Vol. B10 {(1979) ACTA PHYSICA POLONICA No &

THE JACKSON-FEENBERG FORM OF THE KINETIC ENERGY
OF FERMIONS IN THE CHAIN, HYPERNETTED CHAIN, AND
PERCUS-YEVICK APPROXIMATIONS

By J. DABROWSKI AND W. PIECHOCKI

Institute for Nuclear Research, Warsaw*
( Received March 21, 1979)

Expressions for the Jackson-Feenberg form of the kinetic energy of fermion systems
in the chain, hypernetted chain and Percus—Yevick approximations are derived, and critically
compared with earlier expressions of this type.

1. Introduction

In the present paper, we consider an infinite, homogeneous system of N identicat
fermions of mass M, and spin-isospin degeneracy v. All the particles of the system are

contained in a periodicity box of volume €.
In the Jastrow theory [1, 2], for the ground state wave function we assume the form:

¥(l, ..., N) = F&(l, ..., N), 1.1y

where the arguments of the functions indicated by numbers denote full sets of space and
spin-isospin coordinates of the respective particles. The Slater determinant function &
is an antisymmetrized product of single particle wave functions (products of spin-isospin
functions and plane wave functions, normalized in the periodicity box).

For the correlation operator, we assume the simplest form,

F = H fip (1.2)
i<j

with state independent correlation functions f;; = f(r;;), where r;; is the distance between
the i-th and j-th particles.

The essential problem of the Jastrow theory is the calculation of the expectation
value of the hamiltonian H = T+ V, where the kinetic energy operator

h?

2M

1

T=— 4;, (1.3)
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and V is the total inter-particle interaction. We have E = T+ V, where
T = CHITIEHKPIPY, (1.4)
V=PIV IKP|P). (1.5)

In the usual case when there are only two-body forces acting in the system, ¥ may
be expressed by two-body distribution function. In the simplest case when ¥ = 3 0(r)),
we have

V= lQZ,\.d"ld"zgz("1"2)0("12)a (1.6)

where ¢ = N/Q, and g, is the two-body radial distribution function,

o*gx(xy) = Y| ; O(r;—x)o(r;—y) (¥H[KHIV). 1.7)
1¥]

The kinetic energy 7 may be expressed with the help of the mixed one-body radial
distribution function g, (r,#}) (expression for g,(r;, r}) and its low order cluster approxima-
tion is given, e.g., in [3]). With the Jastrow form of ¥, Egs. (1.1-2), we are able to avoid
the necessity of calculating g,(r,, r}). By applying directly the definition of 7, Eq. (1.3),
one obtains the basic prescription (BP) for the kinetic energy, T°F, used by Iwamoto and
Yamada [4, 5], and in other early papers on the Jastrow theory, as well as in recent papers
by Pandharipande and Bethe (see, e.g. [6]). By partial integration, one may transform T
into two other forms used in the literature: the Clark-Westhaus [7] form T, and the
Jackson-Feenberg [8] form 7T7F. In the present paper, we use the JF form:

TF(h*2M) = 2 kEN+Tp+4 1, (1.8)
where kg is the Fermi momentum (in units of ),

Ty = <@ ¥ [3 (ViF)* =3 F(4,F)] 19K ¥

= Qz j d":d"z{% [(V:fxz)/fu]z—% (Alfxz)/f;z}gz("u 1), (1.9
T = [dcF? X AP ICPIYY = o [ dridTg(ry). (1.10)

By 47 = (V])?, we denote the Laplace operator acting on r, which appears in |®|? (i.e.,
only statistical correlations contribute to 4%). The one-body radial distribution function
is defined by

