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The model for the (p, @) reaction on heavy nuclei is developed. Starting from the
three-body approach to the (p, «) reaction and the quasi-particle-phonon model for heavy
deformed nuclei, the cross sections for the (p, o) reactions on 62Dy, 165 168Er
and 176- 178, 180Lf targets are calculated.

1. Formulation of the model

In the present paper the unified model of the (p, &) reaction on heavy nuclei is
studied. The basic assumptions involved in the model are as follows:

1. The interaction of the fast protons (E, > 20 MeV) with the heavy nuclei can be
described in terms of the three body approach, where the interacting nuclei are: the proton
a-particle and the (T —a) core.

2. The amplitude of the (p, o) reaction is described in the lowest perturbation order
by the Born-Norman Series for the transition operator Ug,.

3. The wave function of the final nucleus is described for the heavy nuclei in terms of
the quasi-particle-phonon model [3].

In the three body approach a nuclear rearrangement reaction (p, o) can be represented
schematically as

p+ [+ (T—w)] = a+[p+(T-a)]. M
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Let us introduce the transition operators Uy, from the initial channel « to the final channel
B ]

U, = 85,6V + VGV, #))

where 8;, = 1 —8;,, V5(6 = a, p) are the channel interactions, G, are the resolvents of the
channel Hamiltonians and G the resolvent of the total Hamiltonian. As is shown in Ref. [1]
the lowest order series for the transition operator (2) can be written as

H -1H)T '
Ugy = G5 D354+ Y 1,4+ Y 1,Got,. (3)
y#a bEdd
y#EB oFy
d+a

The transition operator Up, is used to build-up the transition matrix Rg,:

RE™ = {Bpmel Upalbams @)

where the functions ¢,,, are eigenfunctions of the channel Hamiltonian 4,. According to
Ref. [1] from formulae (3) and (4) we obtain:

R';;’m = <¢ﬂm’{G(0— l)gﬁar¢am>

+ Z <¢ﬁm'“y!¢am> + Z <¢§m'!ty60t5{¢)am> + .. (5)
yE2 2 BoFa
baal LES

In series (5) the third and next terms describe the mechanism involving at least three
successive rearrangements. In our approach we shall consider only the first step of the
p+T interaction and neglect other terms. The first term in formula (5) describes the heavy
particle pick-up. This term determines the cross section for the production of a-particles
with scattering angles greater than 90°. In our calculation we confine ourselves to small
scattering angles and we shall neglect the first term of series (5).

Let us consider the (p, &) reaction on heavy, doubly even deformed nuclei. Here the
whole spectroscopic information is provided by the wave function of the final nucleus.
Considering formula (5) and the results of Ref. {2], we can describe the angular distribu-
tion of a-particles as:

i : _ N
(B = gt T M2 (2 + D) VS(ER,
d$2 Po

K 1j

2

A=3 e 02GHT - (T—a)+a)G*( )
=50 pta - p+a),
Hro

, m, mymyr_\''*
gax__l,_(_zg_p_-ﬂ_Th) (6)

MMy .y Moy

where

all abreviations being the same as in Ref. [2].
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The wave function of the non-rotational state with angular momentum projection
on the nucleus symmetry axis K and parity 7 of the odd 4 nucleus has the form [3]:

(K" = :/‘5 Z {z ey, + Z DZ(O‘fQT)y}' )

Then for the spectroscopic factor §; we get:
Sp = 1Y ajucil’, (8)
N

where u; is the Bogolubov transformation factor and aj; % describes the transformation
from the spherical to deformed basis.

To determine the cross section for the (p, o) reaction we use the averaged weighted
spectroscopic factors with the weight [3]

A
2 (E;—m)2+(4)2)%

Considering formulae (6)-(9), the cross section for the (p, o) reaction has the form

dZ
204y Z o(n— Ef) (Ef) (10)
T

where the summation obeys all the states of the final nucleus which can be created by the
captured proton. Substitution of formula (6) to (10) gives
E ajjuse!

e _ 4 FEDo(E;—n) ) (2j+1)D
dQdn = ) Ly—n J
! kj s

Pa
F(Ef) = ) M, g2. (12)

px
p

o(Eg—n) = ®

2

: (11)

where

The term d?6/dQdny can be written as a contour integral around the poles in the complex
plane 5. After some rearrangements we get

Fin+ 4
d? A , w (” )
a0dn = x Zj+1 (ajjuy)” Im —‘(— A“M)
kj s F H4+1—-

2

AN [, 4
F (n-H ?) 0, (s , N+ —2‘>
+ E ajialfuuy Im (13)

ofp+i 2
s>s I —
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Since the function F(y) has no poles in the complex plane #, formula (13) assumes the form
d’s 4 — AN\
=—F Z 2j+1)7Y su’ Im | F o[ n+i—
de’? T ('7) ( j ) (al_lus) m ’7+l 2
kj s

’ > A
o s,n+l—2—

+2 E asvarugu, Im —
s> 9(7]+i7)

F () = 0/0; (15)

and 0 is the determinant of the equation

FsyFS'y i
z {(s(s’)—m)éssf— z ﬁ} cy = 0. (16)

s g

(14

where

In formulae (15) and (16) ¢ denotes the energy of one-quasi-particle state, and p(g) = e+ ™"
is the energy of the quasi-particle-plus-phonon state. The superscript (4, x) denotes the
multipolarity of the phonon state g. The function I',, defines the interaction of the quasi-
-particle state with the phonon one g. In numerical calculations we use the single particle
energies and wave functions of the axial symmetric Saxon-Woods potential. The potential
parameters, pairing and multipole-multipole interaction constants and the phonon number
have been taken from Ref. [3].

