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The branching ratio R = 'K — (Mw)aom V(KL — ) is calculated as a function
of & = f_|f., where f4 are dimensionless form factors for the K{. The world average values
&= —0.2(~0.9) from K,3/K.3 (muon polarization) measurements give R = 3.8 (2.7) x 10-7,
Bethe’s theory of inelastic collisions is adapted to the calculation of the ionization cross-section
Gion fOr a relativistic (mit) eom in the 18 state due to its interaction with the screened Coulomb
field of a target (foil) atom. In particular, for a (T)aom With an energy of 10 (my+my) c®
incident on an aluminum target (foil) atom, 6jon = 7.4 X 10722 cm?. These calculations are
relevant to the experiments being currently performed by M. Schwartz and collaborators at
Brookhaven and FNAL.

There has recently appeared a letter reporting the detection of hydrogen-like atoms
consisting of a pion (%) and a muon (u¥) in a Coulomb bound state. These pion-muon
atoms (TW)uem are formed when the n and p from the decay K{ — muv have sufficiently
small relative momentum to bind. The (np),.m, being a hydrogen-like atom, is expected
to have a reduced mass m, of 60.2 MeV/c?, a Bohr radius a, of 4.5x 10-!! ¢m, and an
ionization potential I of 1.6 keV. The total mass m,, of the (Tp),,m, neglecting its binding
energy, is 245.2 MeV/c2. Our purpose here is to report on some calculations that have
direct bearing on the experiment.

The prime motivations for the experiment were twofold. Firstly, the value of the
I'(K{ = (np)v)
I'(K{ — muv)
function at very small-distances and so an anomaly in its value may be indicative of an
anomaly in the n-p interaction. Secondly, by passage of the atoms through a magnetic
field at high velocity (y ~ 10) the 2S states should be depopulated through Stark mixing
with the 2P states and consequently decay to the 15 states. The extent of this depopulation
is sensitive to the Lamb shift of the 28 states relative to the 2P states and may, if measured

branching ratio R = is proportional to the square of the m-p wave
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with some accuracy, lead to a determination of the pion charge radius. The crucial detection
of the (7)), 18 made possible by its dissociation on passing through a thin aluminum foil.

With regard to the production of the (rp),.m, We calculate the branching ratio R in
the context of conventional current x current weak interaction theory, assuming that
only the vector current contributes to the decays. The ratio R is then essentially a function
of the parameter & = f_/f, where f_ and f; are dimensionless form factors that parametrize
the hadronic weak transition current {m|Jy..|K{>. Unfortunately, there is at the present
time no general consensus on the experimental value of £ and therefore we have no unique
prediction for R. The world average values of ¢ & —0.2 and ¢~ —0.9 from K,;/K,;
and muon polarization measurements give R =~ 3.8 X 10-7 and R =~ 2.7 x 10~7, respectively.
We thereby confirm previous estimates [2] for R. The details of this calculation can be
found in Sections 1 and 2.

With regard to the detection of the (Tp),,m, We consider a collision between a fast
particle and a (tp),,,m, accompanied by excitation or ionization of the atom. Such inelastic
collisions were first discussed nonrelativistically by Bethe and then later generalized to
the relativistic case by Bethe and Moller. Both Bethe and Moller studied in detail the case
when the target atom was hydrogen-like and the charge distribution of the fast incident
particle was a bare Coulomb field. In our case the target atom is indeed hydrogen-like,
namely a (Tp),.om; however departures from the bare Coulomb field approximation come
at large momentum transfers (i.e., large angles, small impact parameters) and small momen-
tum transfers (i.e., small angles, large impact parameters).

