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The transverse momentum distribution of the partons is first studied in perturbative
QCD in the leading logarithms approximation. The connection of the parton kt with scaling
violation is clarified. The inclusive cross sections for deep inelastic scattering and lepton pair
production are then investigated in an extended leading logarithms approximation in which
the relevant gluons are allowed to be emitted at arbitrary angles. In that way we obtain general
expressions for the inclusive distributions that are valid for any detected transverse momenta
gt. The result for lepton-pair production is in a nonfactorizable form. However, upon
integration over gr it leads to do/dM? given by the factorizable Drell-Yan formula. For
large g% it also has the usual parton model interpretation. Phenomenological implication
of our results is also discussed.

1. Introduction

There has recently been some success in the experimental verification of the predictions
of quantum chromodynamics [1] (QCD) in leptoproduction [2]. Thus the candidacy of
QCD as a realistic theory of strong interactions has now a firmer basis than what theoret-
ical appeal alone can provide. However, it is only the scaling violation of the total cross
section in deep inelastic scattering (DIS) that has been tested. For such processes there are
the powerful theoretical tools of operator product expansion and renormalization group
analysis, which are not applicable to hadron-hadron collisions in general, or to the study
of specific final states of any reaction in particular. Attention has therefore been turned
to perturbation calculations in QCD and to the study of jets and inclusive reactions [3].
Initially, calculations were done for low-order diagrams, e. g. in e*e~ annihilation [4],
and lepton-pair product'on (LPP) [5]. More recently, extensions to higher orders have
been considered [6, 7). In almost all of these investigations it is the leading log (LL)
approximation [8, 9] (i. e. leading in log Q?) that has been used to make the calculations
tractable. While the LL approximation is adequate for the study of cross sections integrated
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over the transverse momentum gy of the detected particle, it is, however, necessary to go
beyond LL for the calculation of g distribution. The study of such inclusive cross sections
for arbitrary g is the main concern of this paper.

The purpose of our work is twofold. First, we consider the parton distribution
function G(x, k¢) as a function of the parton transverse momentum k-, and relate it to
the solution of the renormalization group equation. We shall describe G(x, k¢) in perturba-
tive QCD to infinite order but in LL approximation. Secondly, we consider inclusive cross
sections for both DIS and LPP. Specifically, in the case of LPP in particular, we seek
a general expression for the inclusive distribution that is valid for arbitrary values of the
transversc momentum ¢¢ of the dileptons. Complications arise because the generality of
the range of g; precludes the exclusive application either the LL or the hard-scattering
approximations. The demand for a smooth transition between small and large values of
gy introduces a counting problem related to allowing certain gluon emission angles to
be arbitrary. Our approximation is still in the leading order of log Q2, but for the r-th
moment of g7, say, our result will be accurate to order Q*"(log Q)" ! for an n-th order
diagram. In that sense our considerations constitute an improvement over the usual LL
approximation {7].

The expression we obtain for the inclusive distribution of LPP is not of the factorizable
form [10]. However, upon integration it reduces to the usual Drell-Yan factorizable
formula {11] for do/dM?. Moreover, for large g; reactions our general distribution can
also be simplified to the convolution of a product of universal distributions and hard-
-scattering cross sections. Its extrapolation to smaller values of ¢y is, however, not valid.

We organize this paper in the following way. In Section 2 we discuss G(x, kq) in
perturbative QCD and relate it to the solution of the evolution equation of Altarelli and
Parisi {12]. We then consider DIS in Section 3 and derive the inclusive cross sections for
the production of a quark, which can be defined experimentally as a jet. The result obtained
there is then extended in Section 4 to LPP where two initial hadrons are involved. A count-
ing problem is encountered and solved there. Qur discussions in Section 3 and 4 will be for
the simple case where gluons appear only as emitted partons (i. e. rungs in a ladder, for
example). This is amended in Section 5 where both singlet and nonsinglet components
of the distribution functions are taken into account. Finally, in Section 6 we give the
concluding remarks.

2. Renormalization group, leading logarithms and parton k;

In this section we describe the properties of the quark distribution G(x, k) as derived
from the LL calculations. Let us start from the connection between LL and RG approaches.

The standard technique for discussing DIS has been the renormalization group and
operator product expansion [1]. Results of this approach are usually presented in terms
of the moments of the parton distributions. For the non-singlet part of the moments they
read

oy \A¥/27
My(t) = My(0) (o—(—(l—}) , 2.0
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where
2

Q
t = log = . .
1+o obt 02 22)

My(t) = } NG(x; Hdx, a(t) =
o]

Ay is proportional to the anomalous dimension of the relevant operator and 4 is a constant.
a, is the “coupling constant” (a, = g&/4n) renormalized at QZ. For simplicity we discuss
here the quark distributions only leaving the extension to include glouns to Section 5.

