi _ e i
Ruwc = _Fuv,x+rux,v+r;e‘xrgv_rﬁvrgx' (4)
With Einstein, I define the covariant tensor
R}lu\w = ga’ARva' (5)
Differentiating
gu\',i—fﬁftggv_f(‘ivgug = 0’
with respect to k, interchanging x and A and subtracting Einstein finds
gov(_f;‘;}.,x+F:u,l+ffm1:32—fﬁ1f3x)+guo’(_f;v,x'*'fzv,/l+fﬁvr‘;a-fﬁvf:g) = 0. (6)
Comparing (6) with (4) we get
ﬁvulu+[gdv(—fZZ,x+fzx,l+fﬁxfgl—lef:x)}f = Rvulx +ﬁvp}.n = 0. (7)
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The operation denoted by the dagger or, more properly, by the pair of stars, is exactly
the operation of hermitian conjugacy or double transposition referred to in the principle
of transposition invariance: every g,, and f’iv is transposed with respect to its pair of
covariant indices (matrix transposition) and then the starred pair of indices is interchanged
(complex conjugation). It follows from (7), contrary to what Einstein asserts, that R,,,,
is not hermitian antisymmetric in the first pair of its indices. Let us define (T referring,
without indication, to u and v)

Rv;t}.x = g,(— Fz;«x+r:u A+FQ Fa f?mfzg)-
Then
R;{,:;.x = gou( — AT i+ Fe L0 —T4I,
or
Ruv).x = ﬁvp/lx = —Rvulx’

* %

from (7). Hence, double starring again, R,M,c = —I{Wm, but of course, the “T” operation
is not double transposition. We conclude this brief digression by calculating an expression
we shall need presently. We have

gulR;iU.x = g gvau/bc = gu;gwRuvxi. - g‘d lvg/m( F:v A+F/1v, +r Ze'_fl(:vf‘zl_))
= g“( va a+ravx+FQ ro' fﬁvf::g) = givav = givav: (8)

in view of the field equations (1).

3. Conservation law in the generalised UFT

I shall calculate first the conserved quantity in the generalised non-symmetric theory
described in Ref. [4] in terms of the Einstein-Straus connection I'2, (for which I, = 0).
Einstein and Kaufman (Ref. [3]) introduced a variational parameter U;},, with respect
to the Ricci tensor of the non-symmetric theory is automatically transposition invariant
and the weak field equations are derived from the action variation

3 [ G"R,(U)dQ = 0, 9

carried out with respect to g** and U,. It has been shown in Ref. [4] that the affine
connection is most generally expressed in terms of such an Ujv by

r: = Uﬁv+(2a1+§)éfU — (30, +1)8} U, o+ (3 + 20, +1)55U,—1 83U, (10)

where o, and a, are numerical parameters. Replacing I'2, by its Einstein—Straus counter-
part I'},, we easily find that the contracted symmetric and skew parts of U, are given by

pUﬁ =%f qUazgfgﬁ_zraa (11)



where p = 154,44, ¢ = 9a, +6a,+2. Hence
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- 1 6o, +1 - 3o, +1 300 +200,+1 - 2
Ut = rﬁv+—§-(— _ b >a¢ ,,,+2( et s >5ﬁr$,,+ — Gir- i)

q p q

It has also been shown (in Ref. [4]) that the quantity
Eh = g7 UL,y —(1+30)) (§%U’y,, +6"“Uf,) —42,8% U,
is, in consequence of (9), conserved, so that
.=0

A straightforward substitution from (12) now shows that

1 . 1+ - 2+
g = guvlwl "q" g”lrfw,x _% (-q—q) glu‘r;a,x +%' (Tq) g;:"lrﬂsn'

(12)

(13)

(14)

(15)

Introducing now the Riemann-Christoffel and Ricci tensors wa and R,M, we readily

find that
guvf:;v,x = guvRﬁvn+guvfﬁxfjv+(gﬂvfix),v’
gluf'Za,x = gluﬁlm+geﬂf£af:x+(g)urdx) -4}

so that

1 -
=13 (” E) (—8" +26¥)R,
o 1 N 2+
+ [9““Fix tz @ =3 L+ g™ +% (—q»q) g‘v"l‘,c]

+ (142 ) @S2 9T
q
In deriving the expression (16), I have used the facts that

gaﬁ,a = gaﬂfﬁe_gaﬁfZG'"gmfgga
and

Ru‘)':%( v vu)

as well as equation (8).
We may observe now that when

q9=-1,

(16)

)

(18)
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which is equivalent to 3oy +20,+1 = 0,
g = __gMVR‘lWK_ JM —2gAuRuk+(gqul 9‘11 MK -3 glvrx)
= (@ Tu—8" =361, (19)

because of equation (8) and of the field equations (1). In this form it is easily seen that $*
satisfies identically the conservation equations (14) since the quantity

_ guvl—vl u/ =13 3 g I—v /lv

is skew symmetric in v and A.

