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The algebraic classification of the conformal curvature tensor and the energy-
-momentum tensor on complex space-times are given. These classifications are natural
generalizations of the ones well-known in the case of real space times.

1. Introduction

The present paper is the first part of the work devoted to generalized Goldberg-Sachs
theorems in complex and real space-times. The idea of the complex space-time has attracted
much attention in recent years. Complex space-times have appeared as a spaces of “good
cones” and then as spaces of asymptotic twistors in the study of asymptotically flat real
space-times [1-3]. These spaces, called “heavens”, were studied in a series of papers [1-10]
(see also [33]). Some other considerations concerning the complex space-times were initiated
within our group [11] and then in [12]. It was found that if the conformal curvature tensor
of the complex space-time is algebraically degenerated, from (at least) one side, then
complex Einstein equations in vacuum may be reduced to a partial differential equation
of second order with quadratic nonlinearity only. This result was generalized for the case
of nonzero cosmological constant {13] and for the case of complex Maxwell-Einstein
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equations with cosmological constant [14, 31]. In the latter case the Maxwell-Einstein
equations are reduced to a pair of equations for two unknown functions.

Since real (physical) space-time may be considered as real cross section [15, 11, 32]
of some complex space-time, one hopes that the examination of complex space-times may
be very useful in the search for new real (physical) space-times.

The assumption that in a given complex space-time there exists the congruence of
“null strings” plays the basic role in the reduction of the complex Einstein and Maxwell—
~Einstein equations. The nuil string is a 2-surface which has the tangent space at each point
spanned by a pair of mutually orthogonal null vectors. The existence of the null string
congruence in the empty complex space-time with the one-side (at least) algebraically
degenerated conformal curvature tensor is assured by the Golberg-Sachs theorem ([5].
Therefore it is very interesting to generalize the “‘vacuum” Goldberg-Sachs theorem
on the “non-vacuum’™ case. From such generalized Goldberg-Sachs theorems, one
will be able to obtain (by taking real cross sections) the generalized Goldberg-Sachs
theorems in the real (physical) space-times with matter.

We hope, these theorems will play a distinguished role in the search for algebraically
degenerated real solutions (see [16, 17]) and ungderstanding propagation of gravitational
radiation in matter (see [18]). But in order to obtain the generalization of the Goldberg—
-Sachs theorem in the complex space-time one has to study the algebraic structures of the
conformal curvature tensor and the energy-momentum tensor on complex space-time.
The aim of this paper is to examine these problems.

In Section 2 we consider some possible approaches to the problem of algebraic classifi-
cation of the conformal curvature tensor of the complex (oriented) space-time. As it is
pointed out, these approaches are equivalent. In Section 3 the algebraic classification of
the “energy-momentum” tensor on complex (oriented) space-times is given, which is
the natural generalization of the algebraic classification of the energy-momentum tensor
for real space-times introduced by one of us (Plebasnski [19]). The canonical forms of the
energy-momentum tensor of the definite type are written. As an example we consider
the electromagnetic field (linear and non-linear) in the complex space-time. The notation
and technique are adopted from [4, 25].

2. Algebraic structure of the conformal curvature tensor on complex space-time

The complex space-time V5 is a pair (M, ds?), where M; is a four-dimensional
complex analytic differential manifold and ds? is an analytic metric, that is if {z} .is some
local map, then

ds® = g, d2*®d7, g = Ly 87 = O. 2.1

(In our paper we consider only the holomorphic tensor fields [20].) Let (E', E?, E3, E%)
be four 1-forms (linearly independent) defined on M and let the metric be given as follows

ds* = g, E'QE’, (2.2)
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where
o1 00
1 0 0 O
@)=\ 0 0 LI 2.3)
0010

Every such four 1-forms we call “‘the null tetrad”. If (E|, E,, E3, E,) are four vector fields
dual to I-forms E', E?, E?, E* respectively, that is

EaEb = 501” a, b = 19 29 3, 49 (2.4)

then (E,, E,, Es, E;) will also be referred to as the null tetrad. Let (e!, €2, &3, %),
(E',E% E3 E*) be two null tetrads. Then

E° = T%¢" det(T%) # 0. (2.5)
Furthermore, it is easy to see that
det (T%) = %1. (2.6)
If det (T“,) = +1 then we say that (e', ¢, ¢%, e*) defines the same orientation on V; as
(E',E2, E3 E*) does; if det (T°,) = —1 then we say that (e!, €2, €3, e*) and (E*, E?, E3, E*)
define the opposite orientations on V3. An equivalence class of null tetrads defining the
same orientation on Vj as (e!, €%, €3, ¢*) does, we denote by [(e!, €2, €3, ¢*)]. A pair
(V4. [(e', €2, ¢3, e*)].) we call “an oriented complex space-time”.
Now we can introduce spinors into the complex space-time as follows. Let

(Bg, m, M3, G) (2.7)

be the trivial principal fibre bundle over M, with the projection map =:
B; > M; and the structure group G: = SL(2, ¥)xSL(2, ). Then trivially we have
B =~ M xSL(2, €)x SL(2, ). The fibre bundle so defined we call “the bundle of pairs
of spinor bases™.

Now, let the group G: = SL(2, ) x SL(2, €) acts on %? to the left as follows

m .

(), "3 @) = "5 (9)s

where
. X . 1
(1), ;) e SL2,4)xSL(2,4), A,A,B,B=1,2 and (q): = (32)6‘62.
Then we can define, by a well known procedure [20, 21}, an associated fibre bundle with
the bundle (2.7), which we call “‘a bundle of undotted contravariant spinors of the first
rank”.
Likewise, if the group G acts on €2 to the left as follows

(@5, ") (@) = ("5 (@)
then we obtain an associated fibre bundle with the bundle (2.7), which we call “a bundle
of dotted contravariant spinors of the first rank”. Now it is evident how one can obtain
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bundles of spinors of any kind. Spinor fields on V7 are sections of these bundles. We denote
undotted spinors by k%, I, m*® etc.; dotted spinors by k4, 1, 4B etc. Let (e, €2, €3, e%)
be some fixed null tetrad on the oriented complex space time (V3, [(e!, €2, €3, e})]). We
define a spinor 1-form, g48, which we represent symbolically by the matrix

@ =vi(s %), (2.8)
el _e3 .
So we have
g = g, (2.9)
where
. {0 0 : (0 1 ; (0 0
ABy __ AB = AB —
(& )—J2<1 0), (8" Jz(o 0), &) \/2(0 _1),
. ; -{1 0
It is easy to verify that
ds® = ~% e4p8058" @ 8", (2.11)

where

(ean): = (_‘1’ (1)) = Eia)

(We will also consider in the present paper the spinors ¢*®, §48,

(%) := (_(1) (1)) =: (&),

The raising and lowering of spinor indices is defined as follows
k, = eak®, Ki=c5k5 k' =Pk, KA = 4K, etc)

