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Regular (static) fluid spheres are those which satisfy certain conditions of differen-
tiability, of positivity of various quantities, and the like. After a review of general conclusions
which can be drawn from an appeal to boundary conditions alone the main body of the paper
is concerned with a simple regular charged analogue S of the Schwarzschild interior solu-
tion §*. Any such analogue is here required to share with §* the property of being confor-
mally flat. Guided by a further property of S* a second specific assurmption then leads to a
model with a particularly simple form of gss. This in turn leads to transparent, explicit
expressions for various physical quantities of interest. 1t thus becomes possible to ensure
explicitly, without recourse to numerical calculations or to power series, that all conditions
of regularity and other conditions arising from physical considerations are satisfied.

1. Introduction

Certain solutions to Einstein’s field equations representing a charged static fluid sphere
were recently considered in this journal by Singh and Yadav (1978) who also gave a number
of references to earlier analogous papers. The equations are not solved by imposing rela-
tions between certain field variables which directly reflect desired physical situations —
equations of state and relations between mass density and charge density spring to mind —
but rather the explicit forms of certain functions which appear in the field equations are
arbitrarily prescribed in a way which will lead to a tractable problem. In the case of an
uncharged sphere one such function may be prescribed, whereas when the sphere can
carry an electric charge fwo such functions may be prescribed. This wide freedom of choice
entails that the mere derivation of “‘exact solutions” becomes a somewhat pointless exercise,
The least one might demand is that such solutions be, in some ill-defined sense, “simple”.
One would, however, scarcely regard the solutions of Singh and Yadav referred to above
as being particularly simple; nor are the positivity of pressure p and material density g
explicitly taken into account -— it is not obvious, for instance, that the condition p > 0
can necessarily be accommodated at all (cf. Section 7c).
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In the light of these remarks it seems that one might proceed along two possible
avenues: (1) to investigate what information might be gained about static, charged fluid
spheres when only conditions of a general kind are imposed; and (2) to investigate specific
(classes of) solutions which are “simple” and reduce to well-known solutions when the
sphere happens to be uncharged. With regard to (1) it seems natural to think of establishing
general inequalities after the fashion of Buchdahl (1959) (hereafter referred to as B). Not
surprisingly, this does not appear to be possible unless one imposes restrictions on the
charge density so stringent as to make the problem uninteresting. It remains under this
heading to review the general conclusions which may be drawn by merely appealing to
boundary conditions; and this is done in Section 4. Under the second heading it is natural
to look for possible counterparts to the best-known solution of all, i. e. the Schwarzschild
interior solution S*. The case examined by Kyle and Martin (1967) is of this kind but it
is hardly simple in as far as their expression for g,, is so involved as to make the conse-
quent explicit examination of their solution quite difficult. (This last remark also applies
to the solution of Nduka (1976) for here too one has to have recourse to purely numerical
work ; but in any event it does not reduce to S* when there is no charge. Again, Wilson
(1969) merely exhibits g4, as a power series.) At any rate, one still has endless possibili-
ties and to narrow down the range of available choices I require in the first place that any
sphere admitted for examination shall share with the S* the property of being conformally
flat. A particular model is then adopted in Section 5b partly on the basis of an appeal to
another property possessed by S*. It turns out that g,, is particularly simple in form and
as a result the examination of the physical properties of the model can be carried out
explicitly in terms of simple, elementary functions. In particular it is a straightforward
task to accommodate the various regularity conditions (see Section 2) and to deal
explicitly with questions surrounding the equation of state, the speed of sound, and the like.

2. Regular spheres

Canonical coordinates in which the metric has the generic form

ds? = —e*"dr* —r}(d0* +sin® 0dp*) + ' Vdt? Q.1
are used throughout; and units are so chosen that Newton’s constant and the speed of
light both take the value unity. Then all (static) spheres which are admitted for considera-
tion must satisfy the following (not necessarily mutually independent) conditions:
(i) the material energy momentum tensor has the form diag (—p, —p, —p, ), where ¢ is
the material density and p the hydrostatic pressure;
(ii) o, p, 4, v and the (invariant) charge density ¢ are continuous, sufficiently often differen-
tiable functions of r within the entire sphere whose (coordinate) radius is R;
(i) =0, p=0, ¢ >0, ¢ >0 in the range 0 < r < R;
(iv) dofdr << 0, dp/dr < 0 in the range 0 << r < R;
(v) dp/de > 0 in the range 0 < r < R;
(vi) the boundary of S (i. e. the value of R)is defined by the first zero of p as one proceeds
outwards from the origin unless p = 0 everywhere;
(vii) at the boundary 4, v and dv/dr are continuous.
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3. The field equations