0g1(ry) = CPI Y 3(ri—x) |¥/{P¥). (1.1

To calculate T°F, we have to determine (except for g, needed anyhow in calculating V,
Eq. (1.6)) only g;, or strictly speaking ,only that part of g, which contributes to 7. This
is the great advantage of the JF form of T over the other two forms. In case of T, we
have to determine, in addition to g,, the more complicated three-body radial distribution
function g;. Least convenient is the BP form, T°F, which requires both the knowledge
of gi, and the determination of an additional term similar to .
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In calculating radial distribution functions, one usually assumes that f(r) deviates
from unity for relatively small values of r only, and applies cluster expansion methods,
originally introduced by Ursell in the statistical mechanics (see, e.g., [9]). Recently, an
important progress in the cluster expansion method was made by Fantoni and Rosati [10]
who adopted to the case of the ground state of fermion systems the powerful methods
of selective summation of cluster diagrams, known since a long time in classical statistical
mechanics [11]. Summation of single chain diagrams built of the simplest links leads to
the chain (CH) approximation. The (Fermi) hypernetted chain (HNC) approximation is
obtained by parallel connection of chain diagrams, built of links which in turn are
constructed by parallel connection of chains and simplest links. If in the HNC approxi-
mation the parallel connection of chains is disregarded one obtains the (Fermi) PY
approximation [12] originally introduced by Percus and Yevick [13] in classical statistical
mechanics.

In the present paper, we derive expressions for t in the CH, HNC, and PY approxi-
mations. We assume that we know, from the work of Fantoni and Rosati {10] (and [12]),
how to calculate g, (and, consequently, T, Eq. (1.9)) in the three approximations. Hence,
our present results for T enable us to calculate the total kinetic energy in the CH, HNC,
and PY approximations.

Eq. (1.10) was used by Fantoni and Rosati to calculate  in the CH approximation
in [10], and in the HNC approximation in [14]. Our results differ from the results of [10],
and [14]. For this reason, we present some details of our derivation, and test our results
in first few orders in the expansion in powers of /4 factors, where

hy = fi—1. (1.12)

In Section 2, we apply the power series (P$) expansion method in calculating 7, and
present the results up to the third order in A. In Section 3, 7 is calculated in the CH approxi-
mation. In Section 4, we calculate 7 in the HNC approximation. The PY approximation
of 7 is presented in Section 4. A critical comparison of our expressions for ¢ with earlier
expressions of this type is given in Section 5.

Our CH and HNC results for © have been reported in [21].

2. PS expansion of 1

The PS expansion (Fantoni, Rosati {15, 16, 10]) appears to us to be the most natural
method of the cluster expansion. In this expansion, various terms are classified according
to the number of A factors contained.

The PS expansion of 7 is described by Fantoni and Rosati in {10]. Their result may
be best expressed by means of diagrams. Here, we use their diagrams, in which A factors
are represented by solid lines, A factors by dashed lines, and —1%/v factors by helical lines.
We use the notation

Aij = —lylv = —[3) (kerip)[kery]/v. 2.1
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Open circles depict external points. Closed circles (solid dots) depict internal points, and
imply integration accompanied by a factor p.
We write Eq. (1.10) in the form

T = g[drdSy, 2.2)

where y = y(r,) is that part of g,(r;) which gives a non vanishing contribution to . If
the external point 1 is connected with the rest of a g,(r;) diagram by soli< lines only, then
obviously such a diagram does not contribute to 7. Also, if point 1 is connected with the
rest of the diagram only by a helical line or by dashed lines, the contribution of such a dia-
gram to T vanishes. Namely, we may then replace 4% in Eq. (2.2) by 4,, and apply the Gauss
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Fig. 1. The yH diagrams

o
;-(Z 7

C U
Fig. 2. The yHNC_,CH diggrams
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Fig. 3. The y’diagrams

theorem. In conclusion, y is depicted by the sum of all g,(r,) diagrams in which point 1
is connected with the rest of the diagram by at least one solid line and by a helical line or
by two dashed lines.
By applying the rules of drawing diagrams [10] we get:
y = 7+ =)+, (2.3)
where y , and 7’ are depicted diagramatically in Figs 1, 2, and 3. By y™ and "%,

we denote those parts of y which are taken into account in the CH and HNC approxi-
mations, respectively. The elementary diagram in Fig. 3 is neglected in the CH and HNC

CH HNC
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approximations. The part of y, consisting of such diagrams neglected in the CH and HNC
approximations, is denoted by y’. Notice that the HNC approximation differs from the CH
approximation only in the third and higher orders in A.