Consider two pairs of normalized spinors: (k*, I4), (k*, 1*); k*l, = k4l = 0. They can
be used to generate a null tetrad (E!, E2, E3, E%):

: U - LT
E'i= —= g%k 3 E =z gLk E'i= — —z g%k kg,

2
E*:= — o*B 1, (2.12)

One easily finds that (Ei, E% E3 E*) € [(e', 2, €%, e%)] in Eq. (2.12) is a concrete
realization of homomorphism SL(2, €)xSL2,%) (2« 1) SO(3,1;%). Of course
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SO0B,1;6)(1+ 1)SO4,¥). It is easy to see that (e, e?, % e*) is generated by:
k' = (Fi,0), I* = (0, +i), k4 = (£4,0),14 = (0, Fi). An exterior product of the
forms gA4# determines very important spinor 2-forms, S4? and §4#:

gAiI A gCD = SACéBD+SBD8AC (213)
From (2.13)

St =2e* A€, S =S =elAePted net, S =28 Ael, (2.14a)
S =2e* ne', 82 =5"=_—e'nef+e Aet, 52 =2 A€’ (2.14b)

The forms S*% and S48 are respectively self-dual and anti-self-dual under Hodge’s star
operation:

xSAB _ S4B a5AB _ _ 5B (2.15)

(The duality star operation, *, is defined as follows. Let wA-BA..Ba.b. .« 5 . be
some spinor-tensor p-form

where for simplicity we have omitted indices 4...B C...D etc. Then *w is a spinor-tensor
(4 —p)-form, defined by

b1

in
ba-
exp? [P(4—P)-'2] ' 8?‘ ‘-lpbl...b4_pwa;...ape A AR

*) (=

1
Pl4=p)!

ay...a . apC . . o .
where &1, L, =g - 8%, cpbrba., 3D Ec coby.b,., 15 the Levi-Civita

symbol. From the above definition *(*w) = w.)

There is no place here for developing the theory of spinors on the complex space-
-time but it is obvious that we can introduce connections on the spinor bundles and then
the curvature forms (for details see [4]). Now, let C*%; be the conformal curvature tensor
of (V4. [(e!, €%, €3, e*)]), defined by

aicy

C®.4 = R®—3855C7, 5“,, (2.16)

where R%,, — the curvature tensor, R:= R®,, — the scalar curvature, C,y:= R, —% Rgap —
the Ricci tensor with extracted trace, R,,:= R°,. — the Ricci tensor. C%,, is represented
by two symmetric spinors C,gcp and Cizép:

Cascn := 16 S” 48CapcaS “c (2.17a)

Ciscs = 15 5 i5CabeaS e (2.17b)



490

where $,; and 8§, are defined by formulae
S4B =:15,48° A &, (2.18a)
S4B _ 15 ABgr \ o, (2.18b)
Due to the fundamental theorem of algebra, C,5cp and C 5¢5 can be written in the forms
Capcp = %arprcenys (2.19a)
Capep = A i55¢oD)- (2.19b)

Therefore algebraic types of the conformal curvature tensor of the complex oriented space-
-time can be introduced as elements of the Cartesian product of two Penrose diagrams {4].

C

ABCD Cage

[1-1-1-1] [1-1-1-1]

[2-2] —[2-1-1] X [2_1 Telo-1-1]
IS At

Fig. 2.1

The type ([4], [B]), where [A] corresponds te C,pcp and [B] corresponds to Cjz¢p, we
denote by [4] x [B]. Let (k*, ), (k4, 14) generate the null tetrad (E', E2, E3, E*) according
to (2.12). The conformal curvature tensor in the basis (E!, EZ, E3, E*) is determined by ‘the
quantities

C® 1= 2C 15epk KBKEKD, T 1= 2T sk KRR,

C® = —2C pepkkBkEIP, T = —2C ek RPRE1P,.

C® 1= 2C 4 pepk*KPISIP, C® = 2T 15e s kARPIETD,

CP iz —2C ek PP, T® := —2C ;5K TP,

€D 1= 2C 4 pcplMIPICIP, TW .= 2C e APPIETD. (2.20)

The above quantities can be used to characterize types of the conformal curvature tensor.
Schematically this characteristic is represented by the Cartesian product of two tables
(notice that if the type of the conformal cutvature tensor is [A] x [B] then we say that
the type of C pzcp is [A] and the type of Ciz¢p is [B].

The spinor k4 for which C*® = 0 we call P-spinor; the spinor k4 for which C>' = 0
we call P-spinor. If C®® = C® = 0then we say, that k* is a multiple P-spinor; analogously
if C® = C® = 0 then we say, that k4 is a multiple P-spinor.
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B TABLE 2.1
The type . . The type . .
of Capcpis if and only if of Cincsis if and only if
Lol For each pair (k4, 11), 1CB3)] 11 i For each pair (Z"i, 7"3), |C)
U= o) 2 0, S ey
There exists a pair (k4, [4), that There exists a pair (E'i, I4), that
CcG®) = C®) = Q. CH' = C® =9
[2-1-1) | gor each so pair, is (2-1-1] F i
s or each sO pair, Is
CB® £ 0, ICWI+:CD] = 0. C®) 20, ICM+1CP) = 0.
- . —_— e e . .
| There exists a pair (k*, ), that . There exists a pair (4, 14y, that
2] C=C® =@ =ch=o, 221 | E6) = C® = 8 = ¢ = 0,
“ c® ~0. % °® 0.
B-1] 1 There exists a pair (k4, /4), that G3-1) There exists a pair (123,7‘4), that
LC® =CW® =CB® =90, C 0, C®) = C® = 0 =0, €@ 2 0.
| There exists a pair (k4, /), that ; There exists a pair (k4, /4), that
[4] | CE) = CH = C® = =, 4] CO) = CW = ¢19) = ¢ = 0,
lcw 2o cW £ 0.
7. - .—{ , ) _ . -
. There exists a pair (k4, /4), that . There exists a pair (k*, /), that
—] CB) = C® = CB3) = @) [—1] CO) =W = ) = CcD
| =CM =0 L =CW =0

An algebraic classification of the conformal curvature tensor can be done by examining
the possible algebraic structures of the following linear mappings ([25, 19] for real space-
-time):

CH8. 00 = w48 (2.21a)

CAB .30 = P45, (2.21b)
where @2 = @D $CH = HCD), By using (2.20) we can easily see that, in a given
pair of spinor bases the mappings (2.21a) (2.21b) are determined by matrices (notice, that

the space of undotted or dotted symmetric contravariant spinors of the second rank is
three-dimensional):

%C@; c® % C(l)‘
Ci={-1c® _c® _1c®}, (2.22a)

% C(S) C(4) _% C(3)
and
[ %C”’ c@ %C(l)
Ci={-iCc® _c® _1c@®}, (2.22b)
1 c® c@ %C(”
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respectively. Now from the linear algebra [22, 23, 28] it follows, that the algebraic structures
of the mappings (2.21a), (2.21b) are determined by characteristics of A-matrices:

[ % C(s)—l C(2) % C(l)
C—A =3 —~%3C® —c®-1 —1c® L (2.23a)
{ % C(5) c® _% C(S)——l
( 1 c®_; c® 1cw
C—il ={-1C*® -C®_3 —ic*®» 1}, (2.23b)
\ 1o cw 1 CG)“’R
here
1 00
I:={0 1 0].
0 0 1

The possible characteristics of the matrix C—AI are: (1,1, 1), ((1, 1), 1), ((1, L, 1)), 2, D),
(2, 1)), (3) (and analogously for the matrix C — AI). Now using the results of the Table 2.1
one can easily find (writing (2.23a) and (2.23b) in the suitable bases) that there is the
following one to one correspondence (for details see [24]):

The type of C,pcn The characteristic of C— A7

-1-1-11 « (1,1, 1)
[2-2] > (@, 1, 1)
(-] « (@, 1, 1)
2-1-1] - @1)
[41 « (@, 1)
B-1] “ €)

and analogously for C zcp and C—Al So one finds, that the study of the algebraic
structures of the linear mappings (2.21a), (2.21b) leads to the same types of the conformal
curvature tensor as the Penrose classification does. Eigenvalues of the mappings (2.21a)
and (2.21b) are the solutions of equations

det (C—Al) = 0, (2.24a)
and
det (C—AI) = 0, (2.24b)
respectively. (2.24a) and (2.24b) respectively lead to the equations
2 3
iP-lci-tc=0o, (2.252)
2 3
P-1Ci-iC=0, (2.25b)
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where

2 2 3

Ci= C* ) CP,,, Ci=CB TP Ci= C*BepCPrCE 4,
3 .. v o ..
C = C8:3CP 1 CEF ;.
From the theory of algebraic equations of the third order [22, 23] it follows, that (2.25a)
‘ 2 3
has multiple roots if and only if invariant 4 defined by 4 := 1 (C)*—3(C)? is equal to 0:
2 3

likewise (2.25b) has multiple roots if and only if invariant 4 defined by 4 := 1 (C)?—3(C)?
is equal to 0.

Now one can easily show that the type of the conformal curvature tensor is determined
2 2

by: 4, C, 4, C and the orders of minimal polynomials of matrices C and C (for details
in real space-times see [19, 25]). One obtains characteristics of types of the conformal
curvature tensor in the form of the Cartesian product of two diagrams (figure 2.2). We

Conti nd Discrets z Continuous and Discrete
inuous and Discrete A AR c g
Characteristics ABCD ABCD S haracteristics A
- ainge 2O TR J1X A S — —— 0 ) ole
single
e-valués of (221a) \ l\ ¥ A l \ Y e valges of (2.218)
é“o <~—[2 27<—[2~7 17 X [2-2] w[2H1]— = e »{ g;o
\ C
7 double Isingle *0 l fdouble,1single
e-value'of(221a), BN & value'of (2215)
}4- ——[-1 <—[' ~—[3~17 [-] - [4] -—[3-1] —-—-->{ %
1 Iriple 20 1 Triple

e-vaiue of (2270) elvalue of (2.21b)

Order of minimal poly: Order of minimal poly-

nomial of thematrix (- — —for—— 1t ———24-—— 3 —_——— e e 24— nomlal of the matrix

[
Number of eigenspinors Nu;nbzer of eigenspinors
f(2.21a). . of (2.215).
,2, {,,, b/?cicket‘ - F(I}— o~ 2{0)— — )} — — — ~— 31}~ o 2T} —— HEH) — — —w={ in the bracket
Petrov's Type of Petrov's Type of

Casco Cisco
Fig. 2.2. The lines under 45° indicate the order of the minimal polynomial of € and C, respectively. The

vertical lines indicate the number of eigenspinors of (2.21a) and (2.21b) and Petrov’s Type of C4pcp and
Cabch, respectively

will call C,pcp “the heavenly part of the conformal curvature™ or *the left conformal
curvature”; Cigep Will be called “the hellish part of the conformal curvature or “the
right conformal curvature”. Note that the left conformal curvature determines the
self-dual part of the conformal curvature tensor, % (Cueit *Copcd): 2 (Copea C,,bc,,)
= 1 8" PCupcpSes", where *Cyy is defined by *(3 Cope® A €)) =: 3 (*Copa)e® A € and
the right conformal curvature determines the anti-self-dual part of the conformal curvature
tensor, 3 (Capea— *Capea): 3 (Capea— *Caped) = % sab’ié Cjéébscdéb .

Now we are going to generalize the notion of the Debever-Penrose vector on the case
of the complex oriented space-time. If k* is P-spinor then each vector /* of the form

= zg" Bk i, (2.26)
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where z — the complex number # 0, Aigis any dotted spinor # 0, we call “the left
(or heavenly) Debever-Penrose (briefly D-P) vector”. If k* is multiple P-spinor then the
corresponding left D-P vector we call the multiple one. The direction defined by /* we
call “the left (or heavenly) D-P direction”. Now if k* is P-spinor then each vector r*
of the form

o= 2" Bm kg, (2.27)

where z is the complex number # 0, m, — any undotted spinor # 0, we call “the right
(or hellish) D-P vector”. If k4 is multiple ?-spinor then we will say that r* is the multiple
right (or hellish) D-P vector. The direction of #* we call “the right (or hellish) D-P
direction”.

Each P-spinor determines the two-dimensional vector space such that each vector
(# 0) belonging to this space is the left D-P vector. Analogously, each P-spinor determines
the two-dimensional vector space such that each vector (# 0) belonging to this space is
the right D-P vector. The vector spaces determined by P-spinor and P-spinor possess
the common one-dimensional vector space, the elements (# 0) of which we will call *“the
generalized D-P vectors”. From the above definition, each generalized D-P vector k*
is of the form

K= zg"Bk kg, (2.28)

here z is the complex number # 0, k* — P-spinor, k4 — P-spinor. The direction of k*
we call “‘the generalized D-P direction™. If k* is P-spinor and C*®) = ... = C©®™"*D =,
C5™™ s 0 (see 2.20) then we say that k* is “m-fold P-spinor’ and corresponding left D-P
vector (direction) is m-fold. Similarly if k4 is P-spinor and C® = ... = C® """V = g,
C®7™™ # 0 then we say that k4 is ““n-fold P-spinor’ and corresponding right D-P vector
(direction) is n-fold. Let k* and k4 in (2.28) respectively be m-fold P-spinor and n-fold
P-spinor, then generalized D-P vector k* (the direction of k£*) will be called (s, n)-fold one.
For example, there exist 16 (1, 1)-fold D-P directions for the type [l —1—-1-—1]
®[l—1—1~1] and only one generalized (4, 4)-fold D-P direction for the type [4]&® [4].