Consider first quantities related to the electric field. The only components of the
electromagnetic potential ¢; and of the current J' which do not necessarily vanish are
o (=:¢) and J* = ge "% Then, with

1

u:i=—e * 7' 3.D
8n

the electromagnetic energy tensor is diag (u, —u, —u, u); see, for example, Bonnor (1960).
(Primes denote differentiation with respect to r.) Now, for the most part following the
notation of B, set

P:=4np, ¢ =4re, U:=dnu, o¢*:=§+U,

r
x:=7r% (i=e"%  wi=rT?[rfe*dr =:r  m(r),
0

yi=(1-2xw)""%,  q:= 4rn [ r*ce’?dr. (3.2a~i)
0

The Einstein—-Maxwell equations then become here

2k (P—=U) = e H(rv +1)—1, (3.3)
2r%0* = e Hrd =D +1, (3.4)
(P=UY = =L v (P+p)+4r~'U, (3.5)
(rPe”*HV2¢YY = —4nartet!?, (3.6)

Bearing the regularity of S in mind, (3.4) is equivalent to
et = y¥(=1-2m(@)/r), (3.7
whilst (3.6) leads directly to
U= 3x3%q. (3.8)

Indicating derivatives with respect to some variable z by a subscript z following a comma,
the two remaining equations may be written as

P = U—-w+2y% I, (3.9)

P,=U_—Qxw, +3w+P-U) ,/{+2U/x, (3.10)

and upon climinating P between these one gets an equation analogous to B (2.12), viz.
(1 =2xw) e —(xw ,+ W), — (3 W+ U/X){ = 0. (3.11)

Two remarks should be made at this stage. First the kind of argument which led in B
to the powerful inequality 4 > % (where 4 is the boundary value of {?) is not now
available — in fact, on account of the positivity of U one no longer has a general in-
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equality of this kind. Second, if one’s objective is merely to censtruct explicit solutions of
the field equations one need only choose the functions w and U in any way which leads
to elementary solutions of the linear equation (3.11); and to this extent one is faced with
an essentially trivial problem.

4. Consequences of boundary conditions

Bearing (3.2g) in mind one has for r = R
m(r) = m(R)+ | Uridr. (4.1)
R

Here
m(R) = My +mg, (4.2)

where

Oty &

R
m, = { r’odr, m, = [r*Udr. 4.3)
)]

According to (3.3) and (3.4) A-++v = 0 when r > R, so that with ¢(R) = : Q one has from
(3.6) and (3.8)
—r¥p’ = Q, U= Q¥2r4, 4.9

Q is evidently the total charge on S. Still for r 2= R, one now finds from (4.1) and (4.4)
that '

m(r) = m(R)+ Q*2R— Q?/2r,
whence in view of (3.7) and (4.2)
et = 1-C2m,+2m,+Q*Ryr™ '+ Q%r 2 (4.5)

By contemplating the motion of a distant test particle one concludes that the factor mul-
tiplying r~! here is twice the gravitational field producing mass M of S:

M = m,+m,+Q*2R. (4.6)

Now, using (3.8) in (4.3), an integration by parts leads to the equation
R
m, = —3 Q*/R+ [ (ag'Ir)dr
so that
R
M =m,+ [ r 'qdq. 4.7)
r=0

The mass of S is thus the sum of two parts: in the chosen coordinate system the first is
Sormally the “Newtonian mass of the material” of the sphere and the second is the
“Newtonian self-energy of the charge distribution”. (Note that Eq. (3.13) of Singh and
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Yadav (1978) is incorrect.) That the simple result (4.7) holds for any regular sphere
independently of its detailed structure does not appear to be always explicitly recognized.

Henceforth subscripts b and ¢ will indicate boundary and central values respectively.
In particular

4:=yy =, = 1-2M/R+Q’|R?, (4.8)
whilst it follows from the continuity of V' that
Lol = MIR?—Q*[R%. (4.9)
Eq. (3.9) is of course now satisfied at the boundary. For future reference
wy, = M/R®*—Q?*2R*, U, = Q*/2R*. (4.10)

5. On charged analogues of the Schwarzschild interior solution

(a) Generic remarks: Conformal flatness

The Schwarzschild interior solution S* may be characterized by the constancy of ¢
or the constancy of w. Furthermore, it is well known that §* is conformally flat. One may
take the view that this is the most interesting property of S*; and I shall therefore require
any regular charged analogue of S* to be conformally flat.