Equation (2.1) can be used to determine G(x;t) by an inversion formula. It is also
used by Altarelli and Parisi to derive equation which governs the ¢ evolution of G, thereby
specifying G(x;#) itself once the initial conditions are given [I12]. The master equation of
Altarelli and Parisi provides a simple physical interpretation of the RG result (2.1) as being
due to the emission of an infinite number of gluons.

Alternatively, we can expand (2.1) in « and infer from it the contributions coming
from the emission of any fixed number of gluons. In view of the ¢ dependence of a(¢) in
(2.1) we get

o

My() = My(0) { 1+ Z — U@ dr] N} (2.3)

m=1

The anomalous dimension Ay turns out to be the N-th moment of the Altarelli-Parisi
probability function P(z) for finding a quark with a momentum fraction z in a parent
quark.

{ L+z2

[TEE A Z)}’

where C,(R) is the quadratic Casimir operator evaluated in the representation R for the
quarks. The subscript + denotes regularization of the singularity at z = 1 [12]. By inverting
(2.3) we obtain

N = ; ZNP(z)dz, P(z) = C,(R):
i)

an

G(x; 1) = Go(x)+ Z —~ U ?z(i) dr] P,(x), 2.4)

n=1

where
P(x) = [ dyGo(y) [_Ul dz;P(z)]o(x—y Hl z;)

and Go(x) = G(x;0) contains all low @? hadronic effects incalculable in perturbation
theory.

We want to stress that the above discussion, which is the essence of the RG approach,
makes no reference to the transverse momentum distribution. In all formulas & is integrated
over and it is difficult to trace the eifect of k¢ on the final answer. In order to elucidate the
role of parton transverse momentum we turn to the LL calculation which was proposed
a long time ago [8, 9]. It has been shown that in Coulomb or planar gauge the important
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n-th order skeleton diagram, for DIS, is the ladder diagram of Fig. 1 [6, 7, 9]. If the contribu~
tion of this diagram to the total cross section for the absorption of the virtual photon is
expressed in the parton language, it reads

0.(xp; Q%) = deGn(x§ )0 o(Xp)l (2.5)
QL\-‘W“
X, K,
x"'1 kn—1
k1

Fig. 1. Skeleton ladder diagram with solid line being quark or antiquark, dashed line gluon, and wavy
line photon

where
QZ
Gxit) =~ | 2o [ g ) (2.6)
i) =—|-= | 77 | Kal®), .
¥ n!{ 2n J k%‘l (
m being the quark mass, and
n i n ) 1+22
Ky (x) = § [ 1 dz:K(z)]o(x~ Hl z), K(z) = C,(R) =7 2.7
i=1 i= -
and
2ne? Xp 0*
X = 1—— ’ = . .
Tolxs)lx xmy d ( x) e 2M v (2.8)

The leading log Q2 contribution to G, comes from the region of ordered ky’s [13]

m? < ki < .. <k% < Q? (2.9)

i
and this is the reason for the appearance of - in (2.6). In this approximation, the longi-
n! :

tudinal and transverse momentum components decouple. The longitudinal degrees of
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freedom give K,(x) while the transverse ones factorize giving rise to exponentional-like
series!.

Tt was shown [9] that all other diagrams which give leading contributions can be
obtained from the one in Fig. 1 by enriching it with all possible vertex and mass insertions
as illustrated in Fig. 2. All required Green functions are themselves calculated in the LL.

Fig. 2. Generalized ladder diagram with bubbles representing vertex corrections or mass insertions

All these insertions do not change the basic structure of (2.5) except that G, is modified to

t

2 2=
G(x;1) = ! [ j a(kr) %T] P(x). (2.10)
0

ntl ) 2n K2

The important difference between (2.6) and (2.10) is that «, is replaced by

a(k?) = %o

ket
1+ dab log -
m

and infrared divergences are regularized?®3.

I However, the longitudinal degrees of freedom factorize only after taking moments in x.

2 We mention that the effect of insertions on the transverse degrees of freedom (i. e. the appearance
of a(k?)) is well understood [9, 14]. On the other hand, it is not completely clear what set of diagrams give
the proper regularization of the IR divergences in all orders. The answer to this question seems to depend
on the method one chooses to investigate the problem [3, 21].

