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NUCLEAR STRUCTURE CALCULATIONS WITH A VELOCITY
DEPENDENT EFFECTIVE POTENTIAL FOR s-d AND p-f SHELL
NUCLEI
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Using a velocity dependent effective potential of s-wave interaction, Hartree-Fock
calculations are performed for the doubly even N = Z nuclei from '2C to 4°Ca and odd-A
nuclei in the 2p-1f shell. Values of the binding energy and the quadrupole moment are com-
pared with previous calculations and with experimental data. Reasonable agreement is
obtained for the calculated quantities as compared with previous results as well as with
experimental data.

1. Introduction

Recently, a growing interest is directed to the use of Hartree-Fock (HF) calculations
in studying the structure of light and heavy nuclei. In general, to do such calculations,
two different types of interaction are used, namely realistic interaction and effective inter-
action. Some of these effective interactions are related to the realistic potentials and others
are not directly related. Among those interactions which are related to the realistic poten-
tials is the one derived by Dzhibuti and Mamasakhlisov [1]. They obtained their inter-
action by modifying the Serber force which describes well the nucleon-nucleon scattering
at low energies. Dzhibuti and Sallam [2] used a modified form of this interaction to calculate
the binding energies and the radii of a large group of nuclei from *He to 2°®Pb and they
obtained a good agreement with the experiment