Now let K* be an arbitrary null vector. In the space of tensor of the same algebraic
properties as the conformal curvature tensor we define the following linear mappings:
D(K,), D*(K,), D”(K,) by

Kapys 1= (D(K)Copodz®dZ" @A@Y .5 1 = K*K(uCppi,KoK's  (229)
Kopps 1= (DT (K)Clyod 2" ®dz" @dz*@dz") g,
1= (D(K,) 5 (Crrpe +¥Crhpo)dz" ®dAZ"® Az ®dz°) 4,5 (2.30)
K™ g5 1= (DK )Co0ed 2" @A @Az ®dz%) 4,5

‘= (D(K,) % (Cpppo = *Corg M2 @dZ* @ A @ d=") .5 (2.31)
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Of course D(K,) = D*(K,)+D~(K,), One can easily find that the spinorial images of the
objects Kyp.50 K upys K up,s are given by

K 4pep = % KAKBKCKDC};QRSKPKQKRKS,

Kaies = 7 KiK3KeKoCroasK KK K®, (2.32)
K+ABCD =0, K+,&Béb = % KAKﬁKc‘Ki)CPQRsKPKQKRKSa (2.33)
K™ ancp = + K4KpKcKpCroisK ROKRKS, K 1305 = 0, (2.34)

where K4, K4 are defined by

U e o
K'=:— ﬁ g"""K K;. (2.35)

From (2.32), (2.33), (2.34) and using the results of Table 2.1 one can easily deduce.
Proposition 2.1

K.,p,5 = 0 < K* is P-spinor and K4 is P-spinor <> K* is generalized D-P vector. []
Proposition 2.2

K* 5,5 = 0< K" is P-spinor < K* is the left D-P vector. []
Proposition 2.3

K™ 406 = 0 <> K4 is P-spinor <> K* is the right D-P vector. []

The mappings: D(-), D*(-), D~(-) possess some interesting properties (for details see [4, 24]).
Furthermore it is not hard to generalize the well-known in the case of real space-time.
Sachs-Debever’s [26, 27] characteristics of algebraic types of the conformal curvature
tensor (Table 2.2).

One can easily show that for each type [A]®[B] one can choose common set of
directions mentioned in Table 2.2. This set contains the number of directions equal to:
max (number of /* directions; number of r* directions).

Now for the sake of completness we consider the generalization of the Petrov approach
to the problem of classification of the conformal curvature tensor [28] on the case of the
complex oriented space-time. Let us introduce the following base in the space of 2-forms

~ , o~ , .. D
eli=e" net, eli=eP aeY, :=e A e,
14
- , . , .. S
eti=eP Ae¥, ei=e¥ Ael, ef:=ce' Ae?, (2.36)

where (e, e¥, ¥, e*) is “the rightly oriented Lorentz tetrad” defined by

. 1 . i
el = 75(61+ez), e 1= — \_/E(el_eZ)’
30 L5 4 4 L5 .
e = \/—i(e +e ), e = ﬁ(e —e ). (237)
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TABLE 2.2
The type . X The type . .
of Capep is if and only if of Caachis if and only if
There exist four non-orthogonal There exist four non-orthogonal
null directions such that null directions such that
[1-1-1-1] D*(lﬂ)Cap-/a =0 [1-1-1-1} D‘(r,,)Ca,;,.a =0
(here [* is an arbitrary vector (here r# is an arbitrary vector
defining one of these directions). defining one of these directions).
There exists the null direction There exists the null direction
defined by the vector [#, such that defined by the vector r#, such that
(@ lu(Cauv[y‘{”*Cauv[y) l&]lv =0, (a) r“(Cauv[y_ * auv[y) ré]"v =0,
[2-1-1] [2-1-1]
(0) (Capry+ *Capy) Iyl # 0. (b) (Caprpy—*Copspy) rayr® # 0.
If null vector L* fulfills If null vector R* fulfills
(@), then I*L, = 0. (a), then r#*R, = 0.
There exist two non-orthogonal There exist two non-orthogonal
null directions defined by vectors null directions defined by vectors
{% and 1Y, such that r# and r4, such that
[2-2] I‘:(Cauv[y’*' *Cauv[7)1|1{6]l¥ =0, [2-2] r‘f(Cauv[y_ * rzuv[)')r| 1[6]’; = ba
l’;(cauv[y+ *Cuuv[y)l|2|d]1; =0, rg(cauv[y_ * auv[v)"[z]b]r; =0,
and Couyy+ *Capyy # 0. and Cyuyy— *Copyy # 0.
There exists the null direction There exists the null direction
defined by the vector /*, such that defined by the vector r#, such that
3-1 3-1 !
B3-1 (Cauv[y+*cayv{y)16]1v =0, B3-11 (Cmyv{y_*cayv[y)ré]r‘ =0,
(Cauvy""*cauvy)lv # 0. (Cauvy‘ *Cauvy)"v # 0.
There exists the null direction There exists the null direction
defined by the vector /¥, such that defined by the vector r#, such that
4 4 :
“ (Cauv)"f'*capvy)lv = 0, “ (Cayvy_*Csz,uvy)ry = 0,
Cauw‘f" *Cauvy * 0. Cauv;'_ *Cauvy 7 0.
-] Cauv7+ *Cauvy = 0. ] Cauvy_*cauvy =0.



497

If w is 2-form then one can write

w=wet, A=1,27345,6 (2.38)

The conformal curvature tensor at some point of the complex oriented space-time is repre-
sented by the 6 x 6 symmetric matrix (Cz3) according to

1 Copea(e® A E)YD( A V) =: ;52z®55. (2.39)

Furthermore, we introduce, in the space of 2-forms, the symmetric tensor of the second
rank, ‘“‘the metric tensor” as follows

gae" ®e” 1= § (BueBys ~ Laaye) (€ A ENB(7 A ). (2.40)
One can define the tensor g4 reciprocal to g3, by
gz5e’C = 855 (2.41)

In the base which we consider, this tensor has the form

-1 0 0 06 0 O

0-1 0 0 0 O

- 0O 0-1 0 O O
o 0 0o 0 1 O

0O 0 0 0 0 1

2
Now consider the linear mapping AL, — A2 (here L, denotes the space of tangent vector
fields and A? the space of 2-forms) defined by

C330% = ¥y (2.43)

The structure of this mapping at a given point of the complex oriented space-time is deter-
mined by the A-matrix

(Ciz—Agam)- (2.44)

The Petrov approach consists in studying the matrix (2.44). It can be shown that by elemen-
tary transformations the matrix (2.44), can be brought to the form:

M—iN+ I 0
{ 0 M+iN+AI } ’ (2.45)
where M, N are 3 x3 symmetric matrices and
1 00
I=10 1 0
0 0 1

One can easily verify that M —iN = (Czz+ *Czp), M+iN = (Cz5— *Cz5). (Notice that
in the complex space-time (M +iN) # (M —iN)*, where * denotes the complex conjugation.)
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The matrices M—iN+Al and M+iN+ Al possess one of the characteristics: (1, 1, 1),
(1, D, D, (1,1, 1), @, 1), (2, 1)), (3). Therefore we obtain the Petrov classification of
the conformal curvature tensor of the complex oriented space-time:

Petrov’s type of Petrov’s type of
M—iN = Cyz+*Cxp M+iN = Cz3—*Caw
I I
11 X 11
111 III

Fig. 2.3

where Petrov’s Type T of M —iN (M+iN) is defined by characteristics of M —iN+AJ
(M+iN+2AI): (1,1, 1,) ((1, D, 1),((1, 1, 1)), Petrov’s Type I1 by characteristics (2,1), (2, 1))
and Petrov’s Type III by the characteristic (3). It is meaningful that the conformal curvature
tensor of the oriented complex space-time is of Petrov’s Type: (I, I1), (I1, 1II) etc. (Notlce
that we will write IQIL: = (I, II), TIQLII: = (II, ITI) etc.)