The last diagram in Fig. 1 is accompanied by a factor 1, whereas the symmetry number
of this diagram is 1. The explanation is that this diagram originates from the sum of two
diagrams, shown in Fig. 4a. Furthermore, there are two diagrams missing in Fig. 1, which

- //\ 1
B I (@)
AN-T T=0 (b)
/ N\ l_-i
3 4 3

(d)

.‘0_-®
nNO-——

+
—0_

\\
N&Iﬂﬂm’

1l

(@]

Fig. 4. Diagramatical relations

however cancel each other, as shown in Fig. 4b. Also in Fig. 2, there are diagrams missing
which cancel each other, e.g., the two diagrams shown in Fig. 4c.

The diagramatic relations depicted in Figs 4a-c follow from the general relation
shown in Fig. 4d, in which the blobs between two points represent any function of the
distance between these points. The proof of this general relation is simple: one introduces
P4, r43 asintegration variables, and in perfoming the r, integration, one uses the convolution
identity of the A functions:

efdridiy = — Ay 2.4

In calculating v, it is very important to realize that the relation depicted in Fig. 4d
holds also in the presence of a ditferential operator acting on point 1 (but not on point 2!).
By inserting Y and y’, shown in Figs 1 and 3, into Eq. (2.8), we get:

T = QId"lA?)’CH = 92 j d"td"zh1241(—'lfz/")+93 _[ d"ld"zd"a[hlshzad1(“132/")
+%(—zv)htzhlslzsd1('112'113)]4‘94 _[ d"1d"zd"3d"4h13h24(l§4/V)A1(1%2/")4'0(’13), (2.5)

7 = Q_\.d"ld?)" =3 (—2V)Q4fd"1d’zd"3d"4h12h3413212441('114113)4'0(}'3)- (2.6)
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In this quadratic (A2 —) approximation ™" = 1 and 7 = t™+ 7. Let us mention
that Egs. (2.5), (2.6) may also be obtained (by partial integration) from the expressions
for the kinetic energy, given by Iwamoto and Yamada [5].

3. CH approximation of

In the CH approximation, we approximate y by

7N = 45, (3.1)

where y5" and " contain all chain diagrams in which the external point 1 is connected

with the rest of a diagram by helical and dashed lines, respectively.
In the A3-approximation, all the y;" diagrams are contained within the { }, brakets
in Fig. 1. By extending the sum of these diagrams to all possible chains, we obtain the

/ZSCHz +@+@ (3)
h Qe

L—@—g EN;::(qz) = /\+ ‘ I + Oy (b)

Fig. 5. Result for ygH

result shown in Fig. 5 in which NS(r, ,) represents the sum of all CH nodal diagrams, i.e.,
the sum of all chains built of the links: 4, —/2/v, and —/2h/v, which start and end with
an 4 link (solid line). (In [10], NS" is denoted by %(»).

All the y§" diagrams with two and three / factors are contained in the { }4 brackets
in Fig. 1. By extending the sum of these diagrams to all possible chains, we obtain the

(a)

J,f:.@_é = NG mo) =f\b AN “35 + 0% (b)
@ 7’)* CA\ =0 (e)
5

Fig. 6. Results for y$H



753

result shown in Fig. 6 where N51'(r,,) represents the sum of all CH nodal diagrams, i.e.,
the sum of all chains of the links: 4 and AAh. In general, both the 4 and the A4 links may
start and end the N§;* chains. However, all the N$(r1,) chains which start at 1 with the A
link, and end at 2 with either a A or a Ak link, cancel, as may easily be shown with the
help of the relation depicted in Fig. 4d. Consequently, only chains which start at point 1
with the Ah link (dashed line superimposed on a solid line), contribute to N5'(r,,). For
this reason, in Fig. 6, for N$j'(r;,) we use the picture in which the dashed line starting
in 1 is superimposed on a solid line, and in which it is understood that the dashed line
ending in 2 may be superimposed or not on a solid line. (Notice that there are two possible
diagrams missing in Fig. 6b. These are the two diagrams in Fig. 6¢ which cancel each
other.)
The chain equation for Ng;' (denoted in [10] by %() is:

