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A pew relativistic two-body wave equation is conjectured for a system of one Dirac
and one Klein—Gordon particle. The equation is solved exactly for Coulombic bound states
in the case of equal, non-zero masses. In particular, a massless stable Coulombic bound
state with j = 1/2 is shown to exist, provided the coupling constant « assumes its critical
value 2. Such a situation would appear for every unbroken supersymmetric massive pair of
one Dirac and one Klein~-Gordon particle if only they interacted mutually through a critical
Coulombic field.

As is well known, most of our information on elementary systems came out from
investigating two-particle systems and forces acting therein. So, two-body wave equations
belonged always to the most popular part of the quantum theory. In the non-relativistic
approximation, these equations have an universal character of the two-body Schrédinger
equation with an appropriate potential. Their relativistic form, however, becomes specific
for a given kind of particles, being strongly spin- and force-dependent. In particular, for
two Dirac particles in the static approximation with a potential transforming as the
time-component of a 4-vector one gets the Breit equation [1]

[E=V(ri—72)~ (@ - py+Bimy)— (& - I-;z +B.m)Ip(ry, 72) = 0 0))

if one considers the single-particle theory. In the hole theory, one obtains the Salpeter
equation [2], where instead of the potential V(r,—r,) one has the interaction

(A @A (P2) = A7 (P A (P )IV(F —T2) ()

which decouples the components y“-(F,, r,) and v, 7,).
The wave equation (1) (or (1) with the modified interaction (2)) represents the one-
-time approach to the relativistic two-body problem which can be derived either from the
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two-time approach provided by the Bethe-Salpeter equation or directly from the quantum
field theory [3].

In the present note we consider a system of one Dirac and one Klein-Gordon particle
and conjecture for this system the following relativistic two-body wave equation (being
an analogue of the Breit equation (1)):

{[E=V(F=T2) =@ py+Bm) > —(p3+mD}p(Fy, ) = 0. 3)

Eq. (3) can be rewritten in the form

. 1wy 5 o=, [P V] E=V)] . .
p+pmy— ——— +mi—p;—mz)— - o(ry, =0 4
{“ pi+pmy 2(E—V)(p1 17 P2 2) AE—-V) 2 y(ry, ray) 4)
which in the center-of-mass frame, where 51 = —52 =Dpand ¥,—7, = T, reduces to the

Dirac-like equation with an effective potential describing the internal motion,

mi—mj+a-[p,V] E-V
E-V 2

<& p+pm,—3 )w(?) = 0. (5)

Notice that the wave equation (3) or (4) implies the following stationary form of the
continuity equation for probability:

div, {w’f [(E_V)&-— Bt } w} +div, (w* o w> =0, ©)

which reduces in the center-of-mass frame to the equation

div [¢T(E~V)ay] = 0. @)

In the probability current in Eq. (6) p; = —id; and P; = —i0, act to the right and to the
left, respectively. In the probability current in Eq. (7) 5 = —id does not appear.

In the case of a central potential V(r) = V(r) we obtain from Eq. (5) the following
radial equation

/ dv
d 1+pk dr mi—mj; E-—V

—io, \ — + — —— -1 — ' = (), 8
dar . TE_ v +pm—3 E—V 5 w(r) (8)

where we have k = +(j+1/2) in correspondence to the total parity P = n(—1)’F'/2.
Here, j = 1/2, 3/2, 5/2, ... is the total angular momentum, whereas # = +1 denotes the
intrinsic parity of the Klein-Gordon particle, relative to the Dirac particle. In the represen-

tation where
(0 —i (1 0 (v
ar""(i 0): b '—(0 __1>9 1/}—<w-—>’ (9)
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Eq. (8) takes the form

/ v
d k dr E-V m2 —m3
RadirRRAS Bl - - 1 * =0,
(dr r TEC ””+( 2 ™ 25-1/)"’
v
d k dr E-V m?—m? _
a7 PRy "’ﬁ*(T s };_/)rw - 0

Here, the superscript + of the components * refers to the intrinsic parity § = £ 1 of the
Dirac particle, described by the matrix f. Obviously, P = yf(—1)' = n(—1)’¥'/? for both
components p+ and y— because / = jF1/2 for y* and [ = j+1/2 for y~ (hence I = |k|—1
or |k| for yw* and !/ = |k} or |k|—1 for v~ as k] = k or —k).