At small momentum transfers screening effects must be taken into account. This is
because the fast incident particle in our case (in the (np),,. rest frame) is actually an
aluminum atom whose charge distribution is therefore a screened Coulomb field rather
than a bare Coulomb field. In Section 3 we derive the relativistic formulas for total in-
elastic, excitation, and ionization cross-sections appropriate for a screened Coulomb
interaction. The essential effect of the screening is to make the various cross-sections finite
and constant at ultra-relativistic velocities which would otherwise diverge. A (TWuom
in its 1S state with an energy of 10m,,c? on colliding with an aluminum atom is found
to have an ionization cross-section of 7.4 x 10~22 cm?. As expected, the cross-section is
of the order of the size of the (n),,.m. We are thereby justified in neglecting “finite nuclear
size” effects which are important at large momentum transfers and expected to be the
order of 1072 cm? (i.e., square of the nuclear interaction range). The thickness of foil
required to break-up a high velocity (y ~ 10) beam of (7jL),m in the 1S state is therefore
2.2% 1072 em (= 8.8 x 10~3 in) of aluminum, in agreement with the Monte Carlo calcu-
lations of Ref. [1].

1. Calculation of I'(K{ — muv)

(In this and the following Section we follow the conventions of Ref. [6].)

The differential decay width for the process K{ — mpv is given by:
d*p,d’p,d’p,

(2m)°2E2E,2E 2E,

dr(Ky - mpv) = |.#5)* 84(Px— Pr— Pu—DP\)» (1.1)
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where the decay amplitude .#7% is the product of the hadronic and leptonic weak transition
currents:

My = M(PK; Pas P> DY)

G
= [:/—2 sin 9c] [£+(a%) (Px+ P)a+1-(a®) (px— P)a] [B(P)7: (1 +75)0,(p)]. (1.2)

The dimensionless form factors £, (¢*) depend only on g? = (px —p,)?, the square of the
momentum transfer to the leptons, and we assume time reversal invariance so that they
are real. The standard parametrization for f,(g?) is:

f1(@®) = [+ [1+2:(a/m)*],  &a*) = f-(@")/f+(d). (1.3)

Summing over final lepton spin states and performing straightforward integrations we
find for the total decay width:

G
I(KD - muv) = I:VE sin } ) J|f+(q WI—e (v—5H]1""

—8%)? 26% 2y+9
WS ){[(y+ )O+eh)” @y + )} 2y eB) E@)—1)

2 12y? 6y
62
+ 3 (&(gH) - 1)2} dy, (1.4)
where
n+ — Mg 2
SE(m m'K), ﬂEmK m, d=—2, E(i)
myg myg mg mg

The limits on g2 are m} < g* < (mg—m,)? and from the data of various measurements
it is known A, < 0.03 and A~ 0. Thus with an error of a few percent we may safely
neglect A, so that f,(¢*) = f.(0) = f.. For this case (15 = 0) we can easily do the integral
occurring in (1.4) analytically.

Having obtained the decay width (K{ — muv) and assuming ep universality we obtain:

I'(K? - npv)

R 0
I'(K{ — mev)

Ml
i

R(Ay = 0) = 0.64512+40.12456¢ +0.018654&2, 1.5)

Direct experimental measurement of R suggests £ = —0.2 whereas an independent
measurement of the final pt polarization seems to favor £~ —0.9. This well-known
discrepancy is as yet unresolved.
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2. Calculation of (K — (T atomVyy)

The differential decay width for the process K — (%) 0nv is given by:

dIr(K2 — (mp)v) = |45 4Py d’p, d4(
- (ntu)v) = |4 — D —
L 2 2 (2n )22EK2E 2E 4Pk — Py
LY I = Mp 2.1
Py = m, st Py Pp = m,, wu ™ Py (2.1

where one can think of P,, and p,, as the 4 momentum for center of mass and relative
motion of the (R),em- The decay amplitude is:

*Pe
J ' = WP D) 5(PK Pas P Pu)s (2.2)

where Wy is the Bethe-Salpeter wave function and .#% is defined in (1.2). In principle,
the Wy satisfies the full Bethe-Salpeter equation 8] for a relativistic bound state of a n
and a p. Adopting the usual perturbative treatment — due to Salpeter [9] — we replace Wgq
by ¥5s — the solution of the Bethe-Salpeter equation with an instantaneous Coulomb
kernel. In the frame f’,m = 0 and in the nonrelativistic limit (p,, < m,, m,), becomes
identical to the nonrelativistic Schrodinger wave function ¥(x) (x = 5c',,—5c'u) in momentum
space. If we further assume that the weak interaction is local (i.e., effective only at
threshold p,, = X,, = 0) we find:

B ) ) \o
‘I’Bs( ww Pp = 03 Pry) = (_.). 54(pﬂ")¥’(x =0); |¥X = 0)[2 - _n_ (a;n)

(n=1,273,.), (2.3)

where e?/(he) = o = (137.036)~! in the fine structure constant. Boosting the atom to
?W # 0 we obtain by Lorentz dilatation:

Es TZ( m)*

m

(2.4)

¥is(Prg Pr) = [

ap
Since the probability density |W(§)12d3x is by definition the same in all inertial frames
and length contracts under a Lorentz transformation. This last remark is essential to the
Lorentz invariance of the decay width. Thus, in the context of local weak interaction
theory we find:

B A m, my E,., ve
My = '/13 Pk ;n—" Pnp’ _—_ Pnpa Dy m Yl(x = O)- (2.5)

iy nu T
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Inserting (2.5) into (3.1), integrating, and summing over all principal quantum numbers
of the final (Rp),om We find for the total decay width:

G 2 V2 (m2 — m2 )2
rK? - (np)v) = 1.202 <\7§ sin ac) /4@ 8)7!:2;;‘"1 ) m?2(am,)’
KM
2 mg 2 - m,f my 2
X @I 1—- — ) 424G 1— —5- |+ |1+ ,
Mgy Moy Mgy,
-2 g 2 my 2 2 v f
G = (px—p) =\pxk— — P} =4T2m;, 1202 = 3 - (2.6)
mnp [
n=1

It is amusing to note that I'(K{ — (mp)v) vanishes for &@G%) = —QM,+M)/M,
= —3.64; such a value for ¢ does not seem to be favored by R and muon polarization
experiments. In Fig. 1 we have plotted R and R over the range —2 << & <C 2. Inserting
EG*) ~ E0) = ¢ = 0.2 (0.7) we find R = 3.8 (2.7)x10-7. In Fig. 2 we have plotted R

w2 T T T Y T T T
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§m

£1(0)=

(o}
DK~ w-pt v

P(KE* 7;-8+Ve)

-2 N 1 R : 1 A ] N =
o116 0,287 0457 Q.628 0798 0.969

Fig. 1. Plot of the branching ratios for —2 < § < 2
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Fig. 2. Plot of the branching ratios for —20 < & < 20
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and R over the exaggerated range —20 <C ¢ < 20 to emphasize the general behavior,
in particular the vanishing of R at { = —3.64.

The preliminary data [10] on R indicates that a suppression of a factor five to eight
is not, at present, inconsistent with experiment. If we interpret this as an anomaly in the
n-p interaction, we are led to postulate the existence of a short range repulsive interaction
between the m and p. A model calculation based on the following potential

2MeV  r <1y

Vie-u(r) = 2 (ro = 2x 1072 cm) 2.7
- — r>rg
r
indeed reduces R by a factor of eight without at the same time appreciably altering (by
final state interaction) the pion and muon energy spectrum in the predominant decay
mode K — mpv. In Fig. 3, using the integrand of (1.4), we have plotted, for £(0) = —0.6,

56':’5 PION ENERGY SPECTRUM
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Fig. 3. Plot of the pion energy spectrum for KP —muty,

the pion energy distribution with and without the anomalous interaction V,_,. Note
that because of the repulsion the distribution with ¥,_, has shifted slightly below that
of without ¥, _,. The anomalous interaction, however, increases the energy levels of the
(TW,om DY 10% from their conventional (hydrogen-like) values. It seems implausible
that such large departures of energy levels could be consistently explained in terms of the
known forces; further arguments supporting this view can be found in a recent preprint [11].
We must, of course, keep in mind that no one has actually measured the energy levels
of the (T}),om- Furthermore, as there exists no published data on R it would be premature
for us here to labor the point any further.
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3. Calcualtion of inelastic cross sections

To fix ideas and notations we begin by summarizing Bethe’s [3] original nonrelativ-
istic treatment of inelastic collisions between a fast particle and an atom, in a manner
following the lucid presentation of Landau and Lifshits [12]. The relativistic version of
the theory as advocated by Bethe [4] and Moller [5], will then be systematically outlined.

