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Using results concerning the algebraic classification of curvature quantities in complex
and real space-times (A4cra Phys. Pol. B10, 485 (1979)) a sequence of generalizations of
Goldberg-Sachs Theorem is enumerated.

1. Introduction

It is well known that the assumption of the existence of so called null-string con-
gruences in the complex space-time (or the existence of a shear-free geodesic null congruence
in the real space-time) plays special role for algebraically degenerate solutions of complex
Einstein equations (real Einstein equations, respectively) [2-5].

In turn the existence of null string congruences (shear-free geodesic null congruence)
in vacuum, G,, = 0, is guaranteed by the Goldberg-Sachs theorem [6, 7]. Therefore,
there appears a natural problem: to generalize Goldberg-Sachs theorems (in the complex
and real space-times) to the cases when G, # 0. We are going to give some propositions
and theorems aimed to provide such a generalizations.

In Section 2 we formulate the so called Generalized Goldberg-Sachs theorems and
then we extend to the case of complex space-time some interesting results concerning the
algebraic types of C,; for which there exists a null tetrad (E!, E2, E3, E*) such that in it
Cya = Cyp = C,5 = 0 (for the real space-time see {8} p. 178).

In Section 3 we list propositions which are further generalizations of Goldberg-Sachs
theorems. They are obtained by assuming that C,, is of definite type and (for the most
part) that the null eigenvector of C% is a multiple (left, right) Deveber-Penrose vector.
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** On leave of absence from the Institute of Theoretical Physics, Warsaw University, Warsaw,
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1n the Appendix we write the explicit form of Bianchi identities. Techniques and notations
are as in [1].

We hope that the considerations of the present paper will be useful for understanding
of the interaction of gravitational radiation with matter, see also [9].

2. Goldberg-Sachs theorems and their generalizations in complex and real space-times

The classical Goldberg-Sachs theorem [6] was extended to complex space-time by
Plebanski and Hacyan {[7]. They proved that:
Theorem 2.1. The existence of a null tetrad such that I'ypy = 0 = Iy (Tgya = 0 = I'yyy)
is a necessary and sufficient condition for the complex oriented empty space-time (G,, = 0)
to have the undotted (dotted) conformal curvature spinor algebraically degenerate with
C® =0=C*(C®=0=C") and with E? defining some (at least double) left (right)
Debever—Penrose direction. [
Then it was shown that I;,, = 0 = I'y,, <> there exists a congruence of null strings
determined by the vector fields E,, E,; and analogously, I',;4 = 0 = I, <> there
exists a congruence of null strings determined by the vector fields E,, E,. In the first case
the 2-form

2E3 A ER, .1

which represents an element of area of a null string is self-dual, and therefore it defines
a congruence of the left (heavenly) null strings. In the second case the 2-form

2E® A E?, 2.2

which represents an element of area of a null string is anti-self-dual, and therefore it defines
a congruence of the right (hellish) null strings. Now we are going to formulate (without
proofs) some Generalized Goldberg—-Sachs Theorems in which it is not assumed that
G,, = 0 on our complex oriented space-time.
Theorem 2.2. Let (a), (b), (c) mean the following statements:

(@) Cupcp is algebraically degenerate and k* is a multiple P-spinor,

(b) k*kPV cky = 0 (<> 2-form k,kpS*? defines the congruence of the left null
strings),

(©) KAKPKV (S Chepps = 0 (2.3)
if Cypep is of types [2-1-1} or [2-2],
or kPkCV 3Cpeyps = 0 if Capep is of the type [3-1],
or k°V SCpeyps = 0 if Cupep is of the type [4],
then: (a) and (b) = (¢), (a) and (c) = (b), (b) and (2.3) = (a). (J
Theorem 2.3. Let (a), (b), (c) mean:

(a) Cjjep is algebraically degenerate and k4 is a multiple P-spinor,

(b) kikBY k5 = O (<> 2-form k;k;S48 defines the congruence of the right null
strings),

© FARPRCVS (4 Cipsyity = O (2.4)
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if C 3¢p is of the types [2-1-1] or [2-2],

or kBEEV® 1Cpsisey = O if Cagep is of the type [3-1],

or kEV®;iCipsjiacy = 0 if Capep is of the type [4],

then: (a) and (b) = (c), (@) and (c) = (b), (b) and (2.4) = (a). [

(In the above theorems V3:= g°4;V,.)

Theorems 2.2, 2.3 may be formulated in the tensor terms as follows:
Theorem 2.2(t). Let (a), (b), (c) mean:

() C,p.q is algebraically degenerate and E, is the multiple left D-P vector,

(b) T'yza = 0 = I'y,, (<>2-form 2E> A E' defines the congruence of the left null
strings),

© Cataiz1 =0, Copap =0 (2.5
if Copeq i Of types [2-1-1] ® [something], [2-2] ® [something],
or Cua;a)+% 8aaCloa = 0 if Cueq is of types [3-1] ® [something],
or Cug;2+3 ga[4Cd2];a =0, Cys;13t3 g4[3cd11;d =0, Cyzn+3 g2[3cdl];d =0, if Cupea
is of types [4] ® [something];
then: (a) and (b) = (¢), (a) and (c) = (b), (b) and (2.5) = (a). (J
Theorem 2.3(¢). Let (a), (b), (c) mean:

() C,p.q be algebraically degenerate and £, be a multiple right D-P vector,

(b) I'yya = 0 = I'yy,y (<> 2-form 2E3® A E? defines the congruence of the right null
strings),

(c) Caga;11=0, Cypa =0 (2.6)
if Cypeq is of types [something] @ {2-1-1], [something] & [2-2],
or Chasnyt+3 8aaClipa = 0 if Cupeq is of types [something] ® [3-1],
or Cua;nt3 gr[4cd1];d = 0, Cyz;2)+3 g4[3cd21;d =0, Cys;t3 g1[3Cd2];d = 0, if Cppeq 18
is of types [something] ® [4];
then: (a) and (b) = (), () and (c) = (b), (b) and (2.6) = (a). []

In theorems: 2.2(t), 2.3(t), all tensors are expressed in some null tetrad (E!, E2, E3, E4).
(Notice, that one can easy obtain the theorem 2.3(t) from 2.2(t) by interchanges: left — right,
2> 1.) For completeness one has to add the following theorem:

Theorem 2.4. If the complex oriented space-time is of the type [-] ® [-] then there exists
congruence of left and right null strings. [

(It appears a natural question, whether there exist congruences of left (right) null
strings in the oriented complex space-times of types:

f1-1-1-1] [1-1-1-1] )

H® [2-1-1] [2-1-1] @ [-]
(2-2] [2-2]
[3-1] [3-1]
(4] [4]

This problem is unsolved, even for C,3 =0, R = —44 # 0.)
If one considers the real space-time as the real cross section of a suitable complex
space-time then one can easily deduce the Goldberg-Sachs theorem and the Generalized
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Goldberg-Sachs theorem in the real spacetime [6, 10, 11, 12, 8], out of the same theorems
in the complex case. Since on the real cross section one can have E! = (E?)*, E? = (E3)*,
E* = (E%)*, (the dotted spinors) = (corresponding undotted spinors)*, C@ = (C@)*,
Ti1a = (Ta28)*, a1y = (Taz2)* ete., therefore on the real cross section the complex
space-time is of the type [4] ® [4].