The condition (17) is satisfied in the Einstein-Kaufman theory which is equivalent
to the Einstein—Straus (Ref. [4], but with a much simpler variational principle). The
generalised theory which is similarly equivalent in its domain of application and merely
exhibits explicitly what may be called a-invariance, reduced to Einstein—-Kaufman form
when o; = —% and «, = 0.

4. An example

Let us now calculate explicitly the components of €} for the spherically symmetric
solution obtained in Ref. [1]. The non-zero components of the fundamental tensor g,,
are given by

r e -t R 2r?
g = —|{1-5]){1+c [5 —1 , 822 = gazcosec’ = —r*[1- =),
r r g

2 - 2.4 2
)0 F ro .
gas = l+c 72-—1, 823 = "8 = 5 ;5_15“10' (20)

(4]
Since I am particularly interested in the material content of the proposed cosmological
model (Ref. [9]) we shall use the “Schwarzschild” radial coordinate

Fo

R=—2, (21)

)"

though, as the results will show, not without reservations. The substitution (20) implies
that the new form of the fundamental tensor is

o dr\?
811 _—<71E> 811> (22)

that is the a;, of Ref. [9] with the remaining components obtained from (19) by replacing
r with R. Similarly, if I'2, denotes the Tonnelat (Ref. [8], equations (109)) affine connection
expressed in terms of R

. dr dR d*r dR N dr

M= —rjy+——, L =—or' 7 s, (23
1 . aRe P g LTI )
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where p, ¢ = 2,3, 4; the remaining components of I v being the same as F . We then
find that the non-zero components of F

. 2R m =1 ~
Iy, =- IR + ﬁ(R—Zm) . Ty, =T1;cosec? 0 = —(R—2m),
0
~ m{R —2m) (rz-H?z)2 N . N
[y = ( -4R30 , T} = —sinfcos0, I35 = cot#,
. e rf; P ] i R .
I, =1 = R(r3+R?)’ 14 = R(R—2m)’ S _;’g( —2m)sin 0,
~ ~ . ro .
3, =3,sin? 0 = —— 5 sin 0, 24
. v ré-i—R2 (24)

where (Ref. [9]) —cro = 2m. From the equation (17) we easily find that
54 = 09 r3 = %C cos 07 r2 = I~2(R» 0)’ 1‘1 = II‘I(R, 9), (25)

the last two components of I', being arbitrary functions of R and & only. We are now
ready to calculate &% from equation (19), the components of g** being given (in view
of (22)) by

’o(’o"R )

1 ) s 22 _
g'' = —R(R=2m)sinf, ¢~ = g** cosec’ 0 = — Tf TR sin 6,
G- rgR> sinf) 6% = g% = — i’SR'* (26)
- (ra+ R (R=2m)" (r2+ R’
the remaining components vanishing. We now get
. 2r3(R—2m) (r5—R? 1 8rgR(R —2m) sin 0 cos ¢
“Sz = 3 373 COs 0, 23 = 7 52 )
(ro+R%) (ro+R%)
8r5(rgR+3mR* = mrg—R 4r3R(2r§R+ R*)(R—4
ng 0( ) m F 0_‘) sin? 0, ‘5% _ e (2ro (”o )( m)) . sin 0,
( 0+R ) ('0+R )
8roR  ér 2r3R ar,
= - sy ;{ , 33 = —Zcosec? 0— s | cosec? 0—% —2
3(ro+ R a0 (10+R ) 00
rg+6r5R* —4mriR+12mR>—-3R*
g3 = oo +OroR”— dmr MR 3R Gine, (27)

("0+R )2

the remaining components being zero. Particularly interesting, and of course unfortunate
is the vanishing of £ which one would normally like to interpret as the energy density.
I shall comment on this result in more detail in the next section. In the present calculation
we have

i4 = (gnrl 441:}14),1 = —2(msin0),; =0, (28)
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since m is a constant by hypothesis. In a way, this result confirms the apparent “Schwarz-
schild” or perhaps, rather, “de Sitter” nature of the proposed model. It does not, however,
necessarily mean that the universe must be empty, even though, by (27) it would have
non-zero stresses present. It would be idle to speculate further on the latter until the problem
of energy-density is resolved.

We may note, as might have been expected, that the generalisation of the theory
(g # —1) does not save the situation. £3 remains zero in the spherically symmetric case.

5. Discussion

It is now clear that unless one is willing to accept that the energy density in the universe
vanishes there is something wrong. In fact one of three things could be wrong.

