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We discuss thermodynamical quantities related with cosmological event horizons
and show that they possess some uncomfortable properties.

Recently Hawking [1-3] proposed to apply thermodynamical notions to describe
stationary black holes. It turns out that one can assign to a stationary black hole a tempera-
ture and entropy and relate them to the surface gravity and area of the black hole event
horizon. Gibbons and Hawking [4] extended that close connection between event horizons
and thermodynamics, found in the case of black holes, to cosmological models with a posi-
tive (repulsive) cosmological constant. They analyzed de Sitter model and Schwarzschild—de
Sitter space-time and have shown that an observer in these models will have an event
horizon whose area can be interpreted as the entropy or lack of information of the observer
about the regions which he cannot see. With the cosmological event horizon one can
associate a surface gravity which appears in extended first law of event horizons in a man-
ner similar to that in which temperature appears in the first law of thermodynamics.

Here we would like to concentrate on the Schwarzschild —de Sitter model and show
that the entropy connected with the cosmological event horizon possesses some uncom-
fortable properties. We take the metric of the Schwarzschild—de Sitter space-time in its
standard form
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therefore, positions of horizons are given by positive roots of the cubic equation
3r—6M—Ar3 = 0. )]

From observations it is known that 4 < 10~*% cm~2 so we can treat the A term as a per-
turbation. Following notation used by Gibbons and Hawking let r, and r,, denote corre-
spondingly the black hole and cosmological event horizons, then keeping only the leading
terms in A we get

r, = 2M+1QM), ®)

e
Py = X— . 4

The area of the black hole horizon 4y and the cosmological event horizon A¢ are there-
fore
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One can define black hole and cosmological surface gravities xpy and k¢ by
Ka;hkb = Kkn (7)

on the horizon, where k, is the unique time-like Killing vector which is null on both hori-
zons. In our case the surface gravities are

Kgy = '—1" 1"‘ _/1_ 13M2 N (8)
4M 3

KC=\/-;1(1.—2M\/§-). ©)

Area and surface gravity of the horizon are related with entropy and temperature by simple
relations

= —1~ A, T =4k, 10)
32z

where we adopt units in which G = ¢ = h = 8rnk = 1. The entropy of the black hole is
interpreted as a measure of lack of information on state of matter enclosed by the event
horizon. According to Gibbons and Hawking, entropy related with the cosmological
horizon measures lack of information of the observer about the regions which he can-

not see.
It was noticed by Kundt [5] that even in adiabatic collapse of spherically symmetric
distribution of matter entropy of the configuration increases by a factor ~10'® when



765

black hole forms. Bekenstein [6] argues that this gain in entropy of black hole could be
understood in the framework of relation between thermodynamics and information theory.
On the other hand Hawking [7, 8] has shown that even a static black hole is a source of
thermal radiation of temperature given by (10) implying that its entropy is proportional
to the area of the horizon and establishing its real thermodynamical meaning.

Let us first notice that entropy and temperature of the cosmological horizon does
not satisfy the third law of thermodynamics since when A —» 0, T — 0 but § — co0. It was
noticed by Davies [9] that extreme Kerr-Newman black holes also violate the third law
of thermodynamics but in this case the zero point entropy is finite and it has clear physical
meaning being a measure of number of different microscopic configurations which could
form the same extreme Kerr-Newman black hole. How one should interpret violation
of the third law of thermodynamics in the cosmological case is not clear. Even the de Sitter
model has this property and since in this case in the limit A — 0, S — o0 and one recovers
the complete Minkowski space. This seems to contradict the interpretation of entropy
as a measure of lack of information of the observer about the regions which he cannot
see. The stationary observer in the Minkowski space can see all of it.

Here one should add a word of caution. In general, the procedure of taking limits
on certain number of parameters which appear in the metric does not lead to a unique
space-time. However using the standard de Sitter line element in the spherical coordi-
nates and taking the limit A4 — 0, without changing coordinates, leads globally to Min-
kowski space.

Calculating temperature and entropy for the future null boundary #* of the Minkowski
space we get x = 0 so temperature is zero but surface area is infinite so from (10) it follows
that the entropy is infinite too. According to the standard interpretation [10] _#* is the
absolute horizon for all physical observers and there is nothing left beyond.

It is clear from these examples that the interpretation of the surface area of the ob-
servers horizon as a measure of lack of information about the region which he cannot see
is questionable. It is also doubtful if the thermodynamical quantities could be meaning-
fully related with cosmological horizons.
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