Ngi(ryg) = de"ahlalls[fulsz‘l'N §(rsz)]- (3.2)

This equation is responsible for the last part of the equation shown in Fig. 6a.
With the help of the expressions for y5 and y§", shown in Figs 5a and 5b, we get

B = o? [drdr,[hy, +fHNS(ri)]4,(~13,/v)
+5 (=2v)0” [ drdrydrs[ f73223+ NSS(ras)1hi sk 34,(A5415). (3.3)
With the help of Eq. (3.2), we may write T also in the form:
M=y jdrldrz{[h12+fuN (r12)14,(= 135 /v) = 2vh NG (P 2) 41 Ay}
+(=2ve*§ drldrzdr3h12hl3[ SE233+ Neg(r23)] (Vidi2) (Vids). (3.4)

4. HNC approximation of t©

In the HNC approximation, we approximate y by

PN = N4 @1

HNC ‘ .
=1+ = ol g5y

Nss (fp) = Nee (fn) + f:-I N m + O(h“)l

Fig. 7. Result for y}INC
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where 7™ and y§™¢ contain all hypernetted chain diagrams in which the external point 1
is connected with the rest of a diagram by helical or dashed lines, respectively.
The y:,mc diagrams with one, two, and three & factors are those contained within the
{ }, brackets in Fig. 1 plus those within the { }, brackets in Fig. 2. By extending the sum
of these diagrams to all possible hypernetted chains, we obtain the result shown in Fig. 7
(similarly as before, diagrams which cancel each other are omitted here, and also in all
other figures) in which N (r,,) represents the sum of all HNC modal diagrams, i.e., the
sum of all chains which start at 1 and end at 2 with solid lines only. (In [10], N, is denoted
by 4, (with E,, = 0).)
For the /-part of 1

= f dr 473N = ¢* _f d"xd”z{fxzz exp [Ny(ri2)]—1}4 1("&2/")- 4.2

In the h3-approximation, all the yi~C diagrams are those contained within the { }4
brackets in Fig. | plus those within { }, brackets in Fig. 2. By extending the sum of these
diagrams to all possible hypernetted chains, we obtain the result shown in Fig. 8 where
Ngyy(r,,) represents the sum of all HNC nodal diagrams, i.e., the sum of all chains, which
in general may start at 1 and end at 2 with a dashed line superimposed or not on solid
lines. However, all the Ny (r,,) chains which start at 1 with only a dashed line cancel

HNC we get

(@)

1 2 CH A -
‘{QQ“*’ = Ngqi2) = Ngq (ip) + !/ i*(% o

+ ¢ 2+ 00d)

Fig. 8. Result for y';NC

(similarly as in the case of N§;). Consequently, only chains which start at point 1 with

a dashed line superimposed on solid lines contribute to Ny (r;,). This is reflected in the
way Nyy(ry.) is depicted in Fig. 8. Notice that this property of Ny(r,,) is preserved when
we differentiate Ny4(r,,) with respect to the coordinates of point 1. In [10], Ny, is denoted
by %44 (with E,,, = 0).

To understand the source of the factor L in the expression for y4~° in Fig. 8, we write
the sum of the diagrams in the { },; brackets in Fig. 2 in the way shown in Fig. 9. We see
that the diagram A, with symmetry number 2, is contained only in the first term in Fig. 8a,
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and the diagrams B and C, each with symmetry number 1, are contained both in the first
and second terms in Fig. 8a. This occurs with all diagrams of yi{~: diagrams with symmetry
number 2 are contained only in one of the two terms in Fig. 8a, and diagrams with symmetry

number 1 are always contained in the first and second terms of the expression for yiN®

Fig. 9. The yNC—ySH diagrams

shown in Fig. 8a. Consequently, the factor 1 is necessary to prevent double counting of
identical diagrams.

