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Using a relativistic two-body one-time formalism we derive static potentials which
include form-factors for both particles. Another new feature is the derivation of fourth order
coupled radial eigenvalue problems taking into account full relativistic angular momentum
analysis and spins for both particles. For a particular choice of magnetic form-factors and
particular total quantum numbers we demonstrate numerically the existence of high mass
electromagnetic resonances.

1. Introduction

The main purpose of this paper is to investigate some consequences of the effective
potential between two fermions taking into account form-factors and full relativistic
spinorial kinematics. The motivation stems from the existence of high-mass resonances
in pure electrodynamics in simpler models (called super-positronium) and the aim is
to understand better the existence and to characterize the quantum numbers of such
possible resonances using these potentials.

The effective static potential between two fermions in the lowest order in quantum
electrodynamics (QED) is well known and leads to the Breit equation. This approximation
is adequate for weak binding. We are mainly interested in strong binding and therefore
we need a highly off-mass extrapolation of such potentials. There are no satisfactory and
complete treatments of strong binding [I]. A method often used in particle physics is
to introduce form-factors at the vertices to take into account the self-energy and radiative
corrections in an already renormalized form. This approximation would be adequate if
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we have a satisfactory way of determining the form-factors without introducing phenomeno-
logical functions for them. We shall show that this can be done under certain conditions.

If one of the constituent particles is heavy, it has been shown that the limiting Dirac
equation with an anomalous magnetic moment coupling (including a magnetic form-
-factor) leads to high energy narrow resonances [2]. Physically this is due to the fact that
the magnetic interactions become very strong at small distances and lead to almost binding
in the continuum, i.e. positive mass states, hence to resonances. From the point of view
of QED it is entirely a non-perturbative self-energy effect and cannot be seen in treatments
using interparticle potentials only. To understand this problem in the equal mass case
it is natural to consider form-factors for both of the particles. It shouid be emphasized
that form-factors in principle are of course contained in QED. But their inclusion into
the bound state problem, even to the lowest order, has not been, to our knowledge, carried
out yet. Usually in the two-body problem, one considers the exchange interaction terms
between the particles and omits the self-energy terms. The form-factors provide a way
to put back these self-energy terms, presumably already summed to all orders, if we knew
the correct functional form of the form-factors.

In this paper we shall describe a possible self-consistent determination of resonances
due to multipole and in particular magnetic interactions. There are of course a great
many other forms of two-body equations in the literature. Most of them are equivalent
to the lowest order. In Section 2 we discuss the properties of a relativistic two-fermion
equation with form-factors, using a one-time formalism. In this framework under the
assumption that the form-factors are given functions of ¢?, we derive the explicit form of
effective potential in the static approximation. Next we show that the Breit equation,
reduced one-body Dirac equation and Barut-Kraus equtiaon follow from the general
dynamical equation as very special cases.

Next in Section 3 we derive the explicit form of general dynamical equation in radial
coordinates. It turns out that in the case where the total angular momentum J of the two-
-fermion system equals zero, the general dynamical equation reduces to a Schrodinger-like
radial equation with an energy dependent potential. However, in the case J > 0 the
dynamical two-fermion equation reduces to fourth order radial equation. The occurrence
of these fourth order equations is a new phenomenon, we believe, in Quantum Theory.
Thus the eigenvalue problem changes from the Sturm-Liouville type to the fourth order
radial equation type. The spectral analysis of the fourth order radial equations is just
beginning to develop and might provide a number of new aspects of physical importance.

The explicit form of the magnetic form-factor is suggested in Section 4. The calculation
is based on the assumption that near the resonance energy the lowest order QED radiative
corrections to the point vertex when the mass m of the electron is replaced by the M of
the bound state provide a reasonable approximation of the physical form-factor. In other
words, we look for a self-consistent form-factor for a highly localized resonance state.