In the present notation the condition that (2.1) be conformally flat reduces to the
simple equation

(A =2xW) o= (W + W) (+5 w L = 0. .1
In view of (3.11) this means that the relation
xw,+U =0 ‘ 5.2)

must be satisfied.

To arrive at a definite model a second condition needs to be imposed (cf. the remarks
at the end of Section 3). Before considering this problem it is worth deriving some rela-
tions which follow as a consequence of the adoption of (5.2) alone. First,

0 = 2xw,+3w~U = 3(w-U) (5.3)
so that by (4.10)
0, = 3R*(M~- Q*/R). (5.4)

I shall call a sphere gaseous if p, = 0 and (5.4) then entails that M = Q3 R. Moreover
for any regular sphere subject to (5.2) one must certainly have

M = Q%R (5.5)
It is useful to introduce the parameter

1= O/M. (5.6)



678

Then, for instance, when g, = 0
4=1-x2 (5.7
so that one certainly cannot have a gaseous sphere of this kind unless y > I; cf. the

conclusion stated after Eq. (5.12).
From (3.5) one has at the boundary

Py = Up+4U/R—3,{4/s.
Using (3.8), (4.8-10) and (5.4) this gives
P, = R™°[RQq,— 34" (M —Q*/R)*]. (5.8)

1f one is to have P, < O this relation constitutes a restriction on the possible values of g,

{(b) Choice of a particular model

In deciding upon a particular model one or other of the choices w' =0, o' =0
naturally springs to mind. However, since U does not vanish everywhere the first of these
is in immediate conflict with (5.2). The constancy of ¢ on the other hand would imply,
in view of (5.2, 3) that the sphere is not regular. Accordingly, some other condition has
to be imposed and it will have to suffice to be guided by considerations of simplicity.

For S* one has

M = w.R? (5.9

and this relation will now be assumed to continue to hold. Therefore, on account of (4.10),
wy+ U, = w, and the simplest way to ensure that this relation will hold is to require that
w+ U = w, throughout the range 0 < r < R. Taking (5.2) into account one is therefore
led to taking the relations

w=a—bx, U=bx (5.10a, b)

as characterizing (the interior of) a simple analogue S of S$*, where a and b are positive
constants:
a= M/R} b= Q?%2Re. (5.11)

An important conclusion may be drawn straight away. From (5.10b) and (3.8) it
follows that g, = 3Q/R. Inserting this value of g, in (5.8) one has

P, = —3(M*—Q%/R’A. (5.12)

Accordingly P will become negative as one goes inwards from the boundary unless M > Q,
i. e. S must certainly have y =< 1.
Combining (5.10b) with (3.8) and (5.11) one finds that

g = Q(r/R>. (5.13)
If 8:= 4nce it then follows from (3.2i) that

# = (3Q/R3)y. (5.14)
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In particular &, = 3Q/R?, a harmonious counterpart to the relation (5.9), i. e. §, = 3M/R?,
which obtains here. Note that

(o/@). = 1; (5.15)

and, like the material density, the charge density falls off outwards; see also Section 8.

6. Solution of the equation for { when Q < M

It has already been remarked just after Eq. (5.12) that the case y > 1 is of no interest
here. The sphere with y = 1 will be left aside for the time being (see Section 8) and it
remains to consider the case y < 1 in detail. Given (5.10), the equation (3.11) for { is

(1—2ax+2bx*){ ., —(a—2bx){ ,—% bl = 0.
The change of variable
t:= k(1 = x2ax), (6.1)
with k: = (1—y??, transforms the equation into
(P =D+t —5 L = 0. (6.2)
This has a very simple solution, viz.
=A@+ 1D"*+B@-1)"?, (6.3)

where A and B are constants of integration. Tt may be noted in passing that in terms of
the variable ¢

yi= kPt =1, e = okt (6.4)

and that the boundary value of ¢ is

ty = (M—Q*[R) (M*~Q*)™ "/, (6.5)

7. Physical features of the solution when Q < M

(a) The constants 4 and B

From (6.4) ¢, = (k/x) (¢ —1)%, whilst ({ )y may be found as follows. From (4.9),
using (5.11) and (6.1) in turn, there comes ({3 = Rakty; and {y = —(2y%aR/k) ({ Do,
because of (6.1) and (3.2¢). Combining these results one finds that ({,),
= —(k2)t(t2 —1)"*. Equating the expressions just found for {, and )y to those
given by (6.3) one has two equations for 4 and B whose solution is

A= (k[2y) Qty+1) (t,— )%, B = —(k/21) 2t~ 1) (1, + 1) (7.1}
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{b) First limitation on 4

Since kt, = 1 one has at once
{o = k™[4 +0)'* + B(1—k)'/?].
The regularity condition {, > 0 now becomes after a little manipulation

412 —31,—1/k > 0,

or explicitly

te > [(1+0)/8K] > +[(1—x)/8K]*/3.