Inelastic collisions between a fast particle of nuclear charge Ze and a (7p),., can
be considered in the first Born approximation. For the validity of the Born approximation
the speed v of the incident particle should be large compared to the orbital speeds in
the (TP),om- Let p and p’ be the momenta of the fast incident particle before and after
the collision and E,, E, the corresponding energies of the (R|),em. The interaction
energy U between the incident particle and the atomic particles is assumed to be a screened
Coulomb potential:

2

Ze® _ , o 3 4rZe?
Ury=—2¢"%;, U@ = {|et"Urd’r =
r

g*+a;?’

(nonrelativistic)

az = 1.4002—1/3, (3.1)

where screening parameter (size of the incident particle) a, is evaluated in the context
of the Fermi-Thomas model and g, (= 5.3 x 10~ ¢cm) is the Bohr radius of the electron.
The differential inelastic cross-section for a given energy loss (i.e., fixed |p| and |p’]) of
the fast incident particle (it is assumed here, as is the case with us, that the mass of the
fast incident particle is much greater than M) is found to be:

i 1 qdq
_ 2 iger 21 —
da, = [U@PIKpile™ Tlyo)l [h ( ,w)z] (3.22)

(nonrelativistic)

Ze*\? g qdq
8| — Tiger i 3.2b
n(hv> [<wale™™ o)l Era?) (3.2b)

where —fig = (p—p’) is the momentum transfer to the atom, and o (v,) are the initial
(final) wave functions of the atom. (In this section we assume the initial state v, of the
(TW),eom to be its 1S ground state.) Since the collision is inelastic [p| # |p’| and n # 0. A no-
table property of (3.2) is that it makes no reference to the mass of the incident particle. The
final state (#) of the atom could be either in the discrete spectrum with an energy eigen-
value E, = — M 0?/(2h?s?) (n = 2, 3,4, ...) or in the continuous spectrum with energy
E, = h2k2/2M,) (0 < k < o) corresponding to excitation and ionization of the (TW),i0m

respectively. The kinematics of the collision give the following limits in the momentum
transfer:

(En - EO) 2mrU
o=t = - . 3.3
9 min ho » 9 max h ( )

(nonrelativistic)
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For hydrogen-like atoms one can calculate the inelastic form factor Ktp,,le""?'ﬁ Yoo l?
= |(e”™ Noul* analytically and find:

1 [ discrete
n=234 (qa,)’2°n’[5 (n*~1)+(qna,)*]
ma? n—1)>+(qna,)*]" 3
E,= — =5 X L )2 < )2]n+3 (3.4a)
i 2nh [(n+1)"+(gna,)”]
lq r — _ -
I(e oal* =3 continuous
B2 0?20 [q* + (o, 2+ )]
- 2m, [g+k)+a7*PP[(g—K)* +a; T
’ . exp [ —2(ka,)” " tan™? Qka (> —K*+a; )]
X 3.4b
L _0 <k< oo_ 1—exp [ -2xn/(ka,)] (3.4b)

-

If ¢ is small one can make the “dipole” approximation e ™" ~ 1 —ig - 7 and obtain the
following matrix elements:

r . 28 ; (n__l)Zn—S ,
discrete: — n' ——-= 3.5a
J 3 n (n+1)2n+5 a; ( )
[(x)onl 4
28 ka—-6 e_k—‘htan'l(ka.—)
continuous: — d 3.5b
3 (K*+a]?° [1—exp (—2n/ka,)] (3.50)
Two important numbers to keep in mind are the following:
Y 1(X)oul® = 0.715aZ, [ |(x)onl*dk = 0.285a7, (3.6)
n=2 o

the sum of which is a? in accordance with the Compton sum rule.