In Section 5 we carry out a numerical analysis of the two-fermion radial equation
under the assumption that masses m*? and m® of the constituents satisfy m® » m(", The
resulting effective potential is energy and angular momentum dependent. We first show
that effective potential for a fixed energy is “resonating”, i.e. it is of the form of the
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potential well capable of producing resonances. It is interesting that it is more resonating
for the higher total angular momenta. Next we show the dependence of the potential on
energy at a fixed J. It turns out that in this case the potential is more resonating up to
a certain energy after which it becomes less resonating. Next we show that for certain
energies the radial wave function has the characteristic resonance peak which disappears
if we go away from resonance energy. We have also calculated the phase shifts as a function
of energy. The numerical analysis shows that for every resonance energy for which we
have a resonance peak in the wave function there exists a change of the phase shift by 7.
This seems to confirm that the present approach provides a description of high mass
resonances of two-fermion system with purely electromagnetic interactions.

Thus for a given form-factor with parameter M we can determine the resonance
mass M,. At the end of the paper we comment on a possible self-consistent determination
of M, by relating M to M.,.

2. Relativistic one-time two-fermion equation with form-factors

Covariant one-time two-body equations have been considered by several authors
[3-6]. If in the two-body wave function ¥(x,, x,), the coordinates x, and x, are on the
same space-like o, then ¥ has a direct probability amplitude interpretation at fixed ¢ (or #).
To the lowest order in the coupling constant one has then the basic equations:

@0+ m )Py, x;) = —ieDe® [ dxSD e x, —x)y Py P De(x—x,) ¥ (x,, X),
(P +mP)W(xy, x5) = —ieDe® [ dxSD™(x, —x)y, Y P Dp(x —x) ¥(x, x,),
X, €0, X,€Ea0. 2.1)

These equations correctly reduce to the Bethe-Salpeter equation in the ladder approxi-
mation. In this form these equations may be derived from various general settings
(Appendix I).

According to the motivation and discussion we gave in Section 1 we shall use the
generalization of Eqgs. (2.1) in which 9. in the first equation, and y?’ in the second equation
are replaced respectively by

1 .
y,u - '“(X) = 4 e“ﬁd“q {YﬂFl(qz)'*'iaﬂquFZ(qz)]’
(2n)
auv = é— (yv'yu_'))u'yv)' (22)

More generally, both 3" and y? simultaneously may be replaced by I'\"”’ and I'{?’. But
this leads to nonlocal potentials involving a time integration as we shall point out later.
Thus we shall consider from now on the system of equations

@V +mD)P(xy, x;) = —ieVe? [f dxdES®P ™ (xy— ) (x = Ey P De(E = x,)¥(x4, %),

@D +mP)W(xy, x,) = —iee® j dxdES™ ™ (x; — )y M P (x — E)D(E — x,) P(x, X5).
2.3)
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We may write Eqgs. (2.3) in the general form as (cf. Eq. (A.2))
(5(‘)+m(1))¥’(x1, x;) = —ieVe® .” A {o1, o'z](xh X33 X1, X2)P(x1, x3)do,do,. 2.4

Gy =ag2=1t

Similarly for particle (2).
Multiplying the equation for particle (1) with y§” and that for particle (2) with y®
and adding, we have the Hamiltonian form

d
(21 Et —‘HE)I)—Hg)Z)) lP(xl’ xz) = "'ie(l)e(Z) J\J‘ daldo-l

a1 ==t

(1) 4

X [‘y [a'; o'z](xlv X2 xl’ x2)+y(2)A[a; azl(xl’ X325 xi? xé)] q’(xlls x,Z)] (25)

which can be further written as

0
(2,- . _Hs,”-Hg”) P(x, %) = f Vaxp, X0 X4 X5)W(xix5)dxidxy. (2.6)

g

We now introduce the new variables
X = bxV+(—-b)x? = (R, T, b=mVm?+m?),
x = xP—xP =(r,1). Q.