T—y2 (/1+y\/3 L—y\1/3
4 Y (1Y),
4y A=y T+7,

which is an instructive result; for when y — 0 it shows that

This implies that

4> 5—753 ¥+ 00,

(1.2)

(7.3)

(7.4)

(7.5)

(7.6)

the first term representing the correct limit for S*, whereas when y — 1 one has

4> [F (=0 +001-y).

(7.7

This shows that by a suitable choice of y in the range 0 <{ ¥ < 1 one can always have
a sphere § for which A has any arbitrarily small desired value; bearing in mind that the

right hand member of (7.5) is the actual value of 4 when {, = 0.
{c) The pressure
The calculation of P from (3.9) is straightforward. One finds that

AQt—1) (t+DY*+BQt+1) (1— 12

Plak = —
fa A(+ )P4 Bt 1)

It is sometimes useful to use in place of ¢ the auxiliary variable

z:= ar cosh ¢.
Then, for instance,
{ = kx~'sinh 1 (3z,—2).
Eq. (7.8) becomes

sinh 3 (z—2zy)

P = ak — .
sinh 3 (3z,—2)

Evidently, by inspection, P > 0, P’ < 0 everywhere in S, as required.

(7.8)

(7.9)

(7.10)

(7.11)
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(d) The equation of state
The density is given by
¢ = 3akt (7.12)
so that ¢ > 0(0 << r << R) and ¢’ < 0(0 < r < R), as required. With (7.12), (7.8) is in
effect the explicit equation of state of the fluid constituting the sphere. Beyond its relative
simplicity it does not seem to have any features of special interest; however, see also
Sections 7e, f.
(e¢) The speed of sound
The sphere being charged, it is not possible on the present naive phenomenological
level to say what the speed of propagation of a sound wave of arbitrary frequency will be.
However, if the frequency is sufficiently large the adiabatic speed of propagation by the
fluid is presumably given by
v* = dP/dp = (1/3ak)P,, (7.13)
with P given by (7.8). Thus

5 2 (14 AB(i*—1)71? ., sinh 3z, . (7.14)
T ST A D1 Ba—1)"?) T ¥ \dsinhzsinh? G 7p—22) ) '

As one approaches the boundary
vy = 3 (te—1)7", (7.15)

and elsewhere ¢? is certainly positive, bearing in mind that z < 3z, (cf. (7.10)). The stability
condition dp/dp > 0 is therefore satisfied everywhere, as required.
The inequality (7.4) may be used in (7.15). Then as y — 0 (7.15) reduces to

vE < 9/2x% (7.16)

whereas when y — 1 it reduces to
b2 < (41— (7.17)

Again, v, = 1 when #, = (3/2)}. On the other hand, bearing in mind that v reaches its
maximum at the centre, the condition v, = 1 leads to a quadratic equation for cosh
(3 arcosh 1,). The point of interest here is that it leads to acceptable values of 1, only if
0 < y < 4. Evidently when y > % the material of the sphere is too soft to be capable
of transmitting sound (of sufficiently high frequency) with unit speed anywhere in S.

() p. = 3 0.: Second limitation on 4

It is not unusual to take it for granted that the trace of the energy momentum tensor
must be non-negative. Here this condition requires p < }¢. Some straight-forward work
based upon (7.8) and (7.12) leads to the conclusion that p/p takes its greatest value at the
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centre so that the condition above is accommodated everywhere if p, < L o.. Since r, = k-*
this inequality requires that

413 — 3ty — (9 — 5k*)/[k(k*+3)] = 0, (7.18)

again from (7.8) and (7.12). Therefore £, must be not less than the positive zero of the left
hand member of (7.18). Although the zero is an elementary algebraic function of k it is
simpler to write

. 9—5k*
by > cosh T arcosh m . (719)

Since 4 = (k/y)*(t2—1) there follows the inequality
2
R (1 4+5y )
4 =~ sinh” { 3 arcosh ———=—— .
% ’ (=242
When y — 0 the right hand member of this tends correctly to 4; cf. B(3.10) with § = 1.
On the other hand when 1—y is sufficiently small (7.20) reduces to

(7.20)

4= [50a-01" (7.21)
(7.18) entails incidentally that v, is finite as long as y is non-zero.