Taking into account all these facts one finds the Generalized Goldberg—Sachs theorem
in the real space-time:
Theorem 2.5. Let

(@) Cupcp be algebraically degenerate and k* be a multiple P-spinor,

1 .
(b) k*kPV 4¢kp = 0 (<the vector field E,*:= — Nl g% 45k kB defines the shear-
v

-free geodesic null congruence),

(c) KKPKOV (S Cheyps = 0 Q.7
if Cqpcp is of types [2-1-1] or [2-2], k"k°V ,5Cpc)ps = O if Cupep is of the type [3-1],
K¢ V(A Croyps = 0 if Cypep is of the type [4];
then: (a) and (b) = (c), (a) and (c) = (b), (b) and (2.7) = (a), [

or in tensor terms:

Theorem 2.5(t). Let

() Cuea be algebraically degenerate and E, be a multiple D~P vector,

(b) I'yzs = 0 = I'yy; (<= E, defines the shear-free geodesic null congruence),

(©) Cara;21 =0, Cyp49=0 (2.8)
if Cgpeq is Of types [2-1-1] or [2-2]),

Of Copa;1+3 8aaC%2a = 0 if Capey is of the type [3-1]),

or Gyt ga[4cd2];d =0, Caz;13+3% 84[3Cd11;d =0, Cyz;+i gz[scdu;d = 0, if Copeq 18
of the type [4];

then: (a) and (b) = (c), (2) and (c) = (b), (b) and (2.8) = (a). [

And for completeness:

Theorem 2.6. 1f the real space time is of the type [-] then there exists a shear-free
geodesic null congruence. [

The proofs of theorems: 2.5, 2.5(t), 2.6 are given in [10, 11], see also [8]. The proofs
of the corresponding theorems in the complex (oriented) space-time are very similar
(see also [7]). The statements (c) in our theorems correspond to the vanishing of the
right sides of some Bianchi identitics (Appendix). The Goldberg-Sachs theorem in the
real space-time [6, 8] is a consequence of theorems: 2.5 (or 2.5(t)) and 2.6, when
Gy =0 (= Cp = 0).

Now we are going to extend to the case of complex (oriented) space-time some
interesting lemmas known in the case of the real space-time (see [8] p. 178).

Lemma 2.1. In complex oriented space-time there exists (rightly oriented) null tetrad
(E', E?, E3, E*) such that
Coa=C4 =Cy, =0, (2-9)
(C44 = Cy4y Ciy=0) (2.10)

il
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if and only if the tensor C,, is one of (sub-)types:
[4N1.°, [4N]5, P[4N],, PI4NL", 2N, —2N1,", @[4N],, [2N: —2N] -2

[4N]y, [2Ny—~2N],, 2.11)
([4N1*, [4N]s, @[4N],7, P[AN],®, [2N, —2N1¢®, P[4N],, [2N, — 2N ),
[4N]y, [2N, —2N],). 2.12)

If C,, is one of these (sub-)types one can select a (rightly oriented) null tetrad so that (2.9),
{(2.10)) holds and moreover E; is the eigenvector of C%,.

Proof: Let Cyy = C4, = C,, = 0; then from characteristic equation det (C°%,—48%) = 0
one easily finds

)" = i \/(C12)2+C41C32. (2-13)

Hence C°, has two double eigenvalues or one quadruple eigenvalue and therefore may
be one of types [1]:

[4N1s, [4N1s, D4N],, [2N, —2N1s, D[4N],, 2N, —2N] 5y, [4N],, 2N, —2N],.

Now, using the possible canonical forms of C%, ([1] Section 3) one can easily find
by some algebraic manipulations that a (rightly oriented) null tetrad (E*, E?, E3, E*) such
that C,, = C,, = C,, = 0 exists only for (sub-)types (2.11). Moreover this tetrad may
be so selected that E, is the eigenvector of C%,. Similar considerations can be given under
assumption Cuy = C, = C;; = 0.

As a consequence of lemma 2.1 and the Generalized Goldberg-Sachs theorems one
finds:

Lemma 2.2. Let C,;, be one of the (sub-)types (2.11) ((2.12)); then one can select a (rightly
oriented) null tetrad so that C,y = Cy, = Cyy = 0, (Cyy = C4y = Cy, = 0) and E, is
an eigenvector of C%. If moreover @j,4 = 0 =T4,,(F414=0=T44,) E, is a
multiple left (right) D-P vector.

Proof: Notice that

Caa = Cap = Cay = 0, T494 = Tapp = 0=.5)
(Cog = Coqy = Cyy =0, T4y4 = T4y, =0=(2.6)).
(Notice that in the case of the (sub-)types:
[4N1s", [4N]s, P[4N],", [2N, ~2N1s" P[4N]y, [2N —~2N]1 -2y, [4N];, [2N; —2N],,

the null tetrad (E, E?, E3, E#) for which Cs4 = C,, = C,, = 0 and E, is the eigenvector
of C%, is exactly the tetrad in [1] (Section 3); analogously in the case of the (sub-)types:

[4N1s", [4N]s, @[4N].%, 2N, —2N1.*, D[AN],, 2N, 2N -5y, [4N],, 2N, - 2N]

the null tetrad (E*, E2, E?, E*) for which C,, = C,; = C;; = 0 and E, is the eigenvector
of C%, is exactly the one in [1] (Section 3).) [
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3. Some other generalizations of Goldberg-Sachs theorems in complex and real space-times

One can observe (Section 2) that the Generalized Goldberg-Sachs theorems concern
the Ricci coefficients Iyp4, L4zp (OF T4y, Taqq) only; moreover, the assumptions about
Cus (Capep) in these theorems are somewhat complicated. Now, we will list propositions
concerning other Ricci coefficients {and other objects, as the curvature scalar R or the
eigenvalues of C%;). We assume that C, is of a definite algebraic type and that the corre-
sponding mapping L, —» L,: X* — C“,,X’, has a multiple (left or right) D-P eigenvector.
Thus, we shall give generalizations of Goldberg--Sachs theorems for the energy-momentum
tensor of a definite algebraic type. Because of their number, our propositions will be most
conveniently presented in form of tables which will be ordered according to the types
of C,5. The propositions valid for the real space-time can be easily obtained from the
respective propositions in the complex case. It suffices to notice that for the real space-time:

(El)* —_ EZ, (E3)* = ES’ (Ed-)* = E4
and then

C@ = (C“N*, (R)* = R,(T)* = T, (N)* = N,

Fayia = (Ta28)*  Tann = (Ta22)*  Tage = (T344)* etc

Some of our propositions are consequences of the theorems of Section 2. In the
case of real space-times, some of our propositions are known in the literature (e.g. (8, 91).