In these variables we obtain

d 7}
HO = . 2 W
0 Yo7 R + +m
H(2) — ,},(2) 7(2) . (1 —b) __a_ . ’__a_) +m(2) (2 8)
° 4 R Or ) )

Furthermore, on the space-like surface ¢, = o, = ¢ we have do,;do, = d>R’d>r’. Taking
the Fourier transform with respect to ¢, and R’ and passing to the center-of-mass variables
we can write the equation with 2i0/dt — E,

d
[E+(7“) @y (”) (viz)m‘”ﬂi”m(”)] Wi(r) = j Ve(r, r)¥ g(r')dr’. (2.9

The direct calculation shows that the resulting potential is nonlocal. To obtain a well
defined effective potential we make a static approximation in the expression for Vi(r, r’).
This consists in setting to zero the fourth components of momentum vectors appearing
in the integrands of kernels (2.3). Performing the elementary calculations one obtains

§ Ve(r, HYP()dr'
= (167°) " 1{ [ dge (¢ T (€ r(g '  + &P gy VP (r) = Ve(n)¥(r)

(2.10)
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Assume now that Dirac and Pauli form-factors are entire functions of ¢* i.e.

FP(g™ = ZO (=4’ FP®) = Zo m(—a*) (2.11)
n= n=
Here the coefficients &, and yu, are constants characterizing the interactions. For n = 0
the coefficients ¢¥ and p{ are the charge (= ¢®) and the static anomalous magnetic
moment (= a®e®2m®) of the k™ fermion.

Inserting (2.11) into (2.10), one obtains the explicit expression for the potential
V.(r) oin terms of Fourier integrals of powers of g. Such integrals must be treated with
proper care since they represent in fact the Gelfand-Shilov generalized functions. Using
the technique of regularization of divergent integrals presented in Appendix B, we obtain
the following formula for the effective potential:

r e ), el @)
V(r) = {em [L T e [JL @]
2 r r r r
+e‘z’(E“)+M“’)+e(”(E(2)—-M(2’)} , (2.12)
where

r=1-a%%?,

2(n—1)

= H1 (=1-m)
*ky . __ (ky m= [2(n—1)] —
EY = —4x E g, R2—D]! ) (r), k=12

n=1
2(n—1)
= H1 (=1—-m)
M® = —4ny®o10 (k) m= 5[2('!-'1)] . 2.13
my*ojor S CYASTST Q) (2.13)

n=1

The dynamical equation (2.9) with the potential given by (2.12) describes a general system
of two-fermion with form-factors. In order to provide a better insight into the meaning
of Eq. (2.9) consider several special cases.

Limiting cases

() FPg*) = = e®, FP = 0. Then

(1),(2)

V(ir) = (1 —aMa?), (2.14)

Thus Eq. (2.9) represents in this approximation the Breit equation with part of the re-
tardation effect taken into account (cf. Eq. (14) of Ref. [5] where the retardation effect
is absent in the same approximation though the original equations derived from field
theory are one-time equations).
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(if) Take the approximation ({) and in addition assume m‘® > m(Y), To obtain one-body
equation we perform first the Fourier transform with respect to the r-variables and obtain
[E+H"(p)+ He"(~ p1¥(p) = | Ve(p, P)¥i(p)dp, (2.15)

where HY is the free hamiltonian of i particle. Performing now a Foldy-Wouthausen
transformation of the second particle given by the formula (cf. [7] Ch. 4, § V1)

(2 . ; i |pl ,
L/(-) = eXp [IS(Z)]q 5(2, = — 2—";(—5*) ypw (‘n;(‘i)> (216)
with
(el _m® (el
w %TZ) == IE arcig ;;l—(z*) 5
we obtain
HY = UPHPUD ™ = @ pPym®”. (2.17)
Hence in the case when m® becomes very large we have
pZ
HE =49 (m‘2’+ o m) = yPm® 2.17)

Consequently, since U® commutes with H{", Eq. (2.15) takes the form
LE+HE(p)+9m@ TP (p) = | Vi(p, p)¥(P)dp, (2.18)

where V' = UPY¥ and Vi = UPV U, Using now the assumptions (i) we obtain
that the potential V¢ has the form (2.14) in the Dirac representation. In this representation
the operator a'® = [HP, r] represents a velocity operator. In the Foldy-Wouthausen
representation the velocity operator takes the form

(2),,(2) ¢ (2),(2)
23—t , ml +
@ L, UOTHP, U = [H, p] =L e TP Y P (2.19)