(g) The potential energy

Kyle and Martin (1967) and, following them, Wilson (1969) consider a quantity 6M
which they call the “mass defect”. It is defined as the difference between M and the
integral M, of the material density ¢ taken over the elements of proper volume of the
sphere. In the present notation

R
M= M—Mgy:= M~ [ gy 'r*dr. (7.22)
0

It is difficult to attach a physical significance to this quantity which does not explicitly
include the electrostatic energy density. The local proper energy density is T3, not g, and
it would seem more appropriate to define a quantity

Qi= M=M* =: M~ | g*y~'ridr, (1.23)
0

so that M is the total bare mass of the system. Q occurs in Section 6 of B (with sign
reversed) where it is called the ‘“‘gravitational potential energy”.

The integrals on the right of (7.22) and (7.23) may be evaluated in terms of elliptic
integrals of the first and second kind, together with elementary functions. It does not
seem to be worthwhile reproducing the explicit results here for they are not very enlighten-
ing. Moreover, one has to exercise care when attempting physical interpretations — as
distinct from writing down merely formal results — because the equations being considered
involve R; and this is a coordinate dependent quantity.
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(h) The physical radius

As has just been remarked, R, unlike Q and A, is a coordinate-dependent quantity.
In its place one should use the physical radius

R
R:= jdt‘/y. (7.24)
0
Let
F(x;n):= J[(1-) QA —nt®)]" " 2dt (7.25)
o
denote the incomplete elliptic integral of the first kind. Then (7.24) becomes here
R = REAF(E;n) (7.26)
with
Ei= (1+M/R, n=(1-k)/1+k). (7.27)

In the limit of sufficiently small k (7.26) becomes
A = Ry~!artanh n+ O(k3?), (7.28)
where n? = M/R. It may be noted that £2 < | always since
4 = (1-&)(1—-né?). (7.29)
One therefore has here the result that
1 < Z[R < K(n), (7.30)

where K(n) is the complete elliptic integral of the first kind.

If, as remarked previously, expressions like those for M or Q are to be given invariant
form one has to eliminate R in favour of # 1 s requires one to solve (7.26) for R. Evidently
even 4 already becomes a very complicated runction of M, Q and .

8. The case Q = M

It was already concluded in Section 5b that one must have y < 1. It therefore remains
to examine the case with y = 1. Accordingly, a® = 2b now and, with t:= 1—ax, the
equation for { becomes

t2c,::+tC,t—'%C =0,
whence
{ = At'2 4 Bt~ 1/? 8.1
where 4 and B are constants of integration. For P one obtains the expression

P = —2A41%/(B+ At). 8.2
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When A # 0 the vanishing of P requires that ¢, be zero. However, if P is to be non-negative
B cannot vanish and the vanishing of ¢, would entail { becoming singular at the boundary.
It follows that 4 must vanish so that

P = 0 everywhere; 8.3)
cf. Bonnor (1960). The material density is given by

§ = 3ar. (8.4)
t, may be taken arbitrarily within the range 0 < #, < 1. Clearly,
ty = Qb/0 (8.5)
Also,
y =1, (8.6)
and therefore
Vo =L, = 1—=MJR = t, = Bt; /%, 8.7
whence
B =1t (8.8)
Again, from (5.14),
6 = 3at, 8.9)
so that
o = g everywhere. (8.10)
Finally,
R = Ry~!artanh g, 8.11)

cf. (7.28). To find R as a function of # one therefore has to invert the relation

R|M = 53 artanh 1. (8.12)
In particular, when 1—# is sufficiently small

R ~ M(1+4e™2%M), (8.13)

Evidently as R approaches the value M the physical radius becomes indefinitely large.

9. Concluding remark

The case y > 1 may of course be dealt with in detail after the fashion of Sections 6
and 7 above. Consistently with (5.12) it then emerges that the pressure is negative throughout
the interior of the sphere and this is unacceptable. One might conceivably argue that
the sphere is under these circumstances to be regarded as solid and so capable of sustaining
tensions; but it is difficult to see why the pressure should then be taken to be isotropic
in the first place.
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