The propositions listed in the tables have been obtained mainly by the analysis of
Bianchi identities (see Appendix).

Tables of propositions:

For all types of C,; except of P[4N], the components C,, are given in null tetrads
introduced in [1] (Section 3). For the type [4N], we introduce in our tables the null tetrad_
suitable for the energy-momentum tensors of electromagnetic fields (see [1] Section 3).
In the tables, comma (,) denotes the directional derivative; [4] or [B] denote any type
of Cyupcp or Cisep ([4] = [Anything]).

As an example of an application of our results one can consider the electromagnetic
field (for details see [13]). From the previous paper [1] it follows that in the case of linear
electrodynamics, C,z is one of the (sub-)types:

complex space-time real space-time
[2N:—2N%, N = (E+iBXE~iB) 25, 2T}, T = E*+B?
B[N, [4N],
@[N], -
@ENL -

Notice that R = —4A4 = const. 3.
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Now one can easily obtain the propositions valid in the case of the presence of a linear
electromagnetic field from our tables of propositions. But for completeness one has to
consider the Maxwell equations:

A(JaS™ = 0, (320)
d(f5*%) = 0. (3.2b)
Equations (3.2a) are equivalent to (see [8, 13]) the following eguations:
(=01 + 21+ 341 —T314) (fagk®KP)+(— 04+ 20 421) (fapk? 1B+ Taza(fasl1®) = 0, (3.3)
I3y (fask*k®)+(0,+203,4) (Fask* 1)+ (a+ T30+ T34a+Tazy) (f4ul?1®) = 0, 3.4
(03T 123 T343—L312) (fask®k®y+ (=0, = 2T 423) (fapk I°)+ T 452(fasl*1%) = 0, (3.5)
(=T313) (fask KP)+(=05+2I5,5) (fABkAlB)“f‘(@z'*‘Fuz'f‘F342+T423) (f45"1%) = 0,(3.6)

and equations equivalent to (3.2b) can be obtained from (3.3)-(3.6) by the interchanges:
L2, fug = fag k* = k4, 1% - 14,

(Of course k%l = k4l, = 1 and (k*, 1), (K4, 14) define the null tetrad (EY, E?, E3, E%)

according to the formulae:

1 T ; ; 1 s
E'= —g"%,l;, E*:=—zg*"lks E:=-— =g"ky E*:=-—=g'%1;
V2 V2
Now in order to obtain the propositions valid in the case of the presence of a non-linear
electromagnetic field from our tables of propositions, one has to notice that C, is one

of the (sub-)types [1]:

complex space-time real space-time
oL v o= = eL v
(2N, ~2NT,, N = —Z (E+iBYE~iB) 28,-2Th, T= - (E*+B?)

[4N], [4N];

®ng,® -

D[4N1,® -

and
L oL . .
R=8{—=F+ —=G-L}-44. 3.7

oF oG

One of us (M. Przanowski) is grateful to Doc. M. Demianski for illuminating dis-
cussions.
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TABLE 1
Sub-type [4N],® (complex space-time)
No Cab Type of Cabcd Other assumptions Proposition
1 C,, =1 y {2-1-1] E, is a multiple right
C31 =1 [ }® {2—2} D-P vector F414 = P411 = 0.
(other com-
ponents 3-1] E, is a multiple right Lyys = Fyy1+ a4 = 0;
vanish) [A1® [4] D-P vector
[-] R, 4 = 0
2 Cyy =1 [2-1-1] [2-1-1] E, is a multiple right and | I'414 = 43y = aza = 03
Ci =1 {2-2] [2-2] left D-P vector
M4 ® [3-1] Ra=0
[-] [41
-1
3 Cyy =1 31 [2-1-1] E, is a multiple right and | Ta14 = I'yqy = 434 = 0;
Cy =1 B-11® 21 | left D-P vector,
PO £ 173 Ry = 0.
3-11 E, isa multiple right and | Iyy4 = iy = I'yza = 0;
B-11® [4] left D-P vector, R, 4= 0.
-1 Cc® =12
i
4 Cyy =1 [4] 4 E, is a multiple left D-P | I'y,, = I’y = T424 = 0
Cy =1 [ ® Ml vector, R, = 0 Ry = 0=>Iyyy = 0.
[3-11 ® [4] E, is a multiple left D-P | Iqy4 = I'4yy = 424 = 03
vector, R,4 = O,C(z) # 1/2 R,g = => F421 = Q.
5 Cya =1 [4] ® [3-1] E, is a multiple right Ii1a = 411+ Tazs = 0
Cs =1 D-P vector, R,y = 0 R =0;
Ty =01y, = 0;
4 4] E, is a multiple right D = Dy 41434 = 12
M1 ® [-] D-P vector, R,y =0 = 0; R.=0.
6 =
Gz ! [4] ® [B] —_ R,AOQI-;[I +1434 = 0.
Cy =1
7 Cypy =1 E, is a multiple right D-P
‘ C; =1 l [4] ® [B] ! IFyya=T4, =0 v;ctor.

i Sub-type [4N],® (complex). All propositions are obtained from _those concerning [4N],?
I by interchanging right « left; 1 < 2; [4] ® [B] < [B] ® [4]; C@ — C®. [4N],* and [4N]°
i in the real space time do not exist.
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TABLE II

1 Cay = — ;‘ Any type*of E, is a multiple left D-P | I'jz4 = 0.
+/2 |CaBcp ® Cigcp| vector
i
Csy = T/i
{other vanish)
2 i [2-1-1] E, is a multiple left D-P | I'y55 = 43, = 0;
Gi==75 |21 @M | vector Rya=0= Iy =0.
Cos = i
32 = ’;‘/?
3 i [4] E, isa multiple left D-P | 424 = Lusa = T'asy = L'an;y
Cor = - V2 -1® I vector, =0;
i R, =R,;=0 Tayz = 1 (Th2a+1544);
Ciz = V2 Lazy = =3 GBlaua+11544);
R,=0.
4 Coi = _Lw B3-1] ® [4] E, is a multiple left D-P Lire = aga = 0; Ry = 0;
31 = V2 vector R,=0and I'yy; = 0= Iy,>
i =0 and Iy = [a1a+1544;
Cyy = e R:=0and I'y;; = 0= Ty,
V2 =0 and Iy, = Daga+1544.
5 Cyy = — _l_: [4] ® [B) — Rao=0T44—T4a =0
V2
_ i
C32 = _ﬁ
6 Cay = — _t»_ [4] ® [B] Dyrg =14y, =0 E, is multiple left D-P vector.
V2 |
Com i
32 = ‘;/—i“ :

Analogous propositions concerning the right D-P vectors are obtained by interchanging: 2+ 1,
left — right, [4] ® [B] < [B] ® [4].
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Type [4N}s (real space-time)