E(p) E(p) ’

with E(p) = v/p>+m®@”. Hence in the case when m® becomes very large we obtain
from (2.14)

etPe®

v = - (2.20)
Fr

Performing now the Fourier transformation with respect to the time variable in the form

S (E+ 7@ 9

Ye(p, 1) = lI/E(P)e— 2
one reduces Eq. (2.9) to the following equation:

e(l)e(Z) )
[E- G e+ mUY]¥u(r) = Vi), (221
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which is the Dirac equation for the charge fermion in the Coulomb field. Let us stress that
the Bethe-Salpeter equation does not lead directly to the Dirac equation in an external
field when the mass of one of the particles tends to infinity. Thus in contrast to the rather
complicated procedures of other methods we obtained the above limits (i.e. the Breit
and the Dirac equations) in a rather natural and straightforward manner.

(iii) Coulomb and anomalous magnetic moment interactions. Take
k &) *) o _ a0e?
k 2 (
FP@) = o7 = e, P = u = S5
m

Inserting this into (2.12) we obtain

(2.22)

a(l) y(l).r a(2) 7(2}.'.
r 4mM 3 4m*» 2 |

1
V(r) = eVePr [~ +

The first term in (2.22) corresponds to the Breit potential with part of the retardation
effects included. The second and the third terms in the potential arise due to the inclusion
of anomalous magnetic moments of both particles. In the limit m® » m" using the same
analysis as in (if) one obtains from (2.9)
a® oy,
——3——> Pe(r). (2.23)

[E=9(0 D0+ mO)]We(r) = eVe® (i - =5

r 4mY  r
This is the Barut-Kraus equation for a single Dirac particle with anomalous magnetic
moment in the Coulomb field of the other heavy particle if m — m,4 [2]. This approxi-
mation might be very good in the case when one of the particles is much heavier than the
other. In the case of two-fermions with equal masses equation (2.9) with potential (2.22)
should be used in which both particles are treated on an equal footing.

Let us note that taking into consideration more terms in the form-factors provides,
on the basis of formula (2.12), additional terms in the potential, which are proportional
to derivatives of 8(r). Thus any finite number of multipoles leads to terms in the potential
strongly singular at origin, and does not result in a well defined eigenvalue problem.
Consequently, it seems that it is more reasonable to calculate, even approximately, the
functional form of the form-factors and deduce from them by means of formula (2.10)
the explicit form of effective potentials. This is presented in Section 4.

3. Derivation of the radial equation

It is evident from Eqgs. (2.9) and (2.12) that dynamical equations in the center of mass
system with potential (2.12) are invariant with respect to the ordinary rotations. This
implies that the energy, the total angular momentum J and its third component J, form
a system of commuting operators for the system (2.9). We have

o= =L+ S, Ly = x0;—x;0;, S, = 1209V +9y), 3.1

k,i,j, is a cyclic permutation of 1, 2, 3.
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It was observed in [4] (see also [6]) that the unitary transformation U = exp [S,3]
exp [S;¢] diagonalizes J? and J; and we have

Uy(k)rU_ L= rygk),

_— : 5, i
UyDoU ™ ZA(9, 9)PH) = vé“(é—r *7) o O 4980

+r VI +1) vé"v‘f’vé”) Z3(S, 9)Pir), (3.2)
0 1 1
Uy DU~ 249, p¥i() = [‘2’ (67 + 7) + o O NS

+r7 I+ ?(22)7(11)?(21)> Zy(S, 9 ¥,

[U,I']=0.
The functions (3.2) are eigenfunctions of J? and J5. Using (2.9), (2.12) and (3.2) we obtain
the following radial equation for the function ¥i(r)

d 1 1
[E+(v‘2) ey ‘“)( = 7)+2—r G0 =159 GNP +9508)

OO PR TT D “’+y‘4”m‘2>} Yio) = VORI (33)

with

KO &P @
V() = Ly e u(1)73 e RN 73 L e@DEW 12,
2 r r? r r

o 1 JIU+1)
X [?gl) (5 + r) (,y(l) (2) (1) (2)).))(2) ( (1) (1)')’(2) M(1)+e(1)E(2)