Notice that in our expression for 5", Fig. 8a, we do not have the diagram D, shown
in Fig. 10. If Ng4(r,,) ends in point 2 with a dashed line only, than this part of the diagram D

\
\
TTTTe 2

Fig. 10. Diagram which does not contribute to y{NC

is illegal. With the help of the chain equations satisfied by the remaining part of Ny (r;,)
(which ends in point 2 with a dashed line superimposed on solid lines), one may easily
show that the corresponding remaining part of diagram D vanishes.

The chain equation for Ny, is:

Nyy(riz) = Qfd"syw[}»sz"' Y32+ Naa(r32)], 4.3)

where we use the notation

Y2 = [A12+ Nua(ri2)] {f % exp [No(ri)]-1} 4.4)

for the HNC non-nodal diagram, i.e., for the link of the chain, in which the two ends,
1 and 2, are connected with the rest of the link with dashed lines superimposed on solid
lines. (There is only one other possible link in a N,y chain, namely A,,. In [10].
Y 2 = Xy4(ri2)— 4,5 is denoted by §,, (with E,, = 0).)
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The sum of the expression for y4" < and y4"C, shown in Figs 7 and 8a, may be written
in the form:
Pe = 7 (—2v)e j dryY 34,2, 4.5)

and for 7"N¢

, we get
TNC = —yo?| d"1d'z{Y1241'112+(A?Y12))~12+2(VTY12)V1'112}- (4.6)

We may replace the second term of the right hand side of Eq. (4.6) by the first term.
Namely, acting on both sides of Eqs (4.3) and (4.4) with the operator 4% (notice that 4%
does not affect the factor {f? exp N,,—1} in (4.4), we get

ATY;, = {f122 exp [N (ri2)]—1} {4,412+ 0 f d"s(A‘les) [As2+ Y32+ Naa(rs)]}.  (4.7)
From Eq. (4.7), we obtain':
j d"ld"z(A?le) [A12+ Nga(ri2)] = fdr1d'z{f122 €xXp [Nss(rIZ)]—l}
X (41412) [A124 Naa(r12)1+ @ § dridrydrey{f7; exp [Ny(ri2)]—1}
X (45Y13) [As2+ Yaz + Nua(rs2)] [A124+ Nyy(ry5)] = Id"ld"zleA 1412
+Qjd"xd"zd*'s(Ame)Y;zUaz‘l' Y3z +Naa(rsz)] = [ dridr,Y,,4,2,,
+ § dridry(A3Y,3)Ngy(rs5), (4.8)
and conclude that
§dridry(47Y5)A,; = fdridr,Y,,4,4,,. 4.9
Consequently, we may write (4.6):
TN = —2v0? [ dridr,{Y 154,45+ 112dA, o /dr ), (4.10)
where the function y is defined by
VY2 = X12fars 4.11)

where £,; = (ry—r3)/r,.
The equation for y, obtained analogically as Eq. (4.7), is

X12 = X(0)+{f122 €Xp [A,ss(rIZ)]_ I}Q ,f d’s(?21?31)113[)~32+ Y32+Ndd(r32)], 4.12)

where
X(o) = {f122 €Xp [Nss(rIZ)] _l}d'{u/d"lz- (4.13)
If for Y we use expression (4.4), we may write Eq. (4.10) in the form:
NG = 02 I d’ld"z{[fxzz eXp [Nss("u)] —1][4,(- I%Z/V)"‘(_zv)Ndd(rlZ)A 1412]

+(—2v) [112_)((102)]‘1}»12/(1"12}- (4.14)

! Here, we follow Ref. |22].
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For the sake of comparison with the results of Fantoni and Rosati, we write Eq.
(4.14) as

NG = HNC4NC (4.15)

HNC =0 jd"ld"z[flz exp [ No(ri2)] - t] [Al("‘l 2V)+(—=2V)Nyy(r(3)4,4,2], (4.16)

Ty © = 2vo® Jd"1d'2d'3(7’217‘31)112X13[432+ Y3z + Nyg(r32)] 4.17)

In writing expression (4.17), we have used Eq. (4.12).