Let us now consider the necessary modifications to formula (3.2a) for the inelastic
cross-section when relativistic effects are to be taken into account. We follow here the
treatment of the Bethe and Moller. There are basically three essential changes one must
make which we now describe:

(1) In the Fourier transform U(g) of the interaction potential U(r), the momentum

E,—E,\*
transfer square g2 is replaced by the “four momentum” transfer square g% — ( "h 0) .
¢

This replacement takes into account the “retardation’ effect characteristic of any relativ-
istic interaction. Thus our first change is:

4nzZe®
(relativistic)  U(q) = ree . 3.7

E,—E,\?
2 n 0 -2
q—< he \’+az
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(2) The nonrelativistic inelastic form factor |<1,u,,|e"""’*|1,u(,>|2 must be replaced by
fd3re™7j (r)J (r) where j, and J, are the transition currents for the fast incident particle
and the (np),em respectively. Normalizing all wave functions to one particle per unit

—-ih L\ .
A> %) where in J, we have

volume, the current j, = (1,9/c) and J, = (wpf%, w,’f(
—ih .
replaced p,, by the operator —-— 4. Thus our second change is:

my

o - ih .o
(relativistic)  [<y,le ™ "lywodl? — [<y,le ™™ ’<1+ = v-V>|%>52' (3.8)

r

(3) The nonrelativistic limits gn,;, and ., in (3.3) must be replaced by their relati-
vistic analogues

E,—E 2mv -
(relativistic)  Gmin = (~-—»~-"~), Quax = — 7 y = (1=0v?[c?)~ V3, (3.9)
ho h
: . 1 qdq L :
the kinematical phase space factor 5 ~(;l~)~2 as itis written in (3.2a) is the same for both
n (ho

non-relativistic and relativistic cases. Collecting these modifications together we arrive
at the relativistic expression for the differential inelastic cross-section:

do, = U@ [yale™™7 1+j—i’~6 lpop!? 1 adq (3.10a)
" ¥a m,c* ¥o 2n (ho)* o
(relativistic)
Ze*\? e ih . . 2
=8l ) Wple T4 7LV ) iy
hv mc
qdq

R s S 3.10b
o (5] "
q~\—5—) taz

he

2

- ih . .
‘(#’nle_’q"<1+ ‘1’7 v V) lyo>
mge

I

m
= < for g < W (3.11a)

o E,—E
L|(e*"*")0n12 for g » (Jhc ) (3.11b)
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For g » ~(v~"',~--9— it ig convenient to use the following sum rule:
-4
E (™% Hopl? = 1=F(q) = 1—[( >+1] , (3.12)
n¥l

where the sum is over both discrete and continuous states, and F(g) is the 1S form factor
of the () om- We are now in a position to calculate the various cross sections of interest.
(A) The total inelastic cross-section a;,, is defined to be:

dmax

O = 2. | do,. (3.13)

nt Y dein
We divide the range of integration into two parts, from ¢, to g, and from g, 10 g,
where ¢, is some value of such that
(E,—Ey) m e -
L gay! < gy € e =ag .
he 2
Inserting (3.11a) into (3.10b) the integral from g,,, to g, is

g0

Z | de,

n*l dmin
E,—E 1 (E,~E 2
q0 2_ n__ ._0 . .‘0)
g Zer\? TRWE [q < he ) 2 ( he ]qdq
T hl’ ('\ On l: , (L" b0>2 77_’ ’]3
n| (En—En) q-— R B o P
T hie .

ey E,~E,

rie NEA A

ZeM\? 4 N i(x) |2[ o 7‘2 he /)

“\n )" ¥on (1 (E—E\ ]
Y vy o
')v" h

(1}
Oinet

]

n#l J
c

2 e 2
sl - 4ol C) - (3.14)

1 [E,—Eo\
( . ") deay i)
e he

Similarly, inserting (3.11b) and (3.12) into (3.10b) we obtain the integral from g4 10 Gpye
Here we can neglect screening since only large momentum transfers are involved and also
extend the upper limit to infinity with negligible erroe, obtaining:

Quiax .

zr [qa,\’ 4 dg
(’) _— T
Tinel = Z ‘ d(’ ~ gﬁ( ,” ) } % I — {’_(? \) + I] } qj

qa

Ze7\? y j S 4 -
=— ) 4ra; ¢ —+3+1n (3.15)
o) et
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The sum of (3.14) and (3.15) gives for the total inelastic cross-section:

- 1 [E,—E,\2
w2 -2 { =m0
Walr| 7 ["z * /( he )]

Ze™\?
=2 4t d -1 4 ALl R I
Oinel (hl.’) na, 12 a, E,,"E() 2 s
n# 1 . +{(vy) ag

doy)’
+ln| — - U (3.16)

E,—E,
(55 e’
3

which is independent of ¢, as it should be. The remaining sum (which includes sum over
discrete states and integration over continuous states) must be done numerically on a com-
puter, using the formulas (3.5).