%, 1 JUJ+1
_ze(l)[y(sn(a_r " _r> (711) ) L (D@0 \/(7.) <2>y<1>y(1>] M(z)}. (3.9

Since neither 55 nor 95 appear alone in Eq. (3.3), but only in the combination
P, there exists a normal divisor

N =y e (3.5)

which commutes with all terms in Eq. (3.3) and has eigenvalues + 1. This implies that the
original 16-dimensional spinor space can be split into two independent 8-dimensional
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subspaces in which N has the eigenvalue +1 or —1 respectively. In the case J = 0 there
exists still another normal divisor of the form:

M = 93y S0y, (3.6)
M has also eigenvalue +1 and therefore together with N splits the original 16-dimensional

spinor space into four four-dimensional subspaces. In these subspaces the y*-matrices
have the following representation

180 =01, ¥ =08l ¥ =180, P =100,

W1y _ J—03®0; for N =1 .2y _ J)—03®05 for M =1
[ _{ 03@0, for N = -1 7272 _{ 0;®0; for M = -1’
20,06, N=M= -1
PB4 ypP = 26, @0, f N=M=1 . G.D
0 MN = —1

Using formula (3.7) for J = 0 and the corresponding representations of 9y and 2
for J # 0 (given for instance in [6], Eq. (2.3)) one may write the reduced 4 x4 and 8x 8
equation for the general potential (3.4). However, for the sake of simplicity we shall present
the explicit form of the dynamical equation for the most important case (ii) of Section 2
only. By virtue of (3.4) the effective potential has in this case the form:

), (2),(2)
V(r) = éDe®r (}; — :m(}:frz + :m(Zfr2>. (3.8)
Using now (3.7), (3.4) and (3.8) one obtains for J= 0, N= M = —1:

[ E-24, —m®42i(BY+B?), —m®-2i(BV+B®), -24 ]
—mW_2iB®  E42id, 2ijr+24, -m®-2iB®
—mP4L2iBD, _2ifr 424, E—2id —mM42iBM

| —24, —-m®P42i(BV+B?), —mP_2i(BV+B?), E-24 |

FX;b
Xazb
x| 4 1= 0, 3.9
Xab
_X:b
where
RIS D200
A= . B® = a,b=+,—~ and 0 =d/dr, ) =r¥.

b 4m*pt
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The inspection of Eq. (3.9) shows that in this case it represents a system of two algebraic
and two first order ordinary differential equations. Hence one can get a Schrodinger-like
eigenvalue equation for a single component X2 = @ of the form

42
[c‘ip +V(E, r)] ¢(r) = 0. (3.10)

Let us note that in the case J > 0 using (3.5) one reduces the dynamical equation
to a system of 8 x8 matrix differential equations from which 4 are algebraic and the
temaining 4 are first order ordinary differential equations. This system can be reduced
to a single fourth order ordinary radial differential equation. Hence the spectral properties
of two fermion system with J > 0 are entirely different than in the case J = 0. The detailed
analysis of the exact eigenvalue problem for J > 0 will be given elsewhere. However,
in order to obtain approximate information on the behaviour of two-fermion system for
J > 0 we shall analyze in Section 5 the case m'® » m{!). It is discovered there by numerical
analysis that the two-fermion system becomes more resonance-like if the total angular
momentum J increases. The form of the resulting potential Vy(r, E) depends strongly
on the eigenvalue of N and M.

4. Self-consistent determination of the form-factors

It is well known that the anomalous magnetic moment coupling is associated with
a form-factor. In the original Dirac-Pauli potential model this form-factor is neglected,
one assumes a constant static anomalous magnetic moment throughout. However, at
short distances (or high energies) the effect of the form-factor will be important. For the
study of magnetic resonances we discuss here the magnetic form-factor because in this
case the magnetic forces will dominate over the Coulomb parts.