TABLE 111

V2o

Co e — i [A) E, is a multiple D-P L2y =05
31 V2 vector R4 = 0.
i ¢
Csy = ‘\‘/‘2
(other vanish)
Coi = “iﬂ 2-1-1] E, is a multiple D-P Lyza = Tazs = 05
L= 3 [2-2] vector R,y =
c i
32 — )\(/2
e _"; {4} i E4 is a multiple D-P Fyps = Dyaa = T'ygy = Iy
L V2 vector and R,, = 0 = T34 = 05
i R,.; = 0
Csy = \72
e ,A [3-11 E, is a multiple D-P I'yye = 0; Ry =05
* V2 vector, R,y = 0 a2y = 0=>Tazz = 'pa = Taza
, =0,
G 2_\_/‘2: F‘22=0:>F421 = F124:1’434
= 0.
i _ _ " _
Cip = — 7 [4] Ry =0 Iy = L.
i
Ciy = 72
Cot = — Ai_ ! %Z) Iy =T4,=0 E; is a multiple D-P vector,
V2!
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TABLE 1V

R,4=0

Ciy = —2N [4]1 ® [B} E, is a multiple left and right | Is2a = T'434 = 0.
Cyz = —=2N D-P vector
Cia= —N COLT® 3¢ . CO)
i 2 Y
C -
31 \/2
Cur — i
32 — \/2
C34 = N
(other compo-
nents vanish)
Cyy = —2N [3-11 E, is a multiple left D-P Ta2a+ 1414 =0.
Cy; = —2N 4] ® [4] vector
Ciz=—N [-1
i
C31 - - *'\7:27
Can = —— [3-11 | E. is a multiple right D-P | T'ypu+Iype = 0.
V2 4] ® 1l vector
Cse=N [-]
C‘11 = —2N 4] ® [4] E4 is a mu]tiple right and [’424 = F414 =0,
Czz = —2N -17 [- left D-P vector
C]z = —~N
Cor = i
31 = — —\“/“i“ .
. E, is a multiple right and Iisq = I'y14 = 0;
Csy = #; left D-P vector, I4y0 = 014y, = 0;
\/2 Ra=0 Tyay =0 Layy = 0.
C34 = N
Cyy = —2N [3-11 | E4 is a multiple right and L4 = T'y1a = 0.
Csz = —2N [3-1]1® [4] | left D-P vector,
Ciz=—N | CO-C® = —/2i
i or
=7 | B
. 4 3-1
Cis = '— H ® B-1 E, is a multiple right and Iyra = T'y1q = 05
g \/2 left D-P vector, _ Iyys = 0 gpy = 04
C34"‘N C(z)_C(2)¢ ~\/2$, 421 &= 0¢>P411 = 0,
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Type [S1—3N]4 (real)

TABLE V

1 C,, = —2N [A4] E, is a multiple D-P L42a = 0
C,; = —2N vector and
Cy3 = ~N Re C®) = 31CCI /AN
C34 =N
Coi = i
31 \/—2—
Crr = i
32 = '\/i
(other compo-
nents vanish)
2 Cyy = —2N [3-1] E, is a multiple D-P vector | Re I'sz4 = 0.
Ciy = =2N [‘4}
Cyz2 = =N -1
C34 =N
Coi = i
31 = \/z
C.r = i
32 = ‘\/5
3 Cyy = —2N {4] E, is a multiple D~P vector | Is24 = 0.
C22 = —2N -
C12 = —N
Cia =N . .
34 ; E, is a multiple D-P vector | I'4z4 = 0;
Ciy = — —— and Iii2= 0TIy, =0,
\/2 R’4 = 0
i
C _—
32 \/2
4 Cyy = —2N [3-1} E, is a multiple D-P vector, | 424 = 0
sz = —2N 1
ImC® % — —
Ci2=—N o * V2
C34 =N
c i
NTTVE .
; E, is a multiple D-P vector, | I'y24 = 0;
Cop = —— 1 Iy =040y, = 0.
32 \/2 Im C® % — 412 @l =0
V2

R,‘=0
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TABLE VI

1 Csz =1 [2—1-—1] E4 is a multiple left F424 = P422 = 0.
(other compo- [2-2] ® [4] D-P vector
nents vanish) [3-1] ® [4] | E, is a multiple left Fie = Tare = 0;
D-P vector R4 =
[4]1® [A4] | E. is a multiple left Tiga = Tayy = Tayy = 0;
D-P vector R.= R, =0.
[F1® [4] | E; is a multiple left Fysq = Dyya = Ty,
D-P vector =TIy, =0
R4 = R, = 0.
2 C3, = [3-11 ® [4] | E4 is a multiple left L42s =T'414=0; R, = 0;
D-P vector, Iy =04y, = 0.
R,2 = 0
3 Csz =1 [4] ® [A] | E4 is a multiple left Do = Tyyq = Iayy
D-P vector, =TIy, =0;
R;=R,;3 =0 Lo =0 54 =04
R = const.
4 Csy =1 F1® 4] Ro,=R,;=0 P424=F414=P41x
=131y =4z = I'314 = 0
R = const.
5 Cyz=1 [4] ® [B] — Ry =0Ty, =0;
Ry =0xT4, =0
6 Cip, =1 [2-1-1] | E, is a multiple right Iyyo = T4y =05
[2-2] | D-P vector R, =R, =0.
[-]
[4] ® {3-11 | E. is a multiple right Lhia = Tayy =04
D-P vector, C® = +} R4a=R,, =0.
7 Ci;, =1 [A] | E4 is a multiple right Iy =0, R=0.
MI® ) | D-P vector
8 Csz =1 [41 | E; is a multiple right Iy = 0;
[—]®[-] D-P vector, Daza = Daay = Ty = Iy
R,=R;3=0 =T2144+ s = Iay+ 1say
=0; R=0.
9 Ci, =1 [AI®[B] | 424 =422 =0 E4 is a multiple left
D-P vector.
10 Ciz =1 [A1®(B] | Taa=Tar, =0 E, is a multiple right
D-P vector.
11 Ciz=1 [4] ® [B] Rs=R; =0 E, is a multiple right
D-P vector.
12 Ci, =1 {41 E, is a multiple left E, is also a multiple right

@M

D-P vector

D-P vector.
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Sul‘)—type(z)‘[fliN]nb (complex). All the propositions concerning this sub-type can be obtained
from those concerning (M[4N]2 by interchanging: 2« 1, left «> right, [4] ® [B] « [B] ® [A]},
C@ - C@_ A[4N],* and P[4 N],P in the real space-time do not exist.

TABLE VIl
Sub-type [2N,—2N]s® (complex)
1 Css =1 [3-1] E, is a multiple right Laza =T, = 0.
Cyy =1 4] ® [4] D-P vector
Csa =N [—'}
Ci, = =N . R . =
(other compo- | [4] ® [;:;—1] gilt)s a multiple right E’:Z; #IN=D 4= 0;
nents vanish) (22 vector C® £ —IN=T4y, =0,

2 Cyy =1 [3-11 | E, is a multiple right Dy =1T4y =T, =0;
Ca =1 [A] ® [4] D-P vector, Ny =0< 4, =0.
C2=N [-] R, =0
Ciz = —~-N . . .