(B) The excitation cross-section ¢, is defined to be:

dmax

Oore = Z | da, (3.17)

#=2 qmin

We again divide the range of integration into two parts. The integral from ¢,,;, t0 ¢o is
identical to (3.14) except the sum now goes only over the discrete states (n = 2,34, .=.).
The integral from ¢, to ¢,,... however, is much more difficult now as we cannot use (3.12)

any more but must use (3.4a) instead. Fortunately, Bethe has already evaluated the integral
finding:

kS dmax o 4
@ 2% 4%
aexc = (IO'" ~ ’A'évr'h_‘i‘;é' o An,
r
n=2 g0 n=2

_ (o= D12 dx
- J [(n ~1)+3x ][( Ty +\]n+3 (x = (qnq,))

n+2
(n—1)*""3 C,. o (n+1)
_ ) LI P
(n+1)7"*> T (nqoa; )
T=1

cm= () Z Q)] e R e P I G 2

(3.18)
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Adding (3.18) to (3.14), restricting the sum to over discrete states only, and making use
of some numerical values quoted in Ref. [3] we obtain for the excitation cross-section:

o 2| -2 _]_ E,~E, z
(Ze2)2 2 @) [az i VZ( he )]
Ooxe = 4na; - :
ho : / E,— EO

@)’ (n*=1)? (X)on |

E—EN [ \']
1.791* [<~—J> + (ﬂ> ]af a’
h az ,

and again the dependence on ¢, has disappeared as it should. The ionization cross-section

(3.19)

+1n

is then simple:
Oion = Oinel ~Ocxe: (320)

ion

For the particular case of the bare Coulomb field (47> = 0) we regain the well known
Bethe-Moller formulas for the various cross-sections.

e

2
Oexe = 4na; (Z,e > (©. 715){_(u/c)2+1 [ rﬂ’?ﬂ/ﬁ‘)_]]{,
!
J

2\ 2 2
6, = 4na’ (Z,e ) (0. 285){——(17/c)2+1n [m'glg/z il ]

(a;2 = 0)

(3.21)

(7 g ENERGY: E oy, = ym p 07
ALUMINUM TARGET (Z = 13)

B ¢ o
(= Q O. 3

w
O

CROSS-SECTION » 1022 (em?)

> dea ] L R . b cm s e
10 10’ 10? 10°

y -[1-(wc)2]'é

Fig. 4. Plot of the inelastic cross-sections
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Computer calculation for o6y, 0O e and o, for a (mp),,, with an energy
E,, = ymyc* (1.01 <y < 10°) colliding on an aluminum atom (Z = 13) are shown in
Fig. 4. In particular, for y = 10 we find 0., = 7.4x10-2*> cm?. Of a large number of
(T 0m incident on a thin aluminum foil of thickness ¢ the fraction ionized is given by:

Nion

_ —aj nt
— 1__e on’ s

inc

where » is the total number of scattering centers per unit volume. The value of #» may be
computed from Avogadro’s number N, (= 6.02 x 1023 atoms/g mole), the density p, and
the atomic mass M, of the scattering foil from n = N,p/M,. In the case of aluminum,
for which Z =13, M, =27 and p = 2.70 g/cm®, a beam of (TW)yom With energy
E,, = 10 M ,c* will be completely ionized (i.e., Njn/Nine = 1) by a foil of thickness
t=22x102¢cm (= 8.8x107%in), in agreement with the Monte-Carlo calculation of
Ref. [1]. We should emphasize that the above numbers refer only to direct ionization and
not to sequential ionization via excitation.

I am indebted to Professor J. Dirk Walecka for suggesting this investigation and for
offering encouragement and advice up to its completion. I am also grateful to Professor
M. Schwartz, Dr. R. D. Peccei, and Dr R. D. Viollier for useful discussions during the
course of this work. '
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