Naturally one may ask now, what is the connection between the spinor approach
and Petrov’s approach to the algebraic classification of the conformal curvature tensor,
The answer is that the matrix ({N— M) is similar to the matrix C (see 2.22a) and the matrix
(—iN- M) is similar to C (see 2.22b). Therefore the characteristic of (C—Al) is the
same as that of (M —iN+Al) and the characteristic of (C—AI) is the same as that of
(M +iN+ Al (for the real space-time see similar consideration in [29]). Indeed

AB 1 Qa'b'4B c'd 1 GAAB s | wprenGCB
C%p=1¢S CoveaS " cp =5 S (Caz+*C35)S cp

3 ~ ~ ~
LY Sa*(C5+*C*p)S . (2.46)
;B~=
Substituting
AB ] 11| 12 | 22
xv,z | 1 | 2 | 3
X 1 x 4 1 4 A 5 oA A i
5= 55555 Pl-z—isl, P4, = /284, P = —S54,,
V2 v
A,B=1,23,

and taking into account relation (CAz+ *C4) = iN—M for A, B = 1, 2,3 one obtains
C = 2 L3N — M)3;PP)). (2.47)

AB=1
Now taking into account the algebraic properties of the spin-tensor S, (see [25])

we can easily verify (L¥;)™' = (P3y). Hence

C=L-(iN-ML"; (2.48)
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here L := (L*3). Similar arguments lead to similar resuits for the matrices (—iN— M)
and C.

Therefore we have proved that the spinor approach and the Petrov approach to the
problem of algebraic classification of the conformal curvature tensor of the oriented
complex space-time are equivalent and we have justified the presence of Petrov notations
in Fig. 2.2.

At this stage, few remarks about improper transformations of null tetrads are in
order. Let (‘e!, 'e?, 'e®, "e*) be a null tetrad “conjugated” to (e, €2, 3, e*) on ¥V, that is:

el:=e% et:=el, ed:=e}, et:= et (2.49)

and let (E',’E? 'E® 'E*) be a null tetrad “conjugated” to
(Ela EZ: E3’ E4) € [(els e2y 83: 84)]:

'Et:=FE? 'E?:=E' 'E3:=E3 'E%:= E*%, (2.50)
If
1 1 AB a 3
= 75 &a AVBE = a AKEE
E 7 g, %k g, E /2 2. %k K"
2 1 AB a 4 1 AB a A A
E* = :/-5 g % kze’, E* = 75 8 Llge®, kY, =FK1; =1, (2.51)
and
i 1 ABr I '3 1 ABr 't a
E /zga k ly'e’, 'E =—-7§ga kikye
B = = g PRy, Et = =g MLl kML =R =1, (2.52)

\/2 Jz

then one can easily verify that with the precision to the sign:

kA = E‘ T Rkt o (2.53)

Further one finds
rgAB __ sié, ISAé R (2.54)
"Casco = Ciscy»  'Ciscd = Casco- (2.55)

Then from (2.53), (2.55), (2.20) it follows
"CW=C® CP=C? a=1,273465. (2.56)

Therefore one concludes
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(D) If (Vg, [(e', €%, €%, eM]) is of the type [AI®[B] then (Vg [(el, e?, "€, 'e?)]) is
of the type [BI®[A].

(2) P-spinors (P-spinors) on (Vy, [(et, €2, €3, e*)]) are in some sense equal to respective
P-spinors (P-spinors) on (Vi, [('e!, 'e?, €3, 'eh)).

(3) Left (right) D-P vectors on (¥, [(el, €2, €3, e*)]) are right (left) D-P vectors on
(Vi [(e', e, e, "eM))).

(4) Generalized D-P vectors overlap in these two cases.

(5) Irrespective of the orientation of V; one can only say that ¥V is of the type {[A4],
[BI}; where {[4], [B]}:= [4]®[B] or [BI®[A4].

One can easily pass to the case of the real space-time considered as a real cross section
of the respective complex space-time. We have to remember that for the real space-time
E' = (E?)*; E?® = (E%)*; E* = (E%)*, dotted spinors = (respective undotted spinors)*
(here = denotes the complex conjugation). Of course the type of the real space-time is
[4]®[A].

3. Algebraic structure of the energy-momentum tensor on complex space-time

In this section we shall generalize the algebraic classification of the energy-momentum
tensor given by one of us (Plebanski [19]) for the real space-time to the case of the complex
space-time. Einstein equations on the complex space-time are of the form

Raﬂ_%Rgzﬂ = _Snraﬁ'*_/lgaﬁ, (31)

where: A — “the cosmological constant”, 7,, — “the energy-momentum tensor”. Now
introduce the trace-less tensor C

Caﬂ = Rllﬂ—% Rgaﬁ' (3.2)
From (3.1), (3.2) it follows
1 1
Taﬁ = - é;_ Caﬁ+TT ' gaﬁ’ (33)

here 7 := 1%,. Due to (3.3) the algebraic structure of 7,4 is determined by the algebraic
structure of C,;. The tensor C,; allows one to define the linear mapping L, into L, as
follows

o G N v el (3.4
e 9z*’ ozf o

Therefore the algebraic structure of C,; at some point of the complex space-time is
determined by the algebraic structure of the mapping (3.4) at the point p. Let C,,
C,, ... denote different eigenvalues of (3.4) (at the point p); then C*% can be represenied
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in the Jordanian base, by one and only one of the matrices

C,0 00 C,0 00 C,0 0 0 C,0 0 0 C,0 0 0
0 C,0 0 0 C,0 0 0 C,0 0 0 C,0 0 0 G0 0|
00 C0 Jloo cs0 Flo o c,o flo o c,o flo o c,o ’
000 C/ \000cC,/ 0o00¢cC/\0o00c/ \oooc
(I, 1,1, 1), (1, 1,0,1), (@, bD,04,D), (4,0,1,1), @, 1,1, 1)),