3 The reason for appearance in (2.10) of the k% instead of the mass of the virtual quark, ¢, say, is
that in LL t,~ k}, [9, 141
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Equation (2.10) establishes the equivalence of the LL and RG approaches to DIS.
This fact was noticed independently by many authors [6, 7, 16]. From (2.10) we see that
the dummy variable 7 used in (2.3) and (2.4) has a simple interpretation, namely

2
T = log——T—
m?

The advantage of LL calculations is that they provide much more physical insight into the
mechanism of the generation of RG logarithms as we shall discuss below.
Extraction of the kr distribution is now obvious. We write

G(x, kr) = Go(x, ky)+ Zl Gu(x, k).

Equations (2.9) and (2.10) suggest the nested integral form for G,:

kt? krn-12

G 1 “(kr) dk%n— 1 OC(k’%n--z) dk%n—Z a(k%'n—Z)
n(xa kT) n( ) 2 2 T2
2n kt Tn—1 2n Kn-2 2n
kra? 2 2
k1) dk
. w(kiy) N (2.11)
2 ki,
m?

The connection with Q2 dependent distribution given in (2.4) is then consistent with
QZ
G(x; Q%) = [ G(x, ky)dk2. (2.12)
m?

Equation (2.12) is of central importance for our latter considerations.
G,(x, k1) can be rewritten as

a(kd) 1 [1

kZ n—1
log{ 1+agblog ~X}| . 2.13
2nkZ (n—1)!| 2nb °g< %0008 7 >] (2-13)

Gn(x’ kT) = Pn( )

Thus G(x, kq) is a slowly decreasing function of kg at large kq, a behaviour which results
in a d vergent integral over k7. It is precisely this divergence which gives the Q2 dependence
of G(x;t). In other words, scaling violation in DIS is a manifestation of the fact that the
transverse momenta of the partons are not limited. In that connection a direct phenom-
enological investigation of the k1 dependence may be more revealing than the Q2 depend-
ence of the integrated cross section.

Emergence of leading logarithms can be discussed in terms of integrals over either &y
or 8, the angle of the gluon momentum relative to the incident hadron. In terms of § a
logarithm arises from each integration, over cos 0, of a term behaving as (E-P cos 6)~!
at small 0. In that sense one associates leading logarithms with collinear or narrow gluons.
In terms of ky, on the other hand, logarithms come from the large k; (relative to the
quark mass) part of the integral. That range can be large and yet still consistent with 8
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small when Q2 is large. It corresponds to k7 < & Q? for arbitrarily small (but fixed when
Q? — o0) &. In either language we shall regard LL as arising from gluons emitted in a nar-
row cone.

We remark that Lam and Yan [17] have first considered the ky distribution in QCD.
However, their study is based on a conjectured form for a generalized Altarelli-Parisi’s
evolution equation, and is therefore somewhat different from ours. ‘

As a final note on G(x, ky) we emphasize that while the LL result given in (2.11)
is adequate for calculating o, (always in the large Q2% limit), it is definitely inadequate
for computing the moments of k3. To illustrate the point, consider a typical form for G
expressed in the 6 variable

G(H) = —A— +B. (2.14)
1—cos 8
In the LL approximation the constant term is ignored; indeed, upon integration over
the phase space, i.e. dcos 8, its contribution is negligible compared to the narrow cone
divergence. However in computing (k%>, the integral must be weighted by sin2 0, and
the importance of the last term is self-evident.

Thus for an inclusive distribution that is reliable for calculating o, as well as any
moment of the transverse momentum, we must go beyond LL. It turns out that for the
latter to be computed accurately up to its own LL approximation it is only necessary
to allow the gluon immediately adjacent to the photon vertex to be emitted at an arbitrary
angle. We shall call this the extended leading log approximation. Its adequacy is due to
the order of kr; in (2.9) and its consequence is that for a given n-th order amplitude M,
corresponding to Fig. 1, one has

[k31/[Kk%- ;] = O(log 'Q*/m?), (2.15)
where
[k3] = [do, M, i*k3, i=1,..,n; j=1,..,i-1; (2.16)

@, being the phase space for »n gluons.
In the following sections we shall discuss the procedure for calculating the inclusive
cross sections in extended LL approximation.

