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The electromagnetic field of a permanently magnetized, rotating sphere without
electric charge is calculated up to the first order in the angular velocity with the help of the
Maxwell equations in the inertial frame of reference and the previously deduced, generalized
Maxwell equations for a non-inertial frame of reference. In this way the field quantities and
the charge densities are obtained in both frames of reference directly, i.e. without using
transformation formulae for the transition between an inertial frame and a noninertial
frame of reference.

1. Some introductory remarks on the problem

The problem of a permanently magnetized, rotating sphere was treated several times
in older literature, but with different results. As it seems to us the last detailed treatise was
done by Schlomka and Schenkel [1] with critical remarks on a paper by Swann [2] (see
also Tate [3], Barnett [4], and Lawrence [5], Cullwick [6]).

In our paper the problem mentioned is treated systematically for the following four
alternatives:

a) inertial frame for the observer: resting sphere (I), rotating sphere (II);

b) rotating frame for the observer: resting sphere (rotating in the inertial frame) (III),
rotating sphere (resting in the inertial frame) (IV).

The calculations are performed in the inertial frame on the basis of the usual Maxwell
equations and in the rotating frame on the basis of generalized Maxwell equations which
were previously deduced by us from the general relativistic Maxwell theory [7]. By this
direct method we avoid the transformation formulae for the transition to noninertial
frames of reference (as is well known, this procedure sometimes gives rise to doubts con-
cerning the correctness of the results). Our field and charge quantities obtained for the
four mentioned alternatives are fully consistent. They coincide, as far as the problem was
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treated by them, with the results by Schlomka and Schenkel. Apart from the clarification
of the polemic situation our treatment here is an interesting example for the application
of the generalized Maxwell equations for non-inertial frames of reference. Furthermore,
the results give useful hints for the dynamo problem of generation of the magnetic field
of celestial bodies, if treated for simplification in the co-rotating frame of reference.

2. Generalized Maxwell equations, constitutive equations, and boundary conditions for
a rotating frame of reference

Let us consider a non-inertial frame of reference, rotating with the constant angular
velocity £2, = kQ, with respect to an inertial frame of reference. According to our results [6]
up to the first order in @, the following generalized Maxwell equations in conventional
Gauss units are valid (dash refers to the rotating frame):
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c\ ot ¢ o
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The electric current density reads if we use Ohm’s law:
L¥3 (w3 ! 1 ’ ’
j=0v+c|E+ —0vxB ], (5)
¢
where ¢ is the electric conductivity. The quantities ¥’ and v mean the radius vector and
velocity of the medium with respect to the rotating frame. Furthermore, ' is the true

electric charge density.
From the field equations in the usual way the following generalized continuity equation

results:
0 ., ., 1 Jj
at (Q + — E ) +le QO (r X 3;‘) = (. (6)

The constitutive equations keep the usual form:

a) D' = E'+4nP', b) B' = H'+4zM". 0
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The boundary conditions in the rotating frame can be derived in the well known way from
the field equations (1) to (4) respectively (6). They keep the usual form for moving media,
100:

47

a) H?—H;' = — A'v{,. b) EZ—E! =0, ®)
C
b) D*—-D!' = 4rd’, c¢) B -B,' =0; 9)
oA’ I
— = 10
o = Jn (10

Here 1 and 2 denote medium 1 and medium 2; A’ is the electric surface charge density;
v} means the velocity of the corresponding charge density in the tangential direction;
¢t respectively n denote the tangential respectively normal direction with respect to the
surface.

3. Alternative I: Resting sphere with respect to the inertial frame (inertial observer)

Since this case is mathematically rather simple, it can be treated more generally than
the others, namely as a spherical shell with inner radius r; and outer radius ro. The other
alternatives are only treated for a sphere with the radius r,.

3.1. Shell (r < r < ro)

Because of the magnetostatic character of this problem we have the simplified situa-
tion:

a)E=0, b)D=0, ¢)g=0, d)v=0, ¢)j=0. (n
Therefore, the field equations read:
a)rot H=0, b)divB =0, (12)
where
B = H+47nM. (13)
For simplicity the direction of magnetization and rotation will be taken to coincide:
M = kM (M = const). (14)

This means axisymmetry of the problem with respect to k (z-axis). Under these circum-
stances we get from (12a) rot B =0, i.e.