5. PY approximation of t

The PY approximation was originally introduced by Percus and Yevick [13] in classical
statistical mechanics. It is well known (see, e.g., [17]) that in the study of hard sphere
gases, the PY approximation yields better results than the HNC approximation. The
original PY approximation has been generalized to fermion systems by Campani, Rosati,

wwl 2.8,

+,,

= Nasl1i) =% = N

Fig. 11. Result for 9F¥

and Fantoni [12], whose results imply that also in fermion systems the PY approximation
might be better than the HNC approximation (at least for certain types of two-body
interaction).

The PY approximation may be obtained from the HNC approximation, by dis-
regarding the parallel connection of chains. In this way, from yi" and y5NC, we obtain
for y2¥ and 7fY the expressions shown in Fig. 11. Hence, we have:

Y=g +ye = de"z{[hlz +fENG(ry2)

+1 AN ()1 (- B+ 5 (- —2v) [hy 2 +f BN (r2)ING (1 2)As2}- (5.1)
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The functions NY and Ny represent the PY chains. They differ from the correspond-
ing HNC functions in the way in which the links of the chains are constructed. Namely,
the PY links are defined by equations linearized in the chain functions. In particular, in
place of Eqgs (4.3), (4.4), we have:

Ni(ryz) = o §drsY{3 Az + Yau + Noa(rs2)], (5.2
13 = [ HBNG ) A+ hNEi (). (5.3)
With expression (5.1), we get
= o[ drdDY™ = L (=2v)0® [ drydr,{A,, AT VTS +f LN (ri)NEY (r10)]
+[ Y NS (1 2NG(r12)] 412124+ 2(V1 A VI Vi3 +f NG (r )N (ry )]
zfsz (F1z)241;~12}- (5.4
To simplify this expression, we need the equation
AYYY = [hy 2 +faNW(r12)]81 212+ By § drs(ATYTY) [Aay + Y5 + NEY(r3,)], (5.5)

which follows from Egs (5.2) and (5.3). With the help of Eq. (5.5) we may calculate the
left hand side of Eq. (4.8) with the functions Y*Y, and Nj;. Proceeding similarly as in
Eq. (4.8) we conclude that

jdrldrzAuA (Y1 +f LN (i) NG (ry5)]

= {dr.dr,[ Y] Y +fGNY e (r12)NGX(r12)]4 1415 (5.6)

Consequently, we have

™Y = —2vo? Idl‘ldl’z{[ > +fBNR(r2)Na (ri2)]4, 44,

+ (Vi A VLYY +f LN (NG ()] + 2 N ()2 4,435}, (5.7
With the help of (5.3), we may write expression (5.7) in the form:
P = @2 [ drydr{[hy; +f5EN(r12)] [A1(=B2/v)+ (= 2V)Nyy(r;2)4, 4,

+ (=20 3dAs/dr )+ 5 fNG () d,(— ,)}, (5.8)

where the function n is defined by
VING(ri2) = ni3P21, (5.9)

and satifies the equation
Mz = o [ dry(Fairas) {{hs +15NG (r13)]dAsldrys+ hasni3} {As2+ Y35 + Nag(r3n)},

(5.10)
which one may obtain by acting on both sides of Egs (5.2) and (5.3) with the operator V9.
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PY in an alternative form:

With the help of (5.3), we may also write 7
Y = ¢? § drydry{[hy, +f122fo(r12)] [4,(= 132+ (—2VING (r12)4 141,
+(—2")’11_21()(11"2(—X(loz)PY)d}uz/d"u] +%f122N:sY("12)2A 1(— lfz/v)}, (5.11)

where the function y*¥ is defined by

ViYD: = 153fans (5.12)
and stisfies the equation (which follows from (5.2) and (5.3)):
25 = 0 +hyse ] d"s(;21;’31)xl1)§['132+ Y§§+N§§(r32)], (5.13)
where
X(loz)PY = [h12 +f122Nss("12)]d'{12/d"12- (5.14)

