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A class of exact interior solution for charged spherically symmetric distribution of
inhomogeneous matter in an empty background is derived and investigated. It is shown
that it is possible for the sphere to expand from a singular state to a maximum proper radius
and then collapse again to a singular state. Because therc is only one proper reversal in the
motion, our model does not exhibit oscillatory motion.

1. Introduction

Non-static spherically symmetric fluid spheres consisting of perfect fluid has been
discussed in the literature by several workers. Most of the work considered fluids of
uniform density. Non-uniform models have also been discussed (Nariai 1967, 1968;
Faulkes (1969). Vickers (1973), Banerjee (1975) and others have discussed the charged
version of this problem. We give here a new class of exact interior solutions for the radial
motion of a charged sphere of fluid with non-uniform density and pressure distributions.
Our method consists in generalizing the work of Nariai (1968) and Faulkes (1969) to
the charged case and studying in details a particular solvable model of the new differential
equation we have derived. From the boundary conditions one can study the behaviour
of the model at different instants of time; the only restriction being that the matter density g
and the pressure p satisfy the following conditions: » > 0 in the region 0 << r < ry, p > 0
in the region Q0 <. r =.r, and p = 0 at r = ry, so that the model is physically realistic.

2. Field equations and their solutions
We take the line element in the isotropic form
ds® = & "Vd? — e (dr? + 72d07 + 7 sin? Bd p?). 2.1
Using comoving coordinates we obtain for the four velocity components

ut = e V258, (2.2)
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The field equations give the following relations (Nduka 1976, Faulkes 1969)
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where s = re®2, ¢ and ¥ are arbitrary functions of r and 4 an arbitrary function of 7. In
these equations a prime denotes differentiation with respect to r and a dot denotes differ-
entiation with respect to t.

An exact solution of the interior line element (2.1) may be found by choosing
a particular form for the arbitrary functions that appear in equations (2.5) and (2.6). For
example, following Faulkes (1969), we may normalize the time coordinate ¢ so that

e = 1. (2.7)

This, according to equation (2.6), is equivalent to choosing A(t) = 1/®?(0, r). Then we
can make use of equation (2.5) to find the complete solution. In fact on putting

R(r,t) = e ®?* and x =% (2.8)
we transform equation (2.5) into the partial differential equation
d’R
P ()R> +T(x)R, (2.9)

where I';(x) = — ¥(x})/8x and I'y(x) = 2(x¥)/2x3.

It is clear that equation (2.9) together with equations (2.3) and (2.4) represent all
solutions for non-static spherically symmetric fluid bodies consistent with the chosen line
element (2.1). There is, of course, no reason to expect that all such solutions will be physically
reasonable and have, for example, a positive p and p distribution. Only a subclass of
these solutions, corresponding to certain choices of [',(x) and I',(x), will be physically
reasonable. A judicious choice of I';(x) and I',(x) is thus necessary to obtain physically

interesting solutions.

3. Specific analytic solution

To obtain a solution of the partial differential equation (2.9) which is simple and
physically reasonable we take I'y(x) = I'y, I'y a constant and I,(x) = o/k*, a constant
also. Then the differential equation (2.9) takes the form

R

- = ToR*+(alkMR?,  1/k* = 2(2I,/3)"/%. 3.1
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In this paper we assume that the term (o/k*)R3 is very small, so that it represents a small
addition to the equation discussed by Faulkes (1969). Thus we shall solve equation (3.1)
by a perturbation approach. We first note that for the uncharged case I',(x) = 0, since
the problem must in this case reduce to that of Faulkes. Thus the parameter o characterizes
the charge of the sphere.
With this choice of I'j(x) and I',(x), the solution to equation (2.9), assuming that
the term {(o/k*)R® is small, is
R = Ry +20R;, (3.2)

where R, = [E(t)— u2172, with u? = r?/4k?, is the solution of equation (2.9) when o = 0.
Here E is an arbitrary function of time. For this solution the line element (2.1) ,on using
equations (3.2), (2.8), (2.7) and (2.6) becomes

5 E* | 4op*QRE—ud)
ds* = ———5 TN
(E—p%) EXE—p")
204 4o 2, 2492 2 2 2
—(E—p) [1- (—E——z)z— (dr*+r°dO” +7° sin” 0de°). (3.3)
~n

Then using equations (3.3), (2.4), (2.3) and (2.1) we find the following expressions for the
density and pressure
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The exterior metric is to be taken as the Reissner—Nordstrom Solution:

2\ —1
ds® = <1— 2m + )dt - ( - am + e—z) dr? —r}(d0* +sin’ 0d¢*)  (3.6)
r r r r
where m represents the gravitational mass and e the electric charge of the body. In our
particular treatment e is considered to be small.
The metric (3.3) is matched to the Reissner-Nordstrdm metric (3.6) across the moving
boundary provided that (Cocke 1966)

2
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where the subscript “0” indicates the values at the boundary r = r,. These two conditions
(3.7) respectively yield

1 E(E—p3) EYQE+u? o(E+3u?
i o+ ( 2uo) + ( ; Ho) 2( .L;ol ~o, G.8)
4k“(E— o) E E k*(E— o)
2 2 2\6 2 2
m e 2EXE— E-3 4
B (E—uo) + ( Ho) Olo . (3.9)

o 2YE-u)? T E? K K(E—p



482

Equations (3.8) and (3.9) may now be used to calculate (E/E) and (E/E?); and then from
equations (3.4) and (3.5) we obtain the following expressions for ¢ and p)
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, (3.10)
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(3.11)

4. Properties of the solution

We see from equation (3.3) that the line element is singular when E = y?, and from
equation (3.11) that the pressure is negative when E < p?. The solution (3.3) may be
considered as describing a sphere in the region 0 < r <{ ry having a proper radius £(r, 1)
with

242 20
f(l', t) = r(E—,u ) [1— m\' . (41)

In order for both density and pressure to be positive in the region 0 < r < r, We require
that

E > 1, 4.2)
and
m _ (E=3pg) e(E—p5)~’
— > + . 4.3
rg - k? 2r8 @.3)

It then follows that if equations (4.2) and (4.3) are satisfied, we have the following in-
equalities for the density and pressure:

o(r, ) >0,0<r<ry, p(r,t)>0,0<r<r, and p(ro,t)=0. “4.4
Equations (4.2) and (4.3) give the complete range of E in terms of e, o, m and ry:
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and equation (4.5), on using equation (4.1), gives the range of possible values of the radius
Eo = &(ro, t) of the boundary of the sphere, namely:

mfr 2 ejduir:
0<€0<r0(4—ﬂi9+ ,Ll%) 1—?/‘"——00—3 . (46)
0 ( 20 +2‘u(z})
4ug

The range (4.6) shows that it is possible for the sphere to expand from a singular state
to a maximum proper radius &,.,,, where

mir, 2 e*jduir?
Emax = To (—/ : +2u3) 1 S @7
4“0 m/ro +2p2
4ud °

and then collapse again to a singular state. Since there is only one proper reversal in the
motion (£, = 0), namely when &, = &, there can be no oscillatory motion for this
solution,

For the uncharged sphere we must have ¢ = e = 0. If in our equations we put
o = e = 0, the results coincide with those already reported by Faulkes (1969). Thus our
equations may be considered as the generalizations of those obtained by Faulkes.
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