3. Deep inelastic scattering

It is both instructive and meaningful to consider the inclusive cross section, f°d3a/df?3,
for the production of a quark with momentum f* in DIS. We do this even though quark
is not usually regarded as a detectable particle. However, appropriate jet analyses can in
principle specify f As we have already stated, we shall consider skeleton diagrams only.
Our aim is to generalize the ladder diagram (Fig. 1) in which all gluon corrections are
narrow, in such a way that that the innermost gluon {(next to the photon vertices) can
be emitted at an arbitrary angle. Apart from the phenomenological utility of the result,
the investigation is also a prelude to our discussion on LPP in the next section.
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The total cross section for virtual photon in DIS is, in the LL approximation,
¢ = J dxG(x; )oo(xy)l, 3.1

where the quantities in the integrand are given in (2.4) and (2.8). For later convenience,
we represent (3.1) by a simplified diagram shown in Fig. 3, where the black dot denotes
G(x; 1) and stands for a sum over n of all ladder diagrams depicted in Fig. 1. We stress

Fig. 3. Graphical representation of Eq. (3.1). Double line stands for hadron; black dot represents G(x; t)

that the graph in Fig. 3 represents probability, not an amplitude, and that only narrow
gluon corrections are included in the black dot. Schematically, what we do now is to
extract a gluon from the black dot and to liberate it from the narrow cone restriction, as
indicated in Fig. 4.

Fig. 4. Schematic representation of the procedure to extract a narrow gluon emission next to the photon
vertex and then to generalize it to arbitrary angle

Analytically, it is more convenient to begin with o, for a fixed n-gluon process.
From (2.5) and (2.6) we write

1
o

1 n
0x(xi ) = f XK — (—2; :) ZCNI (32)

Xb
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By 64(xy)lx, We denote the elementary (no gluon corrections) cross section for the absorption
of the virtual photon by a quark with the momentum fraction x,.
To extract the n-th gluon, we need to factorize the integrals over x, and k2, From

(2.7) we have
1

Kn(xn) = J ix"“ ! Kn— l(xn— I)K(xn/xn— 1)5 (3'3)
n—1

Xn

while for k%, we observe that
Q2
1 —_— -
= j(n_l)! [log kZ,/m*T* " k1, 2dk2,. (3.4)
Substituting (3.3) and (3.4) into (3.2), we obtain
1

1 a \" 7! - .
O.n(xb; t) = fdxn lKn 1( n— 1) '(_——*1_)_’ (——g> j‘ti IdGI{len-z’ (3'3)

Xn [ 5]

where
= log k},/m* = log ffim?,

o’ (xy; Ols,., = 1 K( = )ao("‘b)lx dxyr, dii,.
" 2n Xy n=1 "
do"|,, _, denotes now the differential cross section, for the scattering of y* off the
(n—1)-th quark with the bremsstrahlung of one gluon, calculated in the narrow cone
only. o, means integration over the two-body final state (f; k). Summing (3.5) over n
we obtain in LL

0 1
0—0o= Y 0,= | dx | G(x; t)dot,. (3.6)
n=1 Xb [+ 23
Finally, by allowing the quark production to be at any angle, the more general expression
for the inclusive cross section is

3f f dxG(x; 1)f° — f (3.7)

d
where f° a‘:—fl is exact (not LL) cross section for y'q — qg. Equation (3.7) is the main

result of this section. It is consistent with LL but generalized to allow one gluon to be
emitted at arbitrary angle without double counting in a sense to be described below.

Equation (3.7) is almost the same as what one would naively expect from the parton
model considerations. However there is one very important difference, which is closely
related to the underlying LL dynamics: namely, the parton distribution is controlled, in
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the sense of scaling violation, by the outgoing quark transverse momentum rather than
by Q2. This difference is clearly seen in Eq. (3.6) which is not of the parton model type.
The reason for this is the following. As was.argued in Section 2 we have to go beyond
the leading logarithms if we want to calculate the ky moments. In other words the universal
distribution function G(x, k1) is not sufficient and it must be supplemented by a non-
universal piece coming from the last loop. Nevertheless the universal part is restored
by going backwards one step in the parton hierarchy. But the price we must
pay is the loss of the simple parton picture. Now the transverse momenta in the final
state are not decoupled from other degrees of freedom and cannot be independently inte-
grated over to give Q? dependent initial density. Indeed, G(x 7) cannot be replaced by
G(x; t) and taken in front of the d¢, integration when do" is replaced by do$*" in (3.6).
Otherwise, upon integration over ki one would get an extra unwanted log Q2 factor,
arising from double counting the scaling violation effect.

One recovers the parton model interpretation at the level of differential cross sections
(3.7), but, as was mentioned above, parton distributions depend parametrically, in the sense
of scaling violation, on f;. Technical reason for this is that in LL &k¢’s of the emitted gluons
are ordered. The Q% dependence comes from the upper limit on the largest k; in a ladder.
Now, since we have moved one step backwards, in the parton hierarchy, the upper limit
for the k;’s of all other gluons becomes kq, = fr. This variable should be regarded as
the parameter controlling scaling violations in inclusive processes.