B= —grad 7, (15)
where ¥ is the magnetic potential, for which from (12b) the potential equation

A¥ =0 (16)
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follows. The axisymmetric solution reads

¥ =— Y (et +dr " V)P(cos 0) 17

1

is

(r, 0 polar coordinates, ¢, and d, coefficients for the shell). From this last equation for
the magnetic fields results:

a) B, = Y [l =+ Ddpr ¢ PIP,  b) By = Y [ep' ' +dr™“*P]P;; (18)
=0 =1
a) H, = Y [lo' ™' =+ Dd,r~ " PP, —4nM cos 6,
=90

b) Hy = ¥ [e' ™ +dyr " PIP} +4nM sin 6. 19)
1=1

3.2. Interior (r <ry)

In a similar way for the interior (vacuum) we find

M8

a)B,=f],=

1

1&r'"'P, b)By=H,= Y &' 'P} (20)
I=1

1

(¢, coefficients for the interior).

3.3. Exterior (r = ro)

Analogously we get for the exterior (vacuum)

dyr-*2p} 2D

Ms

a) B,=H, = — Z (l+1)‘—11"_”+z)P1, b) By = H, =
=0

-
]
-

(d, coefficients for the exterior).

3.4. Boundary conditions and final solutions

The boundary conditions for the interface interior/shetl
a) B(r) = B(ry), 1) By(r)) = Ho(ry) (22)
and for the interface shell/exterior
a) B(ro) = B(ry), b) Hy(ro) = By(ro) (23)
lead to the following solution of the problem:

interior:
B=H=0, (24)
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shell:

1.
B = - PN 'r_; [3(mer)er'—m]9 (25)

H=-

1
35 373 [3(me,)e,—m] (26)
3 ry ry\" r
Fo o
(superposition of a homogeneous field and a dipole field). The vectors e, and e, are the

unit vectors in polar coordinates.

e xterior:
- 1
B = H = — [3(me,)e,—m]. 27
r

This means a dipole field with the dipole moment

4,
m = k~3—(ro—-r1)M, (28)
where
k = e, cos 0—epsin f. 29)
3.5. Sphere

For the limiting case of a shell (r; — 0) the above results read:

2m m
a)B=—, bDH=-—5, ¢E=0, dJ D=0, ¢ =0,
To o
f)y A=0; {30)
— — 1 . —
a) B=H = —[3(me)e,—~m], b)E=D=0, (31)
r
where
4
m=k§£M=km (32)

This special case is quoted in some textbooks.
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4. Alternative II: Rotating sphere with respect to the inertial frame (inertial observer)

4.1. Sphere
The Maxwell equations take the form:

4
a)rotH = —j, b)divB=0, c)rotE=0, d) div1)=4n(g+%v£). (33)
c C

The continuity equation, electric current density, and the constitutive equations read:

divj =0, (39)
1
j=gv+a(E+ —‘—va), (35)
4
a) D = E+4nP, b) B = H+4rnM. (36)

For the velocity of the rotating sphere
v=Rxr (=kQ) 37N
the relations
aydive =0, b)rotev=2Q (38)

hold. In our intended approximation the formulae
1
a) P=—ovxM, b)M=EkM (39)
c
can be used. Since the rotating sphere considered must not lead to Joule’s heat production,

we try to find the solution by the ansatz

i

= — —pXxB. (40)
¢

Indeed, in this way we succeed and find the solutions:

2m m 2Qmvr sin 0
a)B=—, b H=—~—, ¢E=—eg——j s
re re cry
Qmrsin § Qm
dD=e—75—, € eoe=:—"73, (41)
cry 2ncry
where
eg = e,5in 0+ ey cos 0 (42)

is the radial unit vector in cylindrical coordinates.
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4.2. Exterior (vacuum)
The field equations (B = H, D = E):
a)rotB=0, b)divB=0, c)rotE=0, d)divE=0 (43)
lead to the solutions

D B = [3(me)e,—m],

2
Qmrg

b) E= —
) 2

+ Le(143 cos 20)+2e,5in 20]  (quadrupole field) (44)
cr

and to the electric surface charge density

Qm

A= -
dnery

(1+cos 20) (45)

if we take into account the boundary conditions
a) B(ro) = B/(rg), b) Hy(ro) = Be(ro), ©) E,(ro)—D/ro) = 4ni,
d) Ey(ro) = E,(ro) (46)
which in this approximation result from the general conditions (8) and (9).

4.3. Electric neutrality of the sphere

According to our assumption the sphere should not carry any electric charge Q.
Therefore we have to see whether our results (41¢) and (45) fulfil this condition:

om 4ud Q@
Q=JQdV+ fxdf=—f’_-ﬂ9_ L J(1+cos20)sin0d0.

2nery 3 4mcry
e=0
Performing the integration we find in fact
0 =0. 47)

5. Alternative 1II: Resting sphere with respect to the rotating frame (noninertial observer)
5.1. Sphere

In this case we have to specialize the generalized Maxwell equations (1) to (4), taking
into account that

a) R,=02, b)v=0 (48)
is valid. We find

4
rot H = - j, (49)
c
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div' D' = 4no’' + (QH"), (50)
rot' E' = 0, (&1))
. 2 ’
div' B’ = — — (QE"). (52)
C
The continuity equation is
div' j' = 0. (53)

For the electric current density we obtain
J' = oE, (54)
while the constitutive equations take the form
ayD'=FE, b) B = H +kdnM. (55)

The last two equations are justified, because in the first approximation in € we can use
the relations

ay P =0, by M =kM. (56)
Since Joule’s heat production does not occur, we conclude
E =D =0. (57)
Under these circumstances we find from the generalized Maxwell equations (49) to (52)
,  2m , m , Qm
a)B =—, bH=—- 4, ¢g¢-= 3. (58)
ro ro 27cry

5.2. Exterior (vacuum)

In this case the field equations have the form (B’ = H', D' = E'):
_ _ 2 — _ —
ayrot' B =0, b)divE =—(QB), c)rotf EE=0, divB =0. (59)
c

Taking into account the boundary conditions

a) By(ro) = By(ro),  b) Hy(ro) = By(ry), ) El(ro)—Di(ro) = 4k,

d) Eg(ro) = Egro), (60)
we find the solutions (+' = r):
- 1
B = — [3(me))e,—m], (61)
r
-, Qrim m

[e/(1+3 cos 20')+2ey sin 26']— ot [e(1—cos 26')—2e,sin 26'7  (62)

2ert cr?
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and the surface charge density

-t Qm ’
A= — =——(14cos 20'). (63)
4rerg

Comparing the results (58c) respectively (63) with (41e) respectively (45), because of 6’ =
we obtain the invariance:

a) o' =9, b) X =2 (64)

which we expected indeed in this approximation.

6. Alternative IV': Rotating sphere with respect to the rotating frame (noninertial observer)

6.1. Sphere

This case is realized by the assumptions
a) 2, =2, b)v =-—-Qxr. 65)
From (1) to (6) the field equations

c AT,
rot H = —j, (66)
¢
. I 2 ’
div' D' = 4n¢'+ — (QH"), (67)
c
rot' E' = 0, (68)
: ’ 2 ’
div' B' = - — (RE"), (69)
¢
the electric current density
1
j = -Q'(QX}")-{—G[E'— —(QX!")XB'}, (70)
¢
and the continuity equation
div' j' = an

result. In this physical configuration the electric polarization and the magnetization have
the form

M
a) P=—~ —(@2xr)xk, b)M =kM. (72)
[
Hence the constitutive equations (7) read

. 4nM , o
a) D' =E— -—— (2xr)xk, b)B = H +kinM. (73)
C
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The absence of Joule’s"heat production leads us to
’ 1 r 7
E =—c—({2xr)xB. (74)

Under these circumstances the generalized Maxwell equations (66) to (69) are fulfilled
by the solutions

., 2m , m
a)B' =-—, bH =-—, 75
o o
, , 2Qmr sin ¢’ , , Qmprsin ¢’ ,
a) E =eR—-~c7g~—'~, by D' = ~eR-~—c-r8—-, c)g =0 (76)

6.2. Exterior (vacuum)

The field equations read (B’ = H', D' = E)
- — 2 — — —
a)yrot B =0, b)divE =-(QB), orotE =0, ddivB =0 (77
c

The form of the boundary conditions is in the first order in € the same as in (60). Ex-
ploiting them, we find the solutions

1
B’ = - [3(me))e;—m], (78)
r
- Q
E = - 7T2- [e/(1— cos 26) — 2] sin 20'], (19)
cr

whereas the electric surface charge density reads
i =0. (30)
The results (76¢) and (80) are in accordance with (30e) and (30f).
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