1t has been shown recently by calculating Liénard-Wiechert potentials for localized
charge distribution that for a localized state (localized at a distance of r,) the form-factor
will have appreciable effect only for r < r,. Here we proceed differently. If there exists
a fairly sharp resonance of mass M, corresponding to a localized state of size ro, then
each constituent is strongly bound. The properties of each constituent in a localized region
of interaction are described in electromagnetic theory by form-factors resulting from the
summation of all radiative correction. Clearly an explicit form of form-factors is at present
unknown and presumably it will be very difficult to calculate it to all orders in perturbation
theory. Therefore we are justified to introduce a reasonable approximate form-factor
reflecting the fact that we have the electromagnetic interactions of localized constituents.
We postulate that the true form-factor may be approximated by the lowest order radiative
corrections to a point vertex ey, with the electron mass m, replaced by a certain effective
mass M. ~ ry '. Our postulate takes into account the fact that the lowest radiative
corrections reflect in the simplest possible manner the localization property of each
constituent. With this potential, we search for a resonance numerically. It is remarkable
and significant, as the numerical analysis shows, that the static magnetic potential alone
without the form-factor has not quite the right shape to lead to the formation of resonances.
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The magnetic form-factor has been evaluated in standard quantum electrodynamics
(see Ref. [7], Ch. 15) and in dispersion theory [8]. In momentum space the magnetic
vertex is given by the well known function to the lowest order

[magn v 20
= Ouy R 3
“ e 20

with
sin® 0 = —g2/4MZ,.
In the coordinate space the vertex correction leads to a change in potential [9]

ei qr

oV(r) ~ ﬁ(aV)qu - = BlaV)I(»).

lq|? sin 20

Using the integral representation
1

20 dy
sin20 q°

o L+ — y(1—y)
M

the integral /(r) can be evaluated to yield

1

2m2 r P
I(}') = l I:l_ J dxe"Mcrrrf* x(l-x)] )

r
0

d

The potential ¥ (r) is proportional to - I(r). The derivative can be exactly evaluated [10]
A

and gives

dI(r) 2
dr - T = (1 —2M K (2M gc1)).

The expression
g(r) = 1-2M K (2M 1) 4.1)

is just the factor with which we have to multiply the potential calculated for constant F,(0).
It has the asymptotic limits

n
glr)y =1—- \/? exp [ —2M 1], for M er > |

—2MZua [In Mger+y—1], for Mygr < |
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and the form shown in Fig. 1. As we expect, only for r < r, will the effect of the form-
-factor be important, and this in a significant way.

The electric form-factor has no effect in the region of magnetic resonances and we
have omitted it for the time being.

gfr)

!

“r

Fig. 1. Dependence of the magnetic form-factor g(r) on r

5. Numerical analysis of dynamical equation

The general dynamical equations are too complicated for spectral analysis and the
problem of explicit localization of eigenvalues of energy is rather difficult at this time.
Therefore, in order to verify whether there exist bound or resonance states of the dynamical
equations one has to utilize numerical analysis. We performed such an analysis under
the following assumptions

. . . a?
(i) m®>mD, (i) &) = 0,6V, u’ = S0 45
4m
This leads to a one-body dynamical equation with the effective potential given by the
formula:

4m®

1 a® y -y
V(r) = eDe? [_r_ - 2(r) ___r_s__] , 5.1)

where the form-factor g(r) is given by formula (4.1).
Passing to the radial coordinates one obtains a system of four equations, which can
be reduced to Schrodinger-like equation

L%z +AME)—-V(r, E, J):' vir) =0, (5.2)

with the energy and angular momentum dependent potential.

We first analysed the dependence of ¥ on J at a fixed E. The numerical analysis
reveals an interesting fact that the potential becomes more resonance-like at small distances
if the total angular momentum increases (see Fig. 2). This phenomenon persists in a large
interval of energy.