C,0 0 0 C,0 0 0 C,0 0 0 C,0 0 0
0 C,0 0 0 C,0 0 0 C,0 0 0 C00 | o
00 Cil 00 c1 Ploo c,1 Ploo ¢ i ’
000 Cy/ V000G C,/ \oo0o0cC,/ 000 c
2L 2,4, 1), (2, 1), 1), 2, 1, 1)),
'c,1 0 0\ /C;1 0 0
0 C,0 0 0 C,0 0 _
0 0 C,lI 00 ¢ 1 |~
000 C)/ \000 C
2,2, (@2,
/C,0 0 0 /clo 0 0
0 C,1 0 0 C, 1 0
00 C,1 00 ¢ |~
000 C,/ \0 00 C,
3. 1), (3, ),
C,1 0 0
0 C, 1 0
00 c1 |~V
000 C

By I, 11, 11y, IIi., IV we have denoted Types (capital T!) of C,;. Beneath each matrix
the characteristic of the A-matrix: (C*;—46%) is given. From C%, = 0 it follows, that the
sum of diagonal elements of the matrices displayed above is equal to 0. There is the
following correspondence between the number of eigenvectors of the mapping (3.4} and
Type of Cu:

Type of C,; - Number of eigenvectors

1 - 4
i - 3
I, - 2
(1L - 2
Iv - 1

Fig. 3.1
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The possible Jordanian forms define the possible “types” of C,; (and of 1,5). By some
analysis one can conclude that the type of C,z is determined by the symbol

(r)[nlcl—nZCZ_ _nNOCNO](QI'qz" <+ —4NO)? (3-5)

where r is the number of eigenvectors of the mapping (3.4), C,, C,, ... Cy, — different
eigenvalues of the mapping (3.4), ny, n,, ... ny, — multiplicities of the corresponding
eigenvalues, ¢, , g,, ... gy, — are defined as follows: if D(4) denotes the minimal polyno-
mial of the matrix (C%) then

j No
D) =3 (A—C)™. (3.6)
1=1
Now, if ny, n,, ..., ny, and q,, q,, ..., gy, determine the number r, then we will omit in

(3.5) the index (r); if the order N = g, +4g,+ ... +qy, of the minimal equation of matrix
(C%) and numbers ny, n,, ... ny, determine uniquely g,, q5, ... gy, and the number r then
we will write briefly

(7, Cy~nyCy— o ~ 1y, Crv 5 (3.7)

If an eigenspace corresponding to some eigenvalue contains a null vector then such eigen-
value will be denoted by one of the symbols: N, N, N, ... etc. Notice that of course

n1C1+n2C2+ ves +nN0CN0 = 0, (3.8)
ny+ny+ L Hny, =4 (3.9)

We shall now transform C,; of the definite type to the canonical form. But before we do
this we prove some auxiliary propositions:

Proposition 3.1

Let {X¢ Y7, Z°} be the set of three linearly independent, mutually orthogonal tangent
vectors at some point of V3, and let X*X, = 0, then Y*Y, # 0 and Z°Z, # 0.

Proof

Choose the orthonormal base such that
XY =(0,0,X¥,ix*), Xx¥ #o0. (3.10)
From X*'Y,. = X“'Z,. = 0 it follows
Y = (Y'Y, YV, vY, YY), @G3.11)
z¢ =", z%, 7%, iz%). (3.12)
Suppose
Y'Y, =0, (3.13)
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then from (3.11) (changing eventually the orthonormal base but with fixed (3.10)) we
obtain

Y =YV, iY", YY, iv®), (3.14)
and by independence of X% Y? one concludes Y # 0. Now
Y2, =0« 2% =(2",iz",2%,iZ*"). (3.15)

But vectors: (3.10), (3.14), (3.15) are linearly dependent and this result contradicts the
assumptions of our proposition. Similarly one obtains the contradiction assuming
Z%Z, = 0. So the proposition is proved. [

Proposition 3.2

Let {X“ V' W?" Y?} be the set of arbitrary four tangent vectors at some point of
Vs, fulfilling relations

XX, = XV, = X*W, = X°Y, = 0. (3.16)
Then these vectors aie linearly dependent.

Proof

If X* = 0, then there is nothing to prove. Let X* # 0. From (3.16) it follows that in
a suitable orthonormal base our vectors are of the forms

= (0,0, X, ix*), X¥#0, V=", v¥ V¥ v,
we =, wrLowiw?), Yy = (v, v Y ir?),
but
fo o x¥ ix*)
i S
detd . . L. =0,
wtowr oW oaw? l
LA G SN
therefore our four vector are linearly dependent. [
Now we are going to write the types of C,4 in the canonical forms, that is we are going
to express C,p in terms of the rightly oriented null tetrad (we assume that the complex

space-time is oriented one!) (E!, E2, E3, E*) and in terms of the “rightly oriented orthonor-
mal tetrad” (E'", E*", E®’, E*") defined as follows

L1 p
E":= —(E'+E%, E:= (E1 E?),

Jz \/2

— _l- (E*—E%. 3.17)

V2

i

E¥ = (E3 +E%, E*:

7
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Using some results of linear algebra [22, 23] and Propositions 2.1, 2.2 one can obtain
the following results:

Type I — 4 eigenvectors

The types belonging to Type I:

[C1'C2—C3~C4]4

[2Ny = 2N], [C1-3N],

\/

[4N],

The canonical forms of “the parent type” [C,-C,-C5-Cyla:
Cu = CLEVE} +CEYE] + CiE)'Ey + CLESEy (3.18)
and
Cus = $(C5—Cy) (E2E;+E2E})+% (C3+C) (E2E; + E2E; — ELE; — EZEj)
+1(C,—C,) (ELE} + EZE}). (3.19
Eigenvalues and eigenvectors:
C,—E%}, Cy«<E%, C3—E%, Ci«E), Ci+C+C3+Cy=0.
Type II — 3 eigenvectors

The types belonging to Type IL:
[C, -C5 ~2N]‘

S

[2Ny-2N] (1-2) [c;-3N]3

/

Prang,

The canonical forms of the parent type [C,-C,-2N]4:
C.y = CiEVEY + C,EX'EY + N(EYEy +EYE} ) +% (B +iE]") (B +iE; ), (3.20)
and
C.p = E3E3+ N(E2E; + E4E}—ELE; —EZE;)+5(C,—C)) (E;E; +EZE).  (3.21)
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Eigenvalues and eigenvectors:
Cl HE?”: Cz"* E‘;.": NHE:, C1+C2+2N = 0.

Type IIIy — 2 eigenvectors

The types belonging to Type Illy:
[2N,-2N],

D[4N],

In the case of oriented complex space-time each type possess two sub-types, “a” and “b”.