The reader may have noticed peculiarity in our notation, namely the use of semi-
colons in the G functions. It is because we want to avoid any possible confusions of the
usage of k; (1) as a parameter on which the x distributions depend, in a sense of scaling
violation, and (2) as an actual transverse momentum of a quark with longitudinal mo-
mentum fraction x. In the former case we write G(x; t) or G(x; k) while in the latter we
use G(x, ky). The connection between the two is as in (2.12).

kr? 2

_ 5 , k
G(x; ) = | dkfG(x,kp), t=log—%. (3.8)
m2 m

Therefore 7 in (3.6) must not be regarded as the logarithm of the transverse momentum
of the quark whose momentum fraction is x.

It is easily seen from (2.11) that G(x;¢) satisfies the following integral equation
(including generalized ladders)

1 Q2
G(x: 1) = Go(x)+ de ( ) f (k) dkt e (3.9)
y y ki 2=n

As for x and ky distribution, it can be inferred from (3.9) with the help of (3.8) yielding
] kt2

1 a(k |
Gex, kr) = Golx, kn)+ 5- % J ; PC) j AKEG(y. k). (3.10)
T

X m
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We can recover the RG results by taking the x moments of (3.9). Then we obtain an integral
equation for M™(t):

Ql
. " 1 [ o(k?
MY = MNO)+ > A" (/JT) MND)dk2, (3.11)
hd o T

m?
which is equivalent to the Altarelli-Parisi differential equation [12]

dmM™(¢ ) .
—~,.(_) = cL)A""’M’”(z). (3.12)
dt 2n
In the spirit of graphical representation, as in Figs 3 and 4, (3.9) is shown in Fig. 5,
where the small open circle denotes Gy(x). This will prove useful in the next section.

o

Fig. 5. Graphical representation of the integral equation, (3.9), for G(x; t). The open circle represents Go(x)

So far we have ignored infrared divergences. In particular we have not replaced
K(z) by P(z) for the innermost gluon emission; consequently the integration over &, in
(3.7) is infrared divergent. This divergence is not important when calculating the moments
of ky. When one wants to obtain total cross sections, however, the contributions from
virtual gluons (i.e. “ivy diagrams™ [3]) must be added in order to get meaningful result.

Finally, let us also comment on the generalized ladders, which must be considered
in order to get complete answer. As we have mentioned in Section 2, the inclusion of
vertex corrections and mass insertions have the effect of replacing o, by a(k%) and K(z)
by P(z) in formulas for total cross sections. We assume that the effect on the inclusive
distributions is the same.

4. Lepton pair production

To apply the formalism developed in Section 3 to the LPP, we start with the LL
result for the total cross section for fixed mass M of the lepton pair [7]

dULL

. _dog |
yIYE = 1 dxdXG(x; NG(x; t) Vel 4.1)

XX
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where ¢t = log M?/m?, and do,/dM ?|,; is the elementary cross section (i.e. no gluon correc-
tions) for the annihilation of q(x) and q(x) into y. All narrow gluon corrections are included
in the G functions. Equation (4.1) is depicted in Fig. 6.

i

Fig. 6. Graphical representation of the Drell-Yan formula in leading logarithms

Now let us exhibit the innermost gluons explicitly, as shown graphically in Fig. 7.
We repeat the steps leading from (3.1) to (3.7). All details of the calculation are the same
as before. The main difference is that we now have to do it for both q and q. The result is

do [ pxaz{e 06 G 65 20
FIYE J X x{ o) o(x) z + o(x)f (x; 1-') -
LL ” LL
+Go(%) JG(x 1) IR _+j 2 } (4.2)
xXx ¢3 xXx

> : > +
Fig. 7. Application of Fig. 5 to Fig. 6. The gluons are depicted to be in narrow cones

Uu_(x) is, calculated in LL, the cross section for qq annihilation with bremsstrahlung of
a gluon from a left (right) moving parton®. 05" is an analogous cross section but for the
bremsstrahlung of two gluons from both partons. In terms of Feynman diagrams (in the
Coulomb or planar gauge) we write

2
Oy, & IMLl29 Oig X IMRIZ, 6, o [ Mpgl”, (4.3)

4 Note that this statement is meaningful only in LL and in the Coulomb (or planar) gauge.
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where the three M-amplitudes are shown, respectively, in Fig. 8 (a, b, ¢). The LL approxi-
mations of the ¢’s are for the case where all the gluons are emitted in narrow cones. It
is seen from (4.2) or Fig. 7 that because there are two partons in the initial state, conse-

a b c

Fig. 8. Elementary qq annihilation amplitudes: (a) My, (b) Mg, (¢) Mg

quently two ladders, we are led to consider a process involving two emitted gluons as well
as the bremsstrahlung of one gluon only.

