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It is argued that the electric charge ¢’ = 4n/e, where e is the charge of the electron,
plays a distinguished role, similar to the role of Dirac’s magnetic charge g = 1/2e.

1. The paradox of a Lorentz invariant current

Classical electrodynamics leads to a paradox which apparently has not received the
attention it deserves. The paradox consists in the following. The electric current can be
a Lorentz invariant vector field. On the other hand, the electromagnetic field cannot be
a Lorentz invariant tensor field. Therefore, the field produced by a Lorentz invariant
current must have a deviation from the perfect Lorentz symmetry, which is not implicit
in the current.

In Ref. [1] we proposed a solution of this paradox. We have shown that it is possible
to choose the electromagnetic field produced by a Lorentz invariant current in such a way
that a classical particle scattered by this field emerges with unchanged momentum and
angular momentum, which means that the deviation from the perfect Lorentz symmetry
cannot be detected.

In this paper another solution is given. It is shown that a Lorentz invariant current
can be transformed away by means of a certain (inadmissible) gauge transformation.
This, however, cannot be done in Maxwellian electrodynamics but in a generalized
electrodynamics introduced a long time ago by Dirac, Fock and Podolsky [2]. The transfor~
mation in question is possible if the charge e of a test particle and the charge ¢’ of a Lorentz
invariant current are connected by the relation

e =4mm, n=0, 1, +2, ...

Thus we obtain a principle of charge quantization without Dirac’s magnetic charge.
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2. The electrodynamics of Dirac, Fock and Podolsky

The equations. As is well known, one of the Maxwell equations of motion
(div E = 0) does not contain the time derivative; this causes a considerable trouble in the
quantum version of the theory. Dirac, Fock and Podolsky introduced a modified theory

of a tensor field F,, = —F,, and a scalar field F, which fuifil the equations
0Fy+08,F ;+0,F,, =0, )
0*F,,+0,F = 0. 2)

These equations are always used in quantum electrodynamics but the field F is considered
a nuisance to be argued away, €. g. by means of the Gupta—Bleuler method. In this paper
we accept the Dirac-Fock-Podolsky equations (1) and (2) as they stand and derive a
consequence which, to our knowledge, has not been noted.

The energy momentum tensor. Multiplying Eq. (2) by F,. we obtain

0 = F,,(3,F" +0"F)
= 0,(F;,F*")—F*8,F ,,+&"(F,,F)— F0'F,,
= 0,(F,,F* +F,*F)—% F*0,F,,— F0,F
= 0,(F;,F* + FF,*—% 84F*F , — % F*8%)

which means that the tensor

1
T = o G FPFo0— i +3 F*6{— FF ')
T

is conserved. This tensor is a generalization of the Minkowski energy momentum tensor.
It is positive definite but not symmetric.

The potential and the principle of least action. Eq. (1) implies that there
is a vector field 4, such that

F,, =0,A4,—0,A,.
Let us put
F = "4,
and consider the integral

1
= — — | d*x(F,F* +2F?).
1) 4 X )
Varying S with respect to 4, one finds Eq. (2) as the Euler—Lagrange equation.
The vectors 4, and A, = A,+0,f, where (0 f = 0, give the same fields F,, and F.
The transformation
A,—» A, =A,+0,f, Of=0,

is called a gauge transformation of the second kind.
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3. Inadmissible but unobservable gauge transformations of the first kind

Interaction of the Dirac field y with the Dirac-Fock-Podolsky field 4, can be in-
troduced by means of the same well known recipe as in the Maxwellian case.
Let us consider the following gauge transformation of the first kind

2xin(x)

Px) > Y(x) =e p(x),

where n(x) is a discontinuous function equal to 0, &1, +2, ... in domains of continuity.
This is obviously an identity transformation

pyoy =y

but it generates formally a gauge transformation of the second kind

A

, 2r
o Ay = A +0,—n
e

which, in general, is not admissible because, in general,

On#0

and therefore

but

, 27 .
F-F =F+ —[n#F.
e

Let us interpret the last transformation as a creation of an external (with respect to
the Dirac-Fock-Podolsky field) current

1 1
X~ o (F —F)= — —8,n.
J T u( ) % On

"

In general nothing can be said about this current; in particular, it does not have to be
conserved i. e. it does not have to have a definite charge. (In the Dirac-Fock-Podolsky
electrodynamics the current does not have to be conserved; only the Maxwellian part
it—=(1/4m) 0,F is conserved.) Let us suppose, however, that j;** does have a definite,
conserved charge; this will be the case if [J{J#n = 0.