Next we analysed the dependence of V on energy at fixed J. Again it turns out that
the potential becomes more resonance-like if energy increases. However, this phenomenon
persists up to a certain energy only after which the potential becomes less resonance-like
(see Fig. 3).
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Finally we calculated resonance energy E, and the shape of the wave function corre-
sponding to the resonance energy. As seen from (5.3), the potential is strongly singular
at origin, a fact which causes a serious numerical problem. We have used a variant of

Lvir,E)-A(E)I(J)

Vir,E) - A(E)

E=24

Fig. 2 Fig. 3

Fig. 2. Dependeace of V(r, E, J) on total angular momentum J at a fixed E
Fig. 3. Dependence of V(r, E, J) on energy for J =1

V(r,E)-2A(E) U(r,E) EXE
742 utr)
/T ._rr_ = Y(r)
JE
\ /’\/& i
~ A\ r
r \
E<E,
Fig. 4 Fig. §

Fig. 4. Dzpendence of ¥(r, E, J) on r for fixed E and J
Fig. 5. Dependence of the radial wave function on energy E at fixed J = 2 in the region of resonance
energy E;

W.K.B. method adapted for singular potentials by Skorupski. The description of this
method will be published elsewhere [I11]. On Fig. 5 the typical shape of the wave
function at resonance energy, corresponding to J = 2, is depicted. It is shown that for
a certain energy E, the wave function has a single resonance peak. If we take E > E,,
or E < E_ even by relatively small amount then the resonance peak disappears. For the
purpose of illustration we depicted on Fig. 4 the shape of the potential in the same
units. It is evident from Figs. 4 and 5 that the resonance peak of wave function occurs
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at distances corresponding to the minimum of the potential wall, as should be expected
from the classical analysis. This phenomenon persists for various J in a large interval
of angular momenta.

The value of resonance energy £, depends on the localization parameter ro(~ M 37).
The dependence of E, on r, for various J was calculated numerically. It turns out
that for higher angular momenta the resonances are more massive hence more localized.

In order to identify more unambiguously the resonances another numerical program
for calculation of phase shifts for singular potentials was elaborated by Skorupski. Fig. 6
shows the dependence of the phase shift as a function of energy for various values of E,

d/r J=1
10 E 5= 3098 MeV
I = 480/1r =153 MeV

.
" gsae,,,

1000 E[MeV]

=1
E, o5 = 1000 Mev

= 59/m =18.7 MeV

1.0k
08}~
o6+
ol T T T T T T T T T
0z
0 L L
—ozt-
_0.4.~
o~ 7T
-0_8,

-1.0H

1000 1100 1200 1300 E [MeV]

Fig. 6. Dependence of the phase shifts on energy for J = 1 and E; = 3098 and 1000 MeV respectively

obtained from the determination of the resonance peak of wave function. It is seen from
Fig. 6 that phase shift changes sharply by = when energy passes the value of E, in the
neighbourhood of the resonance. This is clearly the most characteristic feature of narrow
resonances. The region around E, where a change of phase shift by = occurs, gives also
the possibility of a precise determination of half-width I' of resonances. The corresponding
values of I' for various F, and J = 1 are given in Fig. 6.

Thus the above analysis strongly confirms that there might indeed exist high mass
resonances in a two-fermion system with purely electromagnetic interactions. Numerical
analysis was also performed by Anders [10] with similar conclusions.
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In further work we shall determine the parameter r, in the form-factor in a self-
-consistent way. In the present numerical calculations the resonance energy E, does not
completely match M = 1/r,. The reason lies in the fact that our form-factor, being
the lowest radiative correction, does not reflect the form-factor correctly at still shorter
distances, and E, is very sensitive to the form-factor at these distances. We propose to
modify the effect of this inner region in a self-consistent manner.