To proceed, we allow all inner gluons to be emitted at arbitrary angles and replace o™
in (4.3) by the exact Born cross sections. However, the latter are not merely the ones
given in (4.3) because of the existence of interference terms that are negligible in LL. Such
terms must be included even in Coulomb gauge in extended LL. The problem is to guarantee
no double counting for arbitrary values of gy.

To that end we start from a set of all relevant Feynman diagrams, reorganize it accord-
ing to (4.2), and read off the appropriate matrix elements for og, and g,. Since pertur-
bative QCD does not apply to the hadronic bound state problem, we shall factor out the
G, function and ignore them temporarily. For the moment, initial state refers to quarks.
The matrix element for the emission of k£ gluons, in a ladder approximation, has the
structure

M,= Y D, 4.4
m+n=k
m,n>:0

where D,, , is the amplitude for emission of m gluons from a right, and n from a left,
moving parton, shown in Fig. 9. Let us denote

A= IMy* = A0+ 47, (4.5)

Fig. 9. Annihilation amplitude with £k = m+n gluons
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where A{" contains all diagonal terms and A{ all possible interference terms. In LL the
latter is negligible and the former can be simplified. For ease of generalization later, we
write A" in the following form (still in LL):

k-2

AP = ooV Fyo i+ FyyVigg+ Z'o F(ViooVI)Fx_n- 2, (4.6)

where we have introduced thé notation
|D0,kl2 = 0oV Fi

with ¥, which includes all factors connected with the innermost rung, written explicitly.
F,,_, denotes the remaining ladder having k£ —1 rungs. The ordering in the last term of (4.6)
emphasizes the double ladder structure of the amplitude, n+1 rungs on one side of the
photon vertex, and k—n—1 on the other. All factor connected with the photon are lumped
in o,. If we integrate over the phase space and sum over k, we recover (4.2). Extended LL
is then simply to allow the gluon in ¥, to be emitted at any angle.

Now we turn to the interference term A{? which we rewrite as follows

(2 * .
AP =Y Y Du.Dyn 4.7)
mt+n=k m'+tn' =k
=
Wn

To select leading contribution from (4.7), we retain only terms whose contribution to the
r-th moment of g7 is of order M?* log *~*(M?). The log *~*(M?3) factor arises from k—1
narrow gluons, while M*" comes from the large angle part of a gluon closest to the photon
vertex, but not already included in 4{". The latter should clearly include the crossed
terms between the two diagrams in Fig. 8(a) and (b). Explicit calculation of the diagrams
in Fig. 10 indeed yields results of order M?" to the r-th moment of ¢;. In those diagrams

Fig. 10. One-gluon crossed diagrams with the crosses indicating the locations of the photon vertices

the crosses denote the location of the photon vertices. It is easy to see that any other
crossed diagrams would involve either (1) more than one gluon line going across the
photon vertices, as illustrated in Fig. 11(a), or (2) gluon lines crossing themselves, such
as the ones shown in Figs 11(b) and (c). However, all such diagrams contribute to the
moments of gz in lower order in log M2, In particular, the three diagrams in Fig. 11
contribute to do/dM? as (log M?)° and to the r-th moment of g7 as M?* (log M?)°, as
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can be demonstrated by explicit calculations. They are therefore negligible in extended
LL when compared to the contributions from diagrams such as those in Fig. 12, which
are a power of log M2 higher, and are included already in (4.7) in connection with Fig. 10.
This argument can be gencralized to any gluon diagram with any gluon lines crossing;

~~
\\\\\ —\\ -7 I~ -]
N N N \7/
XN\ X X X X
\\ N - \\.. __// S~
S X X
a b c

Fig. 12. Two-gluon mixed diagrams

their contribution is of order (M?)"log( M?)*~? or lower, and therefore not leading.
Hence, we conclude that (4.7) can be reduced to

k-1 K
AP = Zo Dm,k—mD::+l,k—m-—1+ Z Dm,k—mD::-—l,k-m+1 (4.8)

m=1

in which no gluons are allowed to cross each other. The above expression corresponds
to sandwiching the diagrams in Fig. 10 between the ladder, which collectively have k—1
rungs, It then follows that (4.8) can alternatively be written as

k—1
AI(cZ) = Z FmUICFm—k—I’ (49)
m=0

where o, is defined to consist of the two crossed diagrams in Fig. 10.
Having derived (4.6) and (4.9) in the extended LL, we now integrate them over the
k-gluon phase space @, and sum over k, obtaining

d4
%° EP%Z - Z f Ad, A, = j (LG +GR)+ fccc, (4.10)
k=0



818

where
L = aon, R == Vlao, C = Vlaolfl +0-1C' (4.11)