Eq. (5.11) may be written as:

Y = 1 Ty, (5.15)

TgY = 92 I dridry{[hy, +f122N:sY(r12)] [Al(_I%Z/V)+(_2V)N:dY(r12)A1)'12]
+%f122N:sY(7'12)241(—lfz/v)}, (5.16)

15 = —2v0° [ drydrydry(raF3 xS Xi3LAsz+ Va3 + Naa (r30)]- (5-17)

6. Discussion

Our result for t", Eq. (3.3), differs from the expression for 7" given by Fantoni
and Rosati in [10}. Namely, in place of the factor 4, ,h, 5 in our expression (3.3), a factor
fifL is printed in Eq. (A.4) of [10]. As a consequence, the expression for t" of [10]
gives the term linear in % with the wrong sign.

~ Our result for t"~¢ differs from the expression for 7" of Fantoni and Rosati (Eqs (4),
(5), and (6) of [14]), whose expression for 757 differs from our expression (4.17) by the
presence of the function y,, in place of ¥{3. This incorrect form of t5C of [14] leads
to erroneous terms of third and higher orders in 4 in the PS expansion of 7NC.

Recently, Fantoni and Rosati [22] have corrected their expression for z™~C, and
have shown its equivalence to the expression for z""C given by us in [21]. Consequently,
the whole problem of t"NC is now completely clarified (as well as that of t"; the expression
for t"™°, when properly simplified to the case of the CH approximation, leads to our
Eq. (3.3)).

The expression for "NC, given in [21], contains two functions y,, and g, = 47Y,,.
As shown in Section 4, we may eliminate y with the help of identity (4.9). By doing it,
we have obtained expressions for " which are simpler that the otherwise correct
expression given in [21].



760

The simplest expressions for t""C are given in (4.10) and (4.14). Effectively, they
involve only one-dimensional integration (over r;,). Of course, first one has to solve
the integral equation (4.12) for y.

The expression for 7'NC, given in Egs (4.15-17), appears much more complicated
because 15 ¢ effectively involves three-dimensional integration (over r,,, r;3, and r,3).
Of course, if we replace y,5 in (4.17) by »{%, the resulting approximate expression for
5N (which is exact up to terms ~#A?) becomes useful because it does not require solving
the integral equation for .

Obviously, the easiest procedure is to neglect 75C altogether, i.e., to use the approxi-
mation y ~ 3‘® in (4.14). In this approximation, only the part of 7"NC linear in 4 is exactly
reproduced. In this approximation, used by Lantto and Siemens [18] in determining the
optimal correlation function, the expression for t""C of [14] is correct.

These approximations, in which some terms in t"C of order in 4 higher than linear
or quadratic are neglected, are certainly justified at not too high densities. Then, however,
one might simply use one or two first terms of the PS expansion. On the other hand, one
should be careful with these approximations at higher densities.

Our expressions for t in the PY approximation are slightly more complicated than in
the HNC approximation. Eq. (5.8) appears to be the simplest expression for t**. So
far, no explicit expressions for 7°* have been published in the literature.

The results of this paper are presently applied in studying the spin-isospin stability
of dense nuclear matter. The results obtained so far with the Iwamoto-Yamada [4-5]
cluster expansion method indicate a possible spin-isospin instability of nuclear matter
with pure hard core interaction. However, this occurs at very high density where the
convergence of the cluster expansion is doubtful [19-20]. We expect to settle the problem
of the possible spin-isospin instability with the help of the HNC method. Now, in case
of pure hard core interaction, the total energy is the kinetic energy. Furthermore, to settle
the problem of spin-isospin instability, we need comparatively high calculational accuracy.
This is the reason for our careful examination of the expression for t which in itself forms
only a small fraction of the total kinetic energy.

The authors express their gratitude to Professor S. Fantoni for his comments con-
cerning Refs [10] and [14], and to Professors S. Fantoni and S. Rosati for sending in
Ref. [22] before publication.
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