APPENDIX A

A relativistic two-fermion equation was introduced by Giinther in the following
form [3]

(FP+mP)P(xy, x,) = [§ GOxy, x5 1 x7, x5)P(xY, x5)dxidxy,  i=1,2, (A1)

where G are general kernel functions. It was observed by Krdlikowski and Rzewuski [4]
that one obtains a probabilistic interpretation of the wave function ¥(x,, x,) if, using
an equivalence theorem, one replaces the system (A.l) with the following system

@V +mNW(xy,x2) = | § Al en(X1, %25 X3, 5 0P W(xG, xh)doltdey. (A2)

ay o2

Here o, 6, are spacelike surfaces and the kernels A{f,)h,,zl which are functionals of ¢, o,
are determined by the original kernels G® by means of a linear integral equation

A(i) (xla X325 x’b x'Z) = {[G(I)S]_F[(’(!)RS]} (XU X235 X;, x,2)

lo1,02]

— § § AR el 23 XY, XYOWPIRS] (¢, X35 X1, xp)dedal”,  (A3)

Gt G2

where
S(x1s X253 X7, %) = S0y =x1)SPx —x3),  SOx) = (3P +m)4V(x),
and R is the resolvent kernel defined by the equation
V(x4 X2) = Polxy, X3)+ [J R(xq, X235 X7, X5)¥o(x], x3)dxdx),
and the symbol [4 B...C} is given by the formula
[AB ... C] (xy, X35 %3, x3) = [ oo [ A(xy, X55 &, E)AEAELB(EL, Ep; .) oo C(s X1X5).

Since the functional derivative with respect to ¢, and o, of r.h.s. of (A.2) vanishes, (A.2)
does not depend on ¢, or ¢,. Consequently, setting ¢, = 6, = ¢ and choosing ¢ to be
a hyperplane 7 = const, and also assuming x‘V, x#) to be situated on ¢ we obtain from
(A.2) a one-time equation.
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APPENDIX B

During the process of calculation of explicit form of potential from form-factors
(cf. Eq. (2.10)) one meets the calculation of the following typical integrals

e 1
f(q 2) eiqrdq — An <__) .
q r

The calculation of the results of an action of 4" on the “function” r~! requires a special
care since this function has a locally nonintegrable singularity at the origin. In order to
assure the proper treatment we shall treat the “function” r—! as a distribution in the Schwartz
test function space S(R®) and we shall use Gelfand-Shilov technique of analytic regulation
of distributions with power singuiarities. In the case of r~! distribution this technique
uses r* distribution with A any complex number. Gelfand and Shilov proved the following
results:

(i) The distribution r* is well defined on S(R®) for all complex A except 4 = —3,
-5, -7, ...

(ii) At exceptional points A = —3, —5, —7, ..., the distribution has single poles.

(iii) The action of the Laplace operator 4 on r* is given by the formula

Art = AA+ 1)t (B.1)
(iv) The Laurent’s series expansion of r* around the singular points A = —3—2k
is given by the formula
4z

A

= )+ drr T T dn (A 2k P e+, (B2
TS Gatken @’ O n( ) n (B.2)

2k=3 represents the main part of the Laurent’s series of

which would have a pole).

where on the r.h.s. the symbol r~
r* (and not a distribution r~2¥73

1
We shall now calculate the distribution 4" — as the limit
r
1 : n A
A" — = lim A"r".
r i —1

Using (B.1) for n =1 we have

1 .
A— = lim AQ+1r"2
r

A— -1

By virtue of equation (B.2) for '’ = 1—2 = —3 we have k = 0 and

1 , . o(r) -3 -3
A4 — =4r lim A(A+1) +r 7+ (=243 " Inr+ ... | = —4nd(r).
r Ao —1 A—2+43



703

1 .
For A? — using the same steps we obtain
¥

1
A2 = = lim AA+1)(A—2) (1—Dr* %
-

i1

Now for A — —1, r** — r=5 and therefore k = 1. Hence we have to use expansion (B.2)
around the point 2/ = i—4 = —5. Hence

1
A% — = 4n lim A(A+1) (A—=2) (A—1)

r A= —1

5(2)(',) s s
[2().»{;T) +r 7+ A+ P Inr+ ]

!

3
= (2)
= 4z 7 8V (r).

Similarly we calculate

2(n—1)

1 5[2(1'1—1)](,.)
A" — = 41 |lim | I (l—n)[(~}+l) [m +r D L Q)P D 4 ],

r Am—1
m=—1
or
2(-1)
{ —4n J] (-1-m)
AT m=1 gty
r [2(n—D)]! )

Using these results one obtains the formula (2.10) for the effective potential.
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