E, is a multiple right Lgya =Tyyy = Iy

D--P vector, =043 = 0;

R,y = R, = Na=0<xT4;,=0;
Ny=0<«14,=0; R=0.

3 Ciz=1 [3-11 [3-1] E, is a multiple left and | I'yy = 0; 428 = 43, = 0;
Cy,=1 [4] ® [4] right D-P vector, Typy = 0<0 54 = 0
Csa=N -1 [ Ry = R, =0 R=10; N.=0.

C12 = —N . . :
[3-11 E, is a multiple left and | Iy = 0; s34 = 42, = 03
[4] ® [4] right D-P vector, Iy =0y = 0;
{~] -1 Ry =R,y =0 R=0, N,y = 0;
Iy =0
N,1 = 0.

4 Ciz=1 41 E. is a multiple right Iy =0
Cpa=1 e -] D-P vector, Typa = Tazy = T34
Cia=N R,y =R,y =0 =T33y = I'312—1's524
Cy2=—N = D4z3—1524 = 0

D=0 T4 =0;R=0;
N,l = N,4 = O.

5 Ciz=1 [A] ® [B] ILyo=T4,=0 E; is a multiple right D-P
Cpa =1 vector.

Cys =N
Cy,=—N

Sub-type {2N;—2N] ‘b (complex). All the propositions concerning this type are obtained

[4] ® [B] « [B] ® [4).[12N,~2N], real does not exist.

l from those concerning [2N;—2N],* (complex) interchanging: 2> 1, left <> right, C® — C@),
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TABLE VIII
Type 34N}, (complex)
Ciy =1 [4] ® [B] E, is a multiple left Iy =04
(other compo- D-~P vector R4 = R,, =0.
nents vanish) , .
[2-1-1} E, is a multiple left Laos = sy = 0;
[2-2] ® [4] D-P vector R,y =R, = 0.
[3-1]
1@ [4] E, is a multiple left Lia4 = Tgyq = Iy = 05
D-P vector R, =R,,=R, =0;
i a3 =034, =0.
M4l ® [4] E, is a multiple left | Faq = s34 = 0;
D--P vector Ra=R,;=R,; =0
Ciy =1 -1 ® [4]1 R;; =0 Taza = Dass = Iagy
Loz =0,
Li13 =0 154 =0;
R = const.
[”] ® [“] - Lhzs = Puz = Fam
=411 = D421 —T412 = 0
L3 =015 =0;
Ly23 = 0>, = 05
La21471, = 00 1420 = 0;
Ri=R,=R, =0
R,3; = 0 => (R = const,
Lyzy = Tyyp = I'eza = 0).
Ca3 =1 [4]1 ® [B] —_ R = 0;
R,y =014, =0;
R,; = 0<>Iy2e = 0.
Css = 1 [4] ® [B] Dyrs =Tz, =0 E. is a multiple left
D-P vector.
Cs3 = 1 [A] ® {4] E, is a multiple right | E; is a multiple left
D--P vector, D-P vector,
P424 =F422=0-
[4] ® [3-1] E; is a multiple right | E5 is a multiple left
D-P vector, D-P vector,
R, =0 Iz = T4y = 0.
2~1-1] E5 is a multiple right | E, is a multiple left
M1 ® [2-2] D--P vector, D-P vector,
Iy, =0, Lazg = D22 = 0.
R, =0
Cis =1 A1 Q@ [-}] — E, is a multiple left
D-P vector,
F424=F422=0.

The remaining propositions are found by interchanging: 2 + 1, left « right, [4] ® [B] < [B] ® [4]}.
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Type [4N]; (real)

TABLE IX

1 Ciz = *1 [A4] E, is a multiple D-P | I's;4 = 0;
(other compo- vector R.=R,=0.
nents vanish)
[2-1-1} E, is a multiple D-P | I'yy4 = Iy, = 0;
[2-2] vector R,y = R,, =0.
[3-1]
[-1
2 Caa = +1 -1 — Lz = Tags = D4z —T4y2 = 05
Tip3 =0 T34, = 0;
L1+ T4z, = 0 Ih34 = 0
R94 = R,2 = o;
Ry = 0=> (42 = I's3. = Oand
R = const).
3 Cis = +1 [4] —_— R,, = 0;
R, =04, =0.
4 Ciz = +1 [A4] Tyza = T4, =0 E, is a multiple D-P vector.
5 Cis = %1 41 — E, is a 4-fold D-P vector,
Tyz4 = T2z = 0.
[3-1] Ry=0 E, is a 3-fold D-P vector.
[2-1-1] R, =0, E, is a 2-fold D-P vector.
[2-2} E, is a multiple D-P

vector and is shear-free
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TABLE X

1 Ciy =1 C[3-1] E, is a multiple left Ly = T4z = 0,

Cse = N 41 ® [4] | D-P vector N,o = @412~ Ts2)N.

Ciy = —N -]

(other compo- {__ .. i — —

nents vanish) [2-1-1] E, is a multiple left | ¢ %N: Iy2q = 0;
[2-2] ® 4] | p_p vector COY £ —2ZN= 1"y, = 0.

2 Ciz =1 [3-11 E; is a multiple left Laga = Loy = T4y = 04
Css = N 4] ® [4] D-P vector, Nua=0eTy; =0
Ciy = —N -1 R = 0

E, is a multiple left Tipe = Tazs = ypy = I'upy = 0;
D-P vector, Nys=0<=14,=0; R=0;
R,i.=R,, = N, =011, =0.

3 Ciz =1 41 [4] E; is a multiple left | I'yys = Tans = Iass = Tays
Csa=N 1@ ] | and right D-Pvector | = Iaai—Tarz = Tsza—Taz2a
Cip= —N =r413—11314=P321—I1312=0-

E, is a multiple left Ta2a = Dyzz = Taya = Lany

and right D-P vector, | = Iyp1—Ts312 = Daay = Taxz

R,4=R,2=R,1=0 =P423=F413:P324=P314
= 0; .
Nyg=N, =N, =0; R=0.

4 Cyz =1 4] E, is a multiple left Faze = Tany = Ta1a = Tayy
Ciza =N [-] @ D-P vector = Tazi—L412 = Taz23—T's24
Cy2 = —N = I43—Lays = Di20— 1352

= I35, = 0.
E, is a muitiple left Tapa =Tasy =Taya = oy
D-P vector, =121—13y2 = Tazs = Tara
Ria=R,2— R\ = = I23 = T413 = I'aza

= [314 = 0;

Iy =0 34, = 0; R=0;

Na=Nyo=Ny=0;

N = 0<> I35, = 0.