2. Cross sections for the (p, &) reaction on the heavy, deformed nuclei 152Dy, 1¢158Er and
176,178,180Hf

In our calculation we chose the well deformed targets !©2Dy, 16%168Er and
176,178,180 f which span the neutron number region of N = 96-108. Moreover all these
targets have positive separation energy for o particles. As shown in Ref. {3] the phonon-
-quasi-particle model describes well the weighted one-quasi-particle strength functions for
the low and high excitation energy.

It occurs that the structure of the nuclear states at intermediate and high excitation
energies is mainly defined by fragmentation, i. e. the distribution of the strength of one-
-quasiparticle state over many nuclear levels. The general regularities of fragmentation
of the single particle states in deformed nuclei can be summarized as follows:

1. The form of the distribution strongly differs from that of the Breit-Wigner one.
As a rule in addition to the main maximum there appear several additional maxima.

2. The shape of the distribution function is mainly defined by the position of the
single-particle state with respect to the Fermi level.
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3. For single-particle states lying near the Fermi surface the distribution maximum
is shifted by 0.5 to 1.5 MeV towards low energies with respect to &(s) [3].

In Figs. 1-6 the theoretical calculations of the cross sections for the (p, o) reaction
on the 162Dy, 166:168Fr and 176-178:180Hf nyclei are presented. As a rule, in all a-particle
energy spectra the quasi-discrete structure is preserved up to the binding energy of the
protons in the final nuclei. To interpret the observed structure of o particle spectra we must
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Fig. 1. Theoretical differential cross section for the °2Dy(p, a) 13°Tb reaction. The proton energy Ep is
equal to 20 MeV. The cross section is calculated for the scattering angle  equal to 0°. The energy interval
of averaging, 4, is equal to 0.4 MeV
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Fig. 2. Theoretical differential cross section for the ¢°Er(p, a) *°*Ho reaction. For other information
see caption to Fig. 1

recognize that because of the quasi-particle-phonon interaction the observed maxima
cannot be linked to the one quasi-particle state. Each maximum included contributions
from many non-rotational states. Even for the single particle states lying near the Fermi
level the maximum of the distribution strength does not coincide with &(s,). Moreover
the form of the distribution strongly differs from the Breit-Wigner one. It seems that
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Fig. 3. Theoretical differential cross section for the '98Er(p, a) 1°Ho reaction. For other information
see caption to Fig. 1
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Fig. 4. Theoretical differential cross section for the '7°Hf(p, «) !7*Lu reaction. For other information
see caption to Fig, 1

these facts affect substantially the interpretation of the cross section calculation for ¢he
direct nuclear reaction which populates high excitation states. It is generally accepted that
the strength distribution of the single particle state at intermediate and high excitation
energies has approximately the Breit-Wigner form with a center which coincides with the
single-particle state. The width of this distribution is considered to be either constant or
a smooth function of the excitation energy. The fragmentation of a given state is usually
assumed to be independent of its quantum characteristics irrespective of whether it is
a particle or hole state [4, 5]. The calculations performed in Ref. [3] have shown that the
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Fig. 5. Theoretical differential crosss section for the 17*Hf(p, @) *’Lu reaction. For other information see
caption to Fig. 1
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Fig. 6. Theoretical differential cross section for the '%°Hf(p, a) *"’Lu reaction. For other information
see caption to Fig. 1

fragmentation of the state strength is highly complicated. The fragmentation essentially
depends on the position and quantum numbers of the one-quasi-particle states.

In the description [3] of the strength function the energy interval of averaging,
4, is a free parameter. In terms of the quasi-particle-phonon model the accuracy
of the calculations of strength function is limited by the approximate description of
fragmentation of the single particle states and approximate description of one-
-particle states in the Woods—-Saxon potential. As is shown in Ref. [3], 4 = 0.4 MeV is
a reasonable value of energy averaging interval for heavy deformed nuclei which takes into
account the theoretical limitations of considering the quasiparticle phonon model.
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3. Discussion and conclusions

The cross sections calculated in Section 2 can be regarded as a proposal for future
experimental measurement for the (p, o) reactions. As far as we know, no experimental
data are available concerning the (p, o) reactions on the targets used by us. Our calcula-
tions offer the possibility of studying the (p, o) reaction in a broad excitation energy region.
The whole a-particle spectrum is described by the same mechanism in which the a-particle
serves as a spectator which yields the information on simple states generated by proton
in the final nuclei. Complication of the nuclear states with increasing excitation energy is
the reason for the a-particle spectrum being quasi-discrete. Our approach is quite different
from the widely used simple method in which complication of the states is described by an
unperturbed one-quasi-particle scheme smeared by Breit-Wigner formula [4, 5] It must
be recognized that in our calculation we do not intend to describe the correct position and
strength of each local maximum of the cross sections measured with an accuracy of e. g.
10-20 keV. The proposed model of the (p, o) reaction gives an averaged (weighted with
function ¢(n —E;)) description of an envelope of micro-structure consisting of thousands
excited states which can be occupied by the proton. These envelopes shown in
Figs. 1-6 are calculated assuming 4 = 0.4 MeV. All maxima of the cross sections are
generated by the particle states. This means that comparison of the calculated and experi-
mental a-particle spectra can exclude other mechanisms in which hole states are generated.
These hole states can be excited in the (p, o) reaction when the sequential mechanism is
assumed, for example the two step (d, t) (t, o) pick-up.

The authors are very indebted to Professor V. G. Soloviev and Doctors F. A. Gareev
and Ch. Stoyanov for the stimulating discussions.
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