Equations (4.10) and (4.11) are formal; for example, the hadronic nonperturbative part G,
that guards each incident particle is implied but not exhibited explicitly, and the integration
variables not specified. To establish a parallelism with the LL expression (4.2), we write
(4.10) as

d(dojdM?) = [ dxdX[Go(x)Go(%)doe+ Go(x)G(%; 1,)d0 sy +G(x; 1,)Go(X)do sk
+G(x; 1)G(X; 1)do o+ G(x; 1)G(X; T)do, ] (4.12)

where 7, = log g3/m”,
1 2 1 * *
dalp = ]Mpi d¢2, P == L, R, do'lc e (MLMR+MRML)d¢2’
flux flux

1
d0’2 - lMLR‘de)a. (4.13)
ux

Equation (4.12) is the main result of this paper. It is the differential form of (4.2) improved
over LL. The inclusive cross section g°d“o/dM?d3q can be obtained from it by leaving
the photon momentum unintegrated. We have not included the (primordial) k; distribu-
tion in G, because our consideration on k¢ has been entirely in the context of perturbative
QCD. However, the primordial component can be inserted by hand in (4.12) for
phenomenological applications.

A number of remarks on (4.12) are in order. The appearance of 7,, 7, and 7 in the G
functions instead of log (M?) is as expected from our previous result on DIS. The G func-
tions are universal distributions associated with hadrons, independent of the specific
process. But they are parametrized by the r variables, which depend on the nature of the
subprocesses described in (4.13). Consequently, the longitudinal and transverse degrees
of freedom are dynamically coupled, a phenomenon that departs from the simple picture
of the naive parton model.

An essential character of (4.12) is that it is not factorizable into an overall product
of two universal G functions. Any attempt to do so would result either in double counting
or in missing some terms in some kinematical region. It can, however, be simplified for
specific purposes. For total cross section (integrated over q), LL is sufficient, so (4.12)
reduces to (4.2), which is equivalent to (4.1} in the factorized form. For computing (different
from zeroth) moments of g%, the first term in the integral of (4.12) is negligible, and the
last term can be separated into a sum of two terms, each corresponding to one of two
gluon angles in Fig. 8(c) being small, the other arbitrary. These two terms then combine with
the second and third terms in the integrand to render the whole sum factorizable, i.e.

d(de/dM?) = | dxdxG(x; 1,)G(X; 1,)do 1, (4.14)
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where do 1 = do +do g +doc. Indeed, apart from the appearance of 7,, (4.14) is the
intuitive formula used by many for phenomenological calculations [18]. The derivation
.of (4.14) relies on the crucial approximation that we can double count the contribution
from the last term of (4.12) in the region where both gluon angles are small. While that
region is excluded when g7 is large, and makes non-leading contribution to the calculation
of the moments of g7, it is of central importance when g7 is small and therefore crucial
to the calculation of total cross section. Thus an inclusive cross section based on (4.14)
is not reliable (roughly double counts) when g7 is extrapolated from O(M?3) to the narrow
cone region, m? < g% < eM?2.

Present experimental data on d>s/dMdyq? are for gi < M? so phenomenology using
(4.14) is not justified {19]. In most phenomenological work [18] scaling violation is ignored,
corresponding to setting G to G, in (4.12) and (4.14); it implies neglecting of the last term
of (4.12), which is not warranted for any value of g2. Thus for an inclusive cross section
that is generally valid for all g2, one must use (4.12) and recognize the nonfactorizability.

5. Generalization to include gluons

In the preceding sections we have considered only quarks emitting gluons, but not
gluons creating qq pairs, or the self-coupling of gluons. We now generalize the results
of Section 4 to such possibilities in QCD.

Since the diagrams involving quartic self-coupling of the gluons do not contribute
to LL, the introduction of g - qq and g — gg vertices does not change the topology of
the ladder diagrams already considered. Hence, we need only generalize the formalism
described in the previous section to matrices, giving our attention mainly to the hard
processes involving large angles. We then elevate G to a two-component column matrix G;,
where i = Q and G, denoting quark and gluon channels, respectively. We shall, for
brevity, adopt the simplified notation of (4.10) and suppress the symbols for phase space
integration.