We have seen (Ref. [1]) that the definition of the metric a,, = a,, by the differential
equations

auv,,l—F&aﬂ—l’é’%a,m =0 (29)

leads to the selection from among all possible, spherically symmetric solutions of the
field equations (1) of either the Papapetrou solution (Ref. [10]) or of the solution which
leads to the new cosmological mode} (Ref. [9]). The hypothesis (29) could be incorrect.
However, it seems to fit well into the structure of the unified field theory and its advantage
of restricting the number of solutions for which one has to find a physical meaning is so
great that it should not be lightly discarded.

Secondly, the cosmological interpretation could be wrong. Even if it is though, a local
field, presumably of a charged object, would still be energyless and this is difficult to
understand. Such a field also would have a cut-off point (at » = r,) for which no empirical
evidence exists.

Finally of course, Einstein and Kaufman’s identification of the energy-momentum
tensor density £ need not be right. Einstein and Kaufman themselves observe (Ref. [3])
that €7 is a tensor density only for linear transformations of coordinates. It is easily seen
that this is so either from equations (16) or (19) or from its derivation obtained by subjecting

0H = 6 | g"'R,(U)dQ
to the infinitesimal, constant translations
x* > x*+a*,  «* = constant. (30)
Then, and only then does

OH = (g"'6U},) , = 0,
and

SUZ, = — U o (31)

BV,K

(for the Einstein-Kaufman theory). For any other infinitesimal transformation, the term
(g"oU jv), a1 is integrated and put equal to zero by the condition that 6U,fv should vanish
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on the 3-dimensional boundary of the space-time. Thus the vanishing or otherwise of £
becomes a coordinate dependent result.

If we reject interpretation of €% as an energy-momentum tensor (perhaps suitably
symmetrised) we must conclude that the problem of matter remains unsolved in the
unfied field theory. Papapetrou (Ref. [10]) discussed the problem in the case of weak fields
in the first and second approximations (the “zeroth” approximation to g,, being the
Minkowski #,, = diag(~1, —1, —1, +1)). This technique is inapplicable here since
we are dealing with exact solutions of the field equations. Likewise, his results are in-
appropriate since they depend onregarding g,, as the metric and, what is worse (Ref. {11]),
g, as the electromagnetic field tensor (although Papapetrou is aware that this may not
be the case, as indeed it is not).

On the other hand, Papapetrou’s investigation does suggest a possible way of solving
the problem. The clue lies in the equation (29). We can in fact construct a non-vanishing,
symmetric Ricci R}, tensor from r ﬁv and define an energy-momentum tensor T,, by

R, = —xk(T,,—% a,,T). (32)
We should note that such a tensor T, will automatically satisfy the conservation equations
oy = 0. (33)
The non-vanishing (diagonal) components of the metric a,, are (Ref. [9])
4 2p2
ry 2 roR
a; = — —~, Oy, = A33C08eC” f = — s,
11 s a2 m 22 33 7'(2) +R2
(rg+R* | 1~ —-)
R
2m
Qg = 1— x (34
From equations (32) and (16) we find, using (34) that
2
ro R(R~—-2m)
Ty = — e, Tyym= Ty = — ———— |
11 K(r(z)+R2)2 22 33 K(rg+R2)
and
3 2m\?
Ty = —(1——]. 35
44 xré ( R ) ( )

The only objection against postulating this T, to be the energy-momentum tensor of the
universe is that the conservation law (33) cannot be readily derived from the variational
action principle (9) of the theory. (33) in fact is a consequence of equation (29) and of
the assumed structure of the tensor wa = Ri“. On the other hand, it satisfies the phenom-
enological symmetry requirements of an energy-momentum tensor, automatically.

Let us assume then that it represents a tentative solution of the problem of matter
in the non-symmetric unified field theory. Granting the above and pending an empirical (or,
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rather, and as pointed out previously —— observational) confirmation of the theory, present
investigation leaves the following outstanding problems. If the cosmological interpretation
of the spherically symmetric solution is correct it would be both interesting and important
to find whether there exist time dependent solutions. Their non-existence of course, would
be an analogue of Birkhoff’s theorem in the non-symmetric geometry. The second question
is to discover axially symmetric solutions, especially those which would reduce to Kerr
metric when skew-symmetry is removed. This problem is complicated by the difficulty
of defining axial symmetry in the present case. We cannot appeal to Killing equations
unless we know the form of the affine connection and this depends on the form of the
fundamental tensor we want to find. The finite rotation method of Papapetrou seems to
indicate that an axially symmetric skew-tensor 8uv has, as in the spherical case, only

the 823 and g gia components which can be now “functions of r and 0.

Finall Y, and from the point of view of a possible empirical confirmation of the theory,
most important is to investigate the correction, if any, to the exact Maxwell equations
implied by the theory. Since we have now postulated that one of the electromagnetic
field tensors, f,,,, is proportional to R, (Ref. {12]), this amounts to finding the correspond-

ing second field tensor, #*" say, whose divergence would be the electric current density.
As previously mentioned, a possible way of tackling this problem may be through the
methods of the Born-Infeld non-linear electrodynamics.
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