5 Ci3 =1 [4] ® [B] La2s = T4y =0 E, is a multiple left D-P vector.
C34 =N
Ci2=—N

Other propositions are obtained by interchanging: 2+« 1, left «» right, [4] ® [B]l < [B] ® [4],

C@ - C@,
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TABLE XI
Type [ZS]_ —_ 2N](1..2) (real)
1 Ciz = +1 [3-1] E, is a multiple D-P | Iy2s = L4z, = 0;
Cia=N 41 vector L=y =0,
Ciz=—N -1
(other compo-
nents vanish)
[2-1-1] E, is a multiple D-P | C® % ZN=>T,,, = 0;
[2-21 vector Cc® = ~ZN=> T4, = 0.
2 C33 = +1 [3*1] E4 isa multlple D-P F424 = ['422 = P421 = 0;
Csa =N [4] vector, N,y = 0;
Cip= —N [-] R.=0 R:=0=Ta2s=0, R=0,
Ny, = 0155, = 0),
3 Cy3 = +1 [4] E, is a multiple D-P | Taz24 = laz2 = Tay2 T4,
Css =N [-] vector = Ta23—Is524 = I3, =153, = 0.
C12 = —N
E, is a multiple D-P | I'y24 =422 = 53— 1512 = T42
vector, = L4253 = I3 = 0;
R,4=R,2=0 R=N,4=N,2=0.
4 Ciz = #1 -1 - Ty2a = T2, = F4z1—P412
Cia=N =T423—F324=F322 = I3,
Ci; = —N ~T312 = 0.
R,4=R,z=0 F424=F422=F421=P423
=F324=F322=P321
~I'312 = 0;
T35 = 0<> T34, =0
R=0;N,a=N,2=0;
N,3 =015, =0.
5 Ciz = %1 [41 Lapa =Ty, =0 E4 is a multiple D-P vector.
Cia=N
C12 - '—N
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TABLE XII

Ci1 = —2N [4] ® [B] E, is a multiple left and | Iy24 = 414 = O.
C; = —2N right D-P vector,
Css =1 CO+C®  3¢®.c®
Ciz=—N 2 4N
C34 = N
(other compo-
nents vanish)
Cy; = —2N [3-1] E, is a multiple left or T34+ 424 = 0.
Cy; = —2N 4] ® [A4] (right) D-P vector
Ciz=1 [—]
Cia = —N or
Csy =N [3-1]
([A] ® 4 >
B/
Ciy = —2N [3-1] E, is a multiple right and | I"az24 = I'a1s = 0;
Cyy = —2N 4] ® [3-11 | left D-P vector, R,4s=0«N,,=0.
Ciyy=1 -1 CO-C® £ 0
Ci2=—N or
Cis =N 3-1]
B-11® {4l
-1
E. is a multiple right and | Ts24 = L41s = 0; N, = 0;
left D P vector, Diya =020, =T124=0;
CcA-_Cc® %0, 2z = 0=>T430 = I'12a = 0;
R,.=0 Ty =0=2T43=T124=0;
T4y =0=>Taz =T124=0
TABLE XIII
4 Type [S;—3N]; (real)
Ci; = —2N [2-1-1] E,4 is a multiple D-P s = 0.
Cy2 = —2N [2-2] vector,
= (3)|2
g‘:i = i:}g Re C® ;&--—LC c
Css =N
{other compo-
nents vanish)
Cyy = —2N [3-1] E, is a multiple D-P Typs+T214 = 0.
C;7 = —2N {41 vector
Caz = +1 -1
Cis = —N
Cis =N
Cyy = —2N [3-1] E, is a multiple D-P
C;2 = —2N vector, Ihps = 0;
Ci; = +1 ImC® £ 0 Rs=0<N,,=0.
Ciz=—N E, is a multiple D-P Ly = 05
Css = N vector, Tigy = 05T 40 =124 =0;

IMC® £0, R,=0

P422=0=>F421 =F124=0_



TABLE X1V
Type [Cy—C;—2N]4 (complex)
1 |Cu=4(C:i~C) | [AI®[B] | E. is a multiple left and | I'yzs = I'ass = 0,
Cay = $(C,—C2) right D-P vector,
Ciy =1 Cc®4.Cc® N 3030
Ci»=—-N =
Cas = N INT4C,C;
(other components T
vanish) 12
2 Ciy =3(C,—Cy) |[3-1] [3-1] | E; is a multiple left and | Ty24 = 410 = 0;
Cry = 3(C,—C2) {41 ® [4] | right D-P vector R.=0<«N,,=0.
Csy =1 -] -1 E, is a multiple left and | L'a2s = 414 = 0;
Ciz = —-N right D-P vector, N,o= 0y
Caa=N Ra=0 N-Tiy =014, =0;
N T4, =014, =0
3 Cyy = 3(C,—~Cy) | [3-11 [3-11 | Es is a multiple left and | Tazs = Taas = Iira
Ciz = 3(C1—C) [4] ® [4] | right D-P vector, =T41, = 0;
Csy =1 -1 [-1 N=20 B - R,,=0.
Cip=—N {41 _ [4] | E,; is a multiple left and | Dy = Fazs = Taya = Ity
Csa =N 1 ® (-] | right D-P vector, = gy = Lays = 'y
| N=0, =Ty0 = 0;
R:=R, ;=0 R,.=0.
TABLE XV
Type [S1—S2~2N]s (real)
— e S S
1 Ciy = 3(5,—S2) [A] E. is a multiple D-P
sz = »?;(Sl —'Sg) vector,
Csy = *1 31C™2
. 3) = -
C12 = —N N:-ReC e 4
Csa =N IN?+S,S,
(other components + 5
vanish)
2 [Ciy=3(5,-5)) B3-1] E. is a multiple D-P [aza = 0;
Css = 1(5:—5>) [4] vector R,a=0<xN,,=0.
Cyy = 1 -] E. is a multiple D-P Ty = 0;
Ci2a= —N vector, N,y = 0;
Caa =N R,,=0 N Ty =0e [y =0.
3 Ci=4(5:-52) [3-1] E. is a multiple D-P Tipa = Tyyy = 0
C.y = 3(5,—S2) [4] vector, R,, = 0.
Csy = +1 [-] N=0 i ’
Cip=—N (4] E, is a multiple D-P Tiog = Iazy = Iaas
Cya=N vector, = 054 = 0;
N=0, R,s=0.
R,z = 0

Type [4N]; (complex).. See theorems 2.2 (1), 2.3 (t), 2.4 for Cyp, = O. Type [d4T], (real). See

theorems 2.5 (t), 2.6 for Cgp = 0.
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TABLE XVI

Ciz=—N [4] ® [B] |Esis a multiple left D-P | C® s 2 N=> Iy, = 0;
Cia=N vector C® st —ZN=>Ty,,=0.
(other compo- . .
nents Vanish) [3-1] E4 s a multlple left D-P P424 = F422 = 0.