Following the same considerations as in Section 4, we arrive at the matrix equation

do = G§2,Go+GyLG+G"RGy+GZG, (5.1)

a

Fig. 13. Compton-like Born amplitudes

where T denotes transpose and (Zy);; = 696,004 L, R, and Z are now 2 x 2 matrices to
be described. The QQ elements of these matrices are, of course, just the ones given in (4.11)
since the photon does not couple to the gluons directly. The other elements of L and R
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are obvious, since they follow straightforwadly from the nature of the Born amplitudes
for quark-gluon scattering shown in Fig. 13. The results are shown in Fig. 14. The square

of the amplitude in Fig. 13(b) does not contribute to LL even if ¢ is small, so it should
appear in Z. It is not difficult to determine all the terms that contribute to extended LL;

SN

ﬂ O

N
i
+

'+‘)< K

.
L
C

I

Z., :f:(++_j+r——’}‘+

ZGG ) 4 X

' ]
1 ]
! '
Fig. 15. Graphical representation of the matrix elements of Z

the result for Z is given in Fig. 15. Note that Z corresponds to ¢,c+ 0, in the notation
of Section 4. Different parameters controlling the scaling violations in the two adjacent G
functions should be used in (5.1) for the one and two parton cases, as is explained in
Section 4.
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It is obvious that in the LL approximation where small g2(~ eM?) is dominant,
(5.1) reduces to the naive formula, similar to the one in Fig. 7 but in matrix form. For
large g% (~ M?), on the other hand, it takes the form

do = G'TG, 5.2)

where
Toe = [Fig. 8(a)+(b)i’d®,/flux, Tgq = |Fig. 13(a)+(b)|?d®,/flux, Tz = 0.

This is the intuitive result that generalizes (4.14), but only for g7 = O(M). For arbitrary
% (5.1) should be used.

6. Conclusion

We have investigated the problems related to the transverse momenta of both the
partons and the detected “particle”. For the former we have studied the parton distri-
bution function in the LL approximation, while for the latter we derived the general
expression for the inclusive cross section in the leading power of log Q2 that allows
the detected particle to have arbitrary transverse momentum.

The distribution function G(x, k) is required to satisfy the condition that upon inte-
gration over ky it yields the usual G(x; Q%) whose Q? dependence is prescribed by the
operator product expansion and renormalization group analyses. Our result reveals how
the scaling violation is related to the ky dependence of the G function. It is mainly controlled
by the kp behaviour in the region where ki is large compared to the quark (mass)? (or
the primordial &7,).

In LL the transverse momenta of the partons in a ladder are ordered. If we integrate
G(Xp— 1, kpn— 1) OVer k%, ,, we obtain G(x,_ ,; log k%,). Thus the scaling violation is control-
led by the kZ, of the next generation of partons, in the sense of ladders as well as the
Kogut-Susskind picture [20] of parton hierarchy. In total cross sections, such as vW,
in DIS or do/dM? in LPP, the parton model is valid at the deepest level of that hierarchy.
Because only the k% of the final generation is bounded by Q?2, scaling violations for total
cross sections are controlled by 02 in LL. In inclusive distributions, on the other hand,
the parton model is recovered at the (n—1)-th level; hence, scaling violation is governed
by k%,. This transverse momentum is controlled by that of the detected particle and not
by Q2. The distinction is significant and testable experimentally.

In LPP we have further obtained a general expression for the inclusive cross section,
valid for arbitrary gy. It gives rise to the factorizable forms in two limiting cases. After
integration over g%, which is dominated by small g7 (< M ?), it reproduces the LL result for
do/dM?, as well as q°d?c/dM?dq,. For large q¢i(~ M?) it can be reduced to the familiar
parton model form for inclusive distributions. The general formula that interpolates
between the small and large value of g7 is not factorizable. The complication arises be-
cause we have properly taken into account (without double counting) the set of ladder
diagrams that describe the correction due to the parton emitted in a narrow cone around
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each incident hadron. Those partons have k% much smaller than M2 but it can be large
compared to the primordial k7. Phenomenologically, that is just the region where the
dilepton data show features that cannot be accommodated by hard-collision calculations
[19]. The application of our general formula to the high M2 data should be very interesting
and revealing.

We are grateful to K. Konishi, C. S. Lam, and M. Teper for helpful discussions.
We also wish to thank R. J. N. Phillips and other members of the Theory Division at the
Rutherford Laboratory for their warm hospitality.
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