In the case of a Coulombic potential V(r) = —ea/r with ¢ = +1 and an arbitrary
o > 0, we can rewrite Eq. (10) as follows

d + k £ - E £a, —mz)i
— — — — et — m ______
dr r  2r(Er+en) v ) 2r 2(Er+acx)

4a_k__ = o 4 g (mi=mr) - o,y
dr r 2r(Er+ scx) 2 2(Er+ soc)
Eq. (11) shows that

ry* o~ A 7 AT (12)
where
— 7 Jri (B Y
= 4 j+1)2— —, =4+ [m—=+ =—2). 13
p _\/(J+2) e 1 (2 35 (13)

Notice that p is real or imaginary if « < 2j+1 or a« > 2j+1, respectively, while u (corres-
ponding to bound states) is real and # 0 if 0 < |m; —m,| < E < m;-+m, when m; # m,
or 0 < E < 2m when m; = m, = m > 0. Obviously, the lower sign at p is allowed by
the regularity condition ry* -0 at r—0 only if 0<p><1/4 or p2<0 ie.
a2 > (2j+1)*>—1, whereas for bound states the lower sign at u is always excluded by the
normalization condition at r — oo. In particular, for j = 1/2 the lower sign at p is allowed
if « > /3 and p is imaginary if « > 2.
After the standard substitution

rp® = pPrUZemeryt (14)
Eq. (11) takes the form
d 1/2+k T—mj
4 pripik e ) [ s memr) L
dr r 2r(Er+ex) 2r 2(Er+¢a)

d p+12—k e . _ e (mi-mir] _
4 - - - — e T =0, (15
[dr r 2r(Er+ea) u]w [“ + 2r + 2(Er+ea) v )
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where
+ _E
pr=mE (16)
In the case of m; = m, = m
E\? , E
u=\/mz— — | =vutpT, pr=mF . an
2 2
Now, making the second substitution
= (Er+ex)” " ?p* (18)

we transform Eq. (15) into

- 2 2
& my—my)r
+ ( 1 2 ]U+=0,

2r 2(Er+sa)

|
d p—k . . & (mf—-m§)r _
(—-f——-j———y)v ~[u +— + — —- {v7 =0 (19

2r 2(Er +ea)

In the case of m, = m, = m, Eq. (19) reduces to the form

k
( +p.__.-!:..._“> #_._Bﬁ>v+=0,
2r

(1+p k_#) (#-J, f;“),,—=o, (20)
dr r 2r

where u and u* are given in Eq. (17). It is not difficult to demonstrate that for m > 0
Eq. (20) produces the polynomial solutions

vE= Y ¢fr (n,=01,2.) [03))
¥=0
if and only if
2
p— euf — = —n, (22)
\/(Zm)z
— ] ~1
E
the bound state solutions for ¢ = —1 being excluded by the normalization condition at

r — o/E, unless E = 0 (cf. Eq. (18)). Here we have k = +(j+1/2) and P = n(—1)’*"3,
except for n, = 0 when k = &(j+1/2) and P = y(—1)""%? only [4]. In the case of p > 0
the bound state condition (22) can be satisfied only for ¢ = + 1, resulting in the Sommerfeld
formula (with 2m and «/2 substituted for m and o),

2
E— " (n, =0,1,2, ... for e = +1). (23)

)
14+
4V +1/2° — o4
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These energy levels exist if 0 < a® < (2j+1)*. The familiar Coulomb x = 17137 lies in
this range. In the case of p < 0 the condition (22) can be fulfilled both-for ¢ = +1 (if
n. > 0)and ¢ = —1 (if n, = 0), the latter being excluded by the normalization condition
at r — a/E (since here E > 0), so that we get the new formula

2 )
E= ——— e (n,=1,2,... for e = +1i). (24)

[
1 + I W ST
n,—(j+ 1;’2)2 —5%i4

Since in the case of p < 0 the regularity condition ry™ — 0 at r — 0 requires —1/2 < p < 0,
the new energy levels exist if (2j+1)*—1 < »® < (2j+1). Eventually, in the case of p = 0
the bound state condition (22) can be satisfied both for ¢ = +1 (if 1, 2> 0) and ¢ = —1
(if n, = 0), leading to the formula