Piecewise integer solutions of this equation are investigated in the Appendix. It turns
out that each solution of this kind either fulfils the wave equation [(J n = O or is a super-
position of solutions which can be obtained from the fundamental solution

1 for xx > 0,

n(x) = sign (x°)0(xx) = sign (x°) {0 for xx < O
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by space-time translation and multiplication by an integer. Therefore the total charge of

+ext

the created current j;* must be always a multiple of the total charge of

1
Jux) == 9,001 {sign (x*)0(xx)}

i. e. of

4. Comparison with the Dirac theory of magnetic charge

There is an obvious analogy between the theory from the preceding section and the
Dirac theory of magnetic charge. In the Dirac theory one performs a gauge transformation
of the first kind

w(x) N l/)’(x) — ei arctg xl/_nw(x).

This is an inadmissible gauge transformation because the electromagnetic field is changed:
, 2n . 2
Fio = Fyy =Fy+ ’zé(x )o(x”).

There arises an infinitely thin tube of magnetic flux at the end of which there is a magnetic
charge

1

§= e

Both theories are based on the idea that a discontinuity of phase should be (somehow)
admissible if its magnitude is a multiple of 2n. However, the surface of discontinuity is
timelike in the Dirac theory and null in our theory, which seems more reasonable in a rela-
tivistic theory. Moreover, the existence of a magnetic charge leads to experimental conse-
quences which have never been observed while a Lorentz invariant current is unobserv-
able — if one accepts the argument of Ref. [1]; it does quantize the ordinary charge
but does not interfere with the rest of physics.

APPENDIX
On piecewise integer solutions of the equation (11 n = 0
We shall investigate first local consistency conditions. To this end we put

1 for ¢(x) > 0,

n(x) = 0(e(x)) = {0 for ¢(x) < 0.

@(x) is a continuous function with as many continuous derivatives as is needed in the
subsequent calculation.

o = (@), [On = 8(9)d"ed,0+(p)0ep.
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n(x) can be discontinuous only across a null surface; therefore

*po,p =0, [On=de)0g.
In the same way
O0n = 8'(p) [(Og)* +20"90,0¢] +8(@)0 0.
Coefficients of &'(¢) and d(¢) have to vanish separately. Thus
(O¢)*+20"0, ¢ = 0.
OO0 ¢ =0.

One can always assume that

o(x0, x', X2, x3) = X0 —f(x!, x2, x3);

then the conditions above take the form

(grad f)* = 1,
(Af)*+2 grad f - grad Af = 0,
AAf = 0.

The only surfaces f = const for which these conditions hold are planes and spheres. One
can prove this as follows: one solves the above conditions in the Gaussian normal coor-
dinates based on the surface f = const and subsequently imposes integrability conditions
R;; = 0, where R;; is the Ricci tensor of the three-dimensional space x° = const. This
consideration is local but the result holds globally as well because of the well known
rigidity of a sphere [3]; in the case of a plane the solution has the form f = n - x, where n
is a constant unit vector, and also holds globally.

In the case of plane [ n(x) = 0 which means that the gauge transformation A A=
= A,+0,(2nn/e) is admissible. Thus the case of a sphere remains to be considered.

It is clear that in this case the surface ¢ = 0 is a light cone of some event. One can
assume that this event is at the origin of the coordinate system. One can assume, moreover,

that n(x) vanishes outside the light cone since this can be always achieved by subtraction
of a constant. Thus

n, for xx >0, x° > 0,
n(x) =40 for xx < O,
n_ for xx > 0, x° < 0.
The equation (] n(x) = O is fulfilled if and only if n. = —n_ = ». In this case
n(x) = nsign (x°)0(xx),
O za(x) = 4n sign (x°)(xx),
O Onlx) = 0.
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