4] ® (4] vector
-1
Ciz=—N [3-1] E, is a multiple left D-P | R,, = 0<> N, ,—2NIy;, = 0;
Css =N 41 ® [A4] vector R, = 0<>N,,;+2NI5,4 = 0.
rl E4 is a multiple left D-P | I'yy4 = 425 = I'42, = 0;
vector, Nya=0<xT4, =0
Ra4 = 0
E, is a multiple left D-P | I'jz4 = 422 = 42,
vector, =1%3=0;, R=0;
R,.=0R,=0 N,y =0 T4, =0;
N2 =015, =0.
[3-11 [3-11 | E, is a multiple left and | R,4, = 0< N,, = 0.
4] ® [4] right D-P vector
- -1
Cy, = —N [4] 4 E, is a multiple left D-P | Iy, = 0; R = 0;
Cis =N [—-}®[ ] vector, I3 =T34, =0
R,4=R,2=0 N,4+2NP413=0;
N,3“2NF32; = 0
41 _ [4] E,; isamultiple left and | R, =0« N,,=0.
1® ] | right D-P vector (@=1,2,34
C12 = —-N [3—1] E4 isa multiple left D-P F424 = F422 = F423 = 0.
Cia =N 4] ® [A4] vector,
['] R,z = 0
Ciy = —N [4] 4 E, is a multiple left D-P | I'sq = T2z = I'ssa = 0.
Cia=N [~}® [4] vector,
R, 1= Y
Ci, = —N [41 y E, is a multiple left D-P | Tyzs = 42, = I'312 = 0.
Ciy =N -] ® [4] vector,
R,3 =0
Ci = —N [-1® [4] —_— Lana = 42y = I'sys
C34=N =F311=0.
Clz = —N [A] ® [B] ]1422 = r424 =0 E4. isa multiple ]eft D-P vector.
C34 =N

The propositions concerning E5 as a multiple D-P vector are found by interchanging 4 «» 3, 2+ 1

(but CG) — C3)),

The propositions concerning the right D-P vectors are obtained from 1-8 by inter-
changing: 2 « 1, left «> right, C® - C@), [4] ® [B] < [B] ® [4].



Type [285, 2T}, (real)

TABLE XVii

Ciz= =T {A] E. is a multiple CO = 2T= I, =0;
Coa=T D-P vector C® % —2T=>Ty;, =0.
(other compo- :
nents vanish) [3-1] E, is a multiple Taze = Taz2 = 0.
4] D-P vector
-]
Cis= —T [3-1] E, is a multiple Tizq = Ty = Iagy = 0
Cya=T (4] D-P vector, T,.=0
-1 R, =
E, is a multiple Tize = Tapz = Iaz1 = La23=0;
D-P vector, T,.=0; R=0;
R’4aR’2=0 T,2=0¢§P324=0.
E, is a multiple R,a=0<T,,=0;
D-P vector R =0T ;42T =0.
Ci,=-T 4 E, is a multiple I's; =0;
Cia=T -1 D-P vector, L334 = '35, =0
R,o=R, ;= R =0; T = const.
E, is a multiple Ra=0«T,=0.
D-p vector (a = 1, 2, 31 4)
Ciz= —T {3-1] E; is a maltiple Ti2e = Iazz = T3 = 0.
Cya=T 41 D-P vector,
[‘] Rs 2 = 0
C.,=-T 4] E, is a multiple TDaga =Ty =T433=15,4=0.
Cia=T -] D-P vector,
-Ry 2 = 0
C=-T 43 E, is a mvhtiple Tazs = D422 = I'5;; = 0.
Cie=T [~] D-P vector,
R’ 3= 0
Cip = -T (-1 — Pazs =Ta22 =155 =151, =0.
C34 = T
Cy, = ~-T {41 Thpa=Taz3 =0 E4 is a multiple D-P vector.
Cy=T

Similar propositions concerning E; as a multiple D-P vector are obtained by interchanging: 2 — 1,
43 (but C® o 3,
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TABLE XVIII

1 Cyy = —2N (4] ® [B] E, is a multiple left Lyrqa = 414 = 0.
Czy = —2N and right D-P vector,
C;=—-N CcB® . c® 3¢cG)c®
Csa=N 2 7 4N
(other compo-
nents vanish)
2 Cyy = —2N [3-1] E, is a multiple left La2a+T414 = 0.
C,; = —2N 4] ® [4] D-P vector
Cy2=—N [']
Css =N 3-1] E4 is a multiple right
4] ® [4] D-P vector Tyaa+ D444 = 0.
— [_] ——
3 Cyy = —2N [3-1] E, is a multiple left La2a = Ta1a = 0
Cyy = —2N [4] ® [3-1] and right D-P vector, R,,=0<«N,,=0.
Cia=~N [~} CH-Cc® 20
Csa=N or E, is a multiple left Liza =T4y4 =05
B-11® {3-11 and right D-P vector, iy =0=>Tapp =124 =0;
{4 CH_c® £ 0, Fyz2 = 0=>Taqz = I'ias =0;
-] R,,=90 Tyi =0Ty, =124 =0;

Ty =0Ty =T24=0;
N,.=0.

Analogous propositions for E; are obtained by interchanging: 4 < 3, 2> 1, C® — C®), C®) €0,

CD o —C®, @ 5 — 0@,

TABLE XIX
Type [§,—3T], (real)
1 Cyy = —2T [4] E, is a multiple Tyra =
C,, = =2T D-P vector,
= — {3)12
in T L
(other compo-
nents vanish)
2 C,, = =2T [3-1} E, is a multiple Liza+Tg14 = 0.
Cyp = =27 4} D--P vector
Cio=-T -]
C34 =T
3 Cy, = —2T [3-1] E, is a multiple Laze = 0y
Cyy = —2T D--P vector, R,4=0<xT,=0.
Ciyp=~T Im C® =0
Cau=T E, is a multiple I42s = 0;
D--P vector, Ty = 0> Dypp = I'i4 =05
Im € 0, Loz =0Ty = I'12a = 05
R, 4 = T,.=0.

Analogous propositions for E; are

c® . _c®.

obtained by interchanging: 4+ 3, 2+ 1, C® —» C®),



596

TABLE XX
Type [C,—C,~2N]; (complex)
i Cit = 3(C,—C)) [4] ® (B} | E, is a multiple left Typ4 = 1414 = 0.
Caz = 3(C1—C2) and right D—-P vector,
Ci2= —N CcO ™ 3¢Bc®
C34 = N 2 # 4
(oth.er components IN*+C,C,
vanish) + 077
12
2 Cii = 3(Ci—C) |[3-11 [3-1]] E, is a multiple left Tara = Tars = O;
Caz = 3(C,—~C2) 4] ® (4] and right D-P vector R,;,=0<N,,=0.
Ciz = —N - = E; is a multiple left Iy = Ty = 0;
Cas =N and right D-P vector, Nl =0T = 0;
R,4s=0 NIy = 0« Iy, = 0;
N, 4 = 0.

3 Cy; = 3(C,—Cy) ([3-11  3-1]1] E, is a multiple left Tara = Tagy = Tyry
Cr = 3(C,~Cy) | [41 ® [4] | and right D-P vector, =TI, = 0;
Cir= =N [ | ~N=0 R4 =0,

Caa =N [4] [4] | E, is a multiple left Tyre = Dyyy = Taza
-] ® [] | and right D-P vector, =Ty =Ty =Tays

' N =0, =Ty =T34 =0;

l Ra2=Rsi=0 Ra4=0~

Propositions valid for E, are obtained by interchanging: 4 < 3, 2o 1 but CG) €3, C¢®) - C¢®

TABLE XX1
Type [S1—S:—2T); (real)
! Cii = 1($:—82) {4} E; is a multiple Taze = 0.
Caz = %(S;—S57) D-P vector,
Cia = =T 31Cc™2
(3) . 7
CoomT TRe C©)
(oth'er components IT24S, S,
vanish)
12
S 2 Cyy = 3(8,—82) [3-1} E, is a multiple I'y, =0;
Coz = 3(5:—S532) 41 D-P vector Rao=0eT, ,=0.
Coo=-T -1 E, is a multiple Loy = 0;
Cia=T D-P vector, T,s = 0;
Ra.=0 Tl = 0 < I'apy = 0.
Cit = 3(5,—82) [3-1] E, is a multiple Thsy =Typp =03
3 Ca2 = 3(5,-5>) (41 D-P vector, R, .= 0.
Cp=-T -1 T=0
Csa=T [4] E, is a multiple Taga = Taz2 = I'szs
-] D-P vector, =Ty, =0;
‘ T= 0’ R’ += 0.
R, 2 = 0

Propositions valid for E; are obtained by interchanging: 4« 3, 2+ 1 but C® - CO®),
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APPENDIX
The Bianchi identities [8, 14]
dRab+I‘ac A Rcb—-rc,, A Rac = 0, (AI)

where R°, is the curvature form, I' is the connection form, can be written in the spinor
terms as follows [12, 8]

V35Csanc+Via Cocrps = 0, {A.2a)
V' Csaic+ V> iiCrosiicy = 0. (A.2b)
VPC s +4 VagR = 0, (A.2¢)

here V1= g°45V,.

Identities (A.2a) we call “the left (heavenly) Bianchi identities”, (A.2b) we call ““the
right (hellish) Bianchi identities”. By tedious algebraic manipulations one finds the
explicit form of identities (A.2a) (in the appropriate pair of spinor bases) [8, 13]:

[0y = 2(T 121 4T3+ T 3,2 1C® +[04 = (T124+T344)— 4045, 1C + 374, CP
= [0, =20 342+ T 3241C5s—[04 — (T 34+ T343) = 2 512)Caz+ 2045, Cay
=2 424C12—T414Cos, (A.3a)
8242224 T3a2) +Ta231C 0 = [83+ (Fy23+T3s3) —4175,,]1CP 43005,
= (0,42 34, + T4131Ca3 =834+ (T 123+ 343) ~ 20 32,1C3, +203,,Cs
—2I3,3C = 353Ch s (A.3b)
[03=2(Is23 4 Tsas)— 3y 2]C® 405 — (Fyza + Tss2) + 41423 ]C4 4 31745,C
= [0, —(I122+T342)+2I324)Ca2 =04~ 20 124 Ta12]Co2+ 2422 C 2
+2I424C33—1322Cu4, (A.3c)
[0at2(T 128+ T358) =T a2 JCV— (814 (T a1+ T3a) +40 3, ]CP +305,,CH
= [, + (T2 + T 340) +2043131Cs, = [83+ 20123 —132,]1C11 +273,,Cy 2
+2I313Ca — L4101 Css,s (A.3d)
T3 C® = [0, — (g5 +T341) 420 31)C® [0, — 345, 1C 4 26,7
= =03 =2T 343 =3y, +20315)C0 =310, + 2 413 —(Tyay +T340)— 205141 Cas
42002 =Tars+T 320~ (=T 1224+ T322)1Cat — 3[04+ T azy —2041,1C1 5
A T Coa 4 2 Ty Oy 4+ 2 T42aCy + 2 T414Cas, (A.3e)
FansCO 4 [Co+ 122 +T342) F20453]CP 4+ (85— 315,,]CP =265, ,CP

= —3[Ca+ 2305 —T 4y, + 2l 4211C33 =3[0+ (D22 + T 342) + 20354 = 204531C5y
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+—§~[61——F314+F“3+(—I\2l+F3“)]C32—%[63+F3,2—2F32,]C,2
—3035,C 1 +2T311Cy +5T313Ce2+5T353C, (A.3f)
T3 3C® 4 [0 — (T 123+ 3a3) — 2T31,]C® + [0, 4 31423 1CP + 260 45,CP
= —%—[63——(F323+F343)—2F321+2F3,2]C42——§[61-2[‘121+I‘413—2F314]C22
+%[32-r423+2F324]C12+%[34+(—F124+r344)+f421-F412]C31
4303,3C0a~3T424Ca3—5T422C31 —3T322Cys (A3g)
[ aC 0 — [0y (T 24+ T368) — 2T 42 JCP 4+ [0, +305,,1CP —2I'3,,CP®
= =3O+ (i2a+T3aa) =2 412+ 2T 43,1C3, —3[02+ 2T 122+ T 324~ 20 4231C1y
+2[0; =310+ 2T4131C10+ 5105~ (=T 123+ 343) +T312—132,]1Cay
41014Cy3—20313Ca—3T311Cay—3%1411Csz- (A.3h)

Interchanges C® — C@, 24> 1 lead to the explicit form of the right Bianchi identities
(A.2b).

Now, we can write the explicit form of Bianchi identities (A.2c) as follows [8, 13]:
18R = [014+ 20413+ 20314]1C 2+ 02420 122+ T 423+ 3241C1y
+[03=(—T 3234 T343) =T 321 —231)Car +[0a+ 124+ 32a) —Taz1 —20412]C3;
~T311Ca2—=T411C3,—T313C34—T414C33, (A.4a)
L0R = [0+ 2@ 423+ 20 3241C 2+ (01 + 20 311+ T 413+ T314]1Ca,
+[03—(T123+T343)=T312—=203211Ca2+ [0+ (=T 124 +T34a) —Ta12—24211Cs2
~L333Cs1 —T425C31 —T323C4a—T424C33, (A.4b)
L83R = [0+ (=T 121+ T34 )+ T 413 +273141Ca2
[0y +(T122 +T3a2)F Taz3+20324]1Cay + {04+ 2 300 —T 421 —T4121Cs3
—[03—2I 351 —2T3,,1C 34 1311 Coy +1322C1 1 +T353C4; +1313Cs;, (Adc)
$04R = [01— (T 1214+ T341) + 2413+ T3:41Cs2
+[0;— (=T 1204+ Ta42) +T324+204231Ce1 +[03—2I 343 —T312—321]Cas
(0 =2 421 =20 412)C 12+ T 411 Con + 1422 C11 + 1424 Ca1 +T414Cs. (A44d)
(Of course é,:= Ejd/dz").
One can verify that identities (A.2a), (A.2b) are equivalent to the following identi-
ties [9, 13}:
Cheia = Coreart 3 85cClira (A.5a)
and (A.2¢) are equivalent to
C%. = LRy, (A.5b)
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