2mn,
E = —-

== (n,=0,1,2,... fore= +1,n =0 for e = —1). (25)
VnZto/4
These energy levels exist if & = 2j+1. For n, = 0 formulae (23) and (25) take the same
form
frmT N2 2
2m N2+ 1) —u
E = »A»—\——(——J_—~~)— — (26)

In particular, if « = 2j+1 Eq. (26) gives E = 0 for ¢ = +1 and ¢ = —1, showing the
existence of a massless Coulombic bound state, irrespectively of the sign ¢ = +1 of
Coulombic potential.

Concluding our discussion of Eq. (20), we can see that in the case of o < (2j+1)2—1
(i.e. « < /3 for j = 1/2) Coulombic bound states exist only for attraction, corresponding
to the Sommerfeld formula (23). In the case of 2j+1)2—1 < o> < 2j+1)2(ie. /A< a < 2
for j = 1/2), besides those related to Eq. (23), new Coulombic bound states appear for
attraction, corresponding to formula (24). Finally, in the case of o = 2j+1 (i.e. x =2
for j = 1/2) there are Coulombic bound states both for attraction (if n, = 0, 1,2, ..))
and repulsion (if n, = 0), corresponding to formula (25). In particular, we have shown
that, if only the coupling constant o assumes one of its critical values

a=2j+1=24,6,... 27

defined by the equation p = 0, there exits for the system of one Dirac and one Klein—-Gordon
particle of equal non-zero masses a massless stable Coulombic bound state with the appro-
priate spin j = 1/2, 3/2, 5/2, ... and parity P = n(~1)’ %%, This is true irrespectively of the
sign ¢ = +1 of Coulombic potential. For the first critical « = 2 we have here j = 1/2
and P = p(—- 1792,

It may be instructive to compare various one- and two-body wave equations with
respect to their Coulombic behaviour at r — 0. This is done in Table I. We can see from
this Table that only for the Klein-Gordon and double Klein~Gordon equations the lower
sign at p is allowed for the familiar Coulomb o = 1/137 (if / = 0), since then 0 < p? < 1/4



744

and hence ry — 0 at r - 0 [S]. A massless stable bound state with / = 0 turns out to
exist here [5]. For the Dirac and double Dirac equations the lower sign at p is excluded
for all values of o if we restrict ourselves to the conventional solutions which are not
only normalizable at r —» 0 but also satisfy the more restrictive regularity condition
_rp = 0 at r - 0 (cf.,, however, Ref. [6]). Finally, for the Dirac—Klein-Gordon equation

TABLE |
Coulombic behaviour at r — 0 of various one- and two-body wave equations
: First o
Equation ryatr—0 P critical @
Klein-Gordon ppti2 + v"f,q.%)z s 1
Dirac rP £V +-5'2‘:E2' 1
B
Double KG ppt 12 + JU+b— s 1
. e
Double Dirac rP + [jG+D+1— o 2
. s a2
Dirac-KG ppF12 * [G+dH- 2
; Y, 4

conjectured in the present note, the lower sign at p is allowed only for « > /3 (if j = 1/2)
because then 0 <\ p? < 1/4 or p? <0 and hence ry —» 0 at r — 0. A massless stable
bound state with j = 1/2 appears here for the critical « = 2. We can see that only here
the requirement of existence of a massless stable Coulombic bound state determines the
coupling constant « (to be critical). It is, of course, a coupling constant of a very strong
interaction mediated between the massive Dirac and Klein-Gordon particles by some
massless vector particles.

In conclusion, we would like to stress that in the case of equal non-zero masses the
wave equation (3) (conjectured for the system of one Dirac and one Klein—-Gordon particle)
implies the existence of a massless stable Coulombic bound state with j = 1/2 just for the
critical @ = 2. Remarkably enough, such a bound state would appear for every unbroken
supersymmetric massive pair of one Dirac and one Klein-Gordon particle if only they
interacted mutually through a critical Coulombic field. One may wonder whether neutrinos
of different kinds are not such critical Coulombic bound states of various unbroken super-
symmetric pairs of some subelementary constituents.
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