The canonical forms of parent sub-types
a) 2N, -2NT;

Cop = N(EEy +E; B )+ No(E; By +EJE})

+3 (B —iEXY(By —iE; )+ 5 (B +iEY) (E) +iE}"), (3.22)
and (using relation N, = —N)
C.p = N(EJE;+E;E;—E,E; —EZE;)+ EZE} + EZE}, (3.23)

b) 2N, —2N)}
Cys = N(EJ'E} +E{'Ef )+ N(E} E} +EX'E}")
+% (B, +iEZ") (B} +iE} Y+ 5 (E) +iEY) (B} +iE})), (3.24)
and (using relation N, = —N)
Co.p = N(EJE;+EJE;—E,E; —EE;)+ELE;+EJE;. (3.25)
Eigenvalues and eigenvectors:
a) NeoEf, N, =-NoEjf,
b) No+E;, N,=-—NeEj.
Type Il
The types belonging to Type Ill:

[Ci-3N],

l
[4N1s

The canonical forms of the parent type [C,-3N],:
Cys = CLE}E} +N(EX'E} +EYE) +EYES)
1

NG

+ —=(E) +iEY)E; + —= EX(E; +iE}), (3.26)

NG
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and (using relation C; = —3N)

i

aﬂ='\—/—§

C LEXNE;—Ep+(E}—EDE;1+ N(EJE} + E:E; — EL,E; — EZE})

~2N(ELE;+EE}). (3.27)
Eigenvalues and eigenvectors:
NeE,, C,= —-3NeEj.

Type 1V
The types belonging to Type IV:

There exists one type only: [4N],. In the case of oriented complex space-time this class
possess two sub-types a and b.

The canonical forms of the sub-types:

a) [4N];
Cop = L[(EY +iEY)Y (EY +iEX)+(EY +iEX) (B3 +iE})
+(E, —iE;) (Ey —iE; )], (3.28)
and
Co = E,E; +EJE; + EZE}, (3.29)
b) [4N12
Cop = 3 (B +IE;) (Ey —iE; ) +(E, —E]) (Bj +iE;)
+(E; +IE) (B +iEF)], (3.30)
and
C,p = EXE;+EJE; + EJE;. (3.31)

Eigenvalues and eigenvectors:
a) N = 0+« EZ,
b) N = 0+ Ej.
The spinor image of C,; is defined by
Caper = % Cup8"ac8’sb > Cap = 825" Cuanii> (3.32)

Using the canonical forms of C,; and taking into account the formulae (2.12) one can
obtain the canonical forms of C,zep:
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Type 1
The type [C,-C,-C3- Cils

Capcdh = 3 [2(C3—Cy)(axa+bxb)—(C3+Cyexe+%5(C;—C,)(axb+bxa)].

(3.33)
Type 11
The type [C,-C,-2N],
Cupép = 7 [axa—2Nexe+%5(C,—C,)(ax b+bxa)]. (3.34)
Type Iy
a) The sub-type [2N—2N];
Cagep = 3 (=2Nexc+axa+bxa), (3.35)
b) The sub-type [2N,—2N]}
Cuncp = 37 (—2Nexe+axid+axb). (3.36)
Type Il
The type [C,-3N]4
Cusép = ¥ [—2N(axb+bxa+exd)—(axé+exa)]. (3.37)
Type {V
a) The sub-type [4N];
Cupep = + (=2 iaxc+bxa), (3.38)
b) The sub-type [4N]h
Cancp = 3 (2 icxd+axb), (3.39)
where ax b 1= a,ghep, axa 1= aygacp, axé = a48C¢p ©IC., aqp = kukp, cp = kekp,
bap = Lalg, bep:=lelp, capi= \/2ikialp), Tcpi= —/2ikelp,, and pairs of normalized

spinors: (k*, I*), (k4, 14) determine the canonical null tetrad according to (2.12). Further
one can define two undotted and two dotted four-spinors as follows

Uascn = 4C4s" Cepis: (3.40)
Vaseo = Uancp) (3.41)
Uiscp = 4C% 15Crscin (3.42)
Vises = Uiigépy (3.43)

Using (3.33)(3.39) one easily finds U pcps Vasens Uascs and Vigep. Spinors Vpep and
Vises possess the symmetry of the spinorial images of the conformal curvature tensor,
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C.scp and C ;¢ respectively, therefore one can consider them from the point of view of
Petrov-Penrose classification (see Fig. 3.2).

Now we shall describe briefly our algebraic classification of C,; in terms of continuous
characteristics expressible in term of invaritants of the tensor C,; (for details see [19,
24, 25]). The characteristic polynomial of the matrix (C%) is:

4 4
D(A) := det (C*—28%) = [] (-D)'%1*™' = [] A—C)), (3.44)
1=0 (131 i=1
where
¢:=1 @:=C%,, ...C%, k=1,2,34, (3.45)

[0] [k]

and C;, i = 1,2, 3, 4 are eigenvalues of the mapping (3.4) (at a given point p of the complex
space-time, of course).

C*,=0<% =0. (3.46)
[

Besides € we introduce also the second sequence of invariants
!
0 p
¢:=4, €:=Tr[(CHF], p=12... (3.47)

One can verify the following relations:

P 4
¢= Y C,..C, %= 73 (Cy, (3.48)
IRa] comb i=1
17 ... %0
1 2 3 4 2
€=0, €=-3% €=3% €=-14+i®> (3.49)

[2] £31 141

From the theory of algebraic equations of the fourth order [22, 23] one easily deduces
that the eigenvalues C}, i = 1, 2, 3, 4, are expressible in terms of the roots (x;, x,, x3)
of the following third order algebraic equation

xX}—Ux*+Ux—U =0, (3.50)

{11 [2]1 [31

here

2

U:= —2¢9 =, (3.51)
[1] [2]
4 2

U:= (%) —4% = -1 (%), (3.52)

[21 [2] [4]

U:=(¢) = —;((;)2. (3.53)
[3] [31
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One obtains

&1 \/x_1+82 ‘\/x_2+83 \/x_3

—& ‘/x_1+82 \/x—z"ﬁs \/x—s
b

C = , Cy =
! 2 3 2
L aNr—aVo-aY | —aVn—aVnta v
C2 = s C4 = 5 (354)
2 2
where &,,¢,,&; = +1, and the signs are chosen so that:
£ ey 83 VX Vx, Vxy = @ (3.55)
31
Substituting
Vii=x+2% (3.56)
[21
one transforms the equation (3.50) to the canonical form
Vi3-3py'—2¢ =0, 3.57)
where
pi=GUY-3U=(G%)V+36, (3.58)
[} {21 [21 {41
=G UP-1U-U+iU=(E(¢)Y-%¢¢+3(%). (3.59)

[1] [11 21 (31 21 [23{4] [31

(It is interesting to note that the equation (3.50) is precisely the characteristic equation
of the eigenvalue problems:

UAB 0P = xd48,  ¢*8 = d)(ff’), U,iisc,bq—)‘cb - xq—jjah’ F4B — 5(,4';})’
and the equation (3.57) is the characteristic equation of the eigenvalue problems
VABCD¢CD — V/(pAB, ¢AB — ¢(AB), VABéb§CD = V/@AB, éAB — 5(1{8)‘)
Finally we introduce invariants:
4= 3% 2%(p*—q*) = [(C4—C) (C4—C) (C4—C3) (C5—C3) (C3=C) (C2—CDT
(3.60)

and

J:= xl(xz—-x3)2+x2(x1—~x3)2+x3(x1—x2)2 = [ U-9U
(11121 (31

= —2(€)+8% €—9%)* (3.61)
[2] [2]1[4] [3]
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Fig. 3.2. Algebraic classification of energy-momentum tensor in complex space-time

After some analysis one can describe the algebraic types of C,; in terms of continuous
characteristics. The results are tabulated in the figure 3.2, In the figure we introduce the
graphical symbols of C,; Types and Petrov—-Penrose’s types of ¥ 4pcp and Vigep as follows:

Typelll, — .i

-1-1-1] — ><
2-2]— ))

[-J—[-1

2-1-1] — )k

w— ||

o1

For example the symbol: )) X )L denotes that Vagep is of the

type (2-21, V; BCO 1S of the type [2-1-11. The arrows ‘1'1,\ ,
symbolise null eigenvectors and remaining arrows { 1 s, /

symbolise non - null eigenvectors.

S

ete.)
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An abbreviation “E. V.” in our table means “eigenvector(s)”; abbreviation “‘e. v.” refers
to “eigenvalue(s)”. The vertical lines — —— divide algebraic types of C,4 into Types. The
lines under 45° indicate the order of the minimal polynomial of the matrix (C%).

Now, as a “physical” example consider the electromagnetic field in the complex
oriented space-time.

Linear electrodynamics (see [25]). The energy-momentum tensor

1 v
T\z/} = 4—7;_ (flaf},/}_% gaﬂf” uv)’ (362)

where of course f,; = fi is the tensor of an electromagnetic field.
Caﬂ = _2(](: j/.ﬂ_%-— gaﬂf#vfuv)' (363)

The spinor images of f,; are:

fap:i= %fuv " B (3.64)
Fis 1= 5 fS"" 15 (3.65)

Hence
fuv = fABSuvAB+.f,il§§uvAB' (366)

Furthermore one can easily verify that

Cupcp = —8fusfecp (3.67)

The invariants of f,, are
Fi= 2 ff™ = 2 f P+ 2057 45, (3.68)
Gi= L fud™ = Yupf " 2T, (3.69)

(where f w is defined by *(4 f,,dz" A dz¥) = :%f”vdz“ A dz). One has to consider four
cases:

a) General electromagnetic field is characterized by:

AB 0 .
?,’,;ﬁ i 0} < F#£0and G #0 (3.70)
AB.
In this case
fap = 2(E+iB)klp,, (3.71)
Jis = Y (E—iB)kls, (3.72)

where E, B, E, B are some real quantities and k%, = k4l; = 1.
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Therefore (using (3.67), (3.32) and (2.12)) we obtain
C.p = (E+iB) (E—iB) [2E E*j,—2E" ,E%;)].
Consequently C,; is of the type [2N,;—2N], and N = —N, = (E+iB) (E—if?).
b) Null electromagnetic field is characterized by:
Funf ™ =F1sf B =0« F=0and G =0
In this case:
fas = 7 kaks,
Fib = % kik;.
Therefore
C, = —EJE;
and we conclude that C,, is of the type P[4N],.
c) Right-null electromagnetic field is characterized by:

Fasf™® = 0} . .
< F-G=0and F+G # 0.
fanf® #0

Now one can put
fan = 3 (E+iB)kaly),
- 1 ~
Jas = NE1iB) kiks,
and then one obtains
C.p = 2E° E?,
and it is easy to see that C,, is of the type P[4N], and of the sub-type ‘P [4NJ.

d) Left-electromagnetic field is characterized by:

fABfAB =0

.. < F+G =0 and F—G # 0,
Fasf*? # 0}

one can put

1
fAB = kAkBa

 AE—iB)

Fis = Y (E—iB)k 1.

(3.73)

(3.74)

(3.75)
(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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Therefore
C.p = 2E> E',, (3.85)

and C, is of the type ‘P[4N], and of the sub-type ‘P[4N1S.
Non-linear electrodynamics (see [30)). The energy-momentum tensor is of the form:

! aLf‘ o ) (3.86)
taB — 47? 5F a AV Bag b4 3 .

where L = L(F, G) := (—4n) (Lagrangian of the field). From (3.86) one obtains:
N {L 3 1 ay
(zﬂ = =2 a} (f af}.[f—ﬁ: gaﬂf fuv)' (387)

Therefore, comparing (3.63) and (3.87) one concludes: that the possible types of C,,
in the case of non-linear electrodynamics are the same as in the case of linear electro-
dynamics.

Finally we should like to obtain the canonical forms of C,; in the case of the real
oriented space-time. We choose the standard null tetrad:

E' = (E**, E’=(E%* E*=(EY* (3.88)

(here = denotes the complex conjugation). The algebraic classification of the energy-
-momentum tensor in the real space-time had been given by one of us (Plebanski {19]). In fact
the method of that classification is very similar to the one given in the present paper. Since
in the real space-time it is meaningful to distinguish time-like vectors, null vectors, space-
-like vectors and complex vectors, we denote the complex eigenvalues of the mapping (3.4)
(at some point of the real space-time) by Z, Z,, Z,, ...; (a real eigenvalue whose eigenspace
contains a time-like vector is denoted by T'; a real eigenvalue with eigenspace without
time-like vectors but with at least one null vector (of course real one) is denoted by N; the
real eigenvalues with eigenspaces spanned only by space-like vectors are denoted by
S, 8,85, ...

Type I —»{4 eigenvectors

Sub-Type I: All eigenvectors are real. “The parent type” is: [$;-S5,-S3-Tl.
The canonical forms of C,; and C,pep can be obtained from (3.19) and (3.33) by
changing: C;, - §,, C, = 8,, C3 - 53, C, » T,

Sub-Type Iz: Not all eigenvectors are real. The parent type is: [S,-S,-Z-Z),
(here Z denotes the complex conjugation to Z). The canonical forms of C,z and Cypep
can be obtained from (3.19) and (3.33) by changing: C; - S,,C, = S,,C; » Z, C, - Z,
EE;+EE; > i(ESE;—EZE}), axd+bxb - i(bxb—axa).

Type II —»fS eigenvectors

The parent type is: [S,-S5,-2N],. The canonical forms of C,; and C,psp can be
obtained from (3.21) and (3.34) by changing: C, > S,, C, > S,, EJE; - ¢ EJE},
axa — ecaxa, where ¢ = +1.
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Type III - 2 eigenvectors

The parent type is: [S-3N],. The canonical forms of C, and C,pep are (3.27)
and (3.37). Notice that in the real space-time Types: Iy and IV do not exist: In the case
of real space-time the dotted spinors are complex conjugated to the corresporiding undotted
spinors.

One of us (M. Przanowski) is grateful to Dr. M. Demianski for valuable discussions
and for his assistance. The authors are also indebted to Dr. Bogdan Mielnik for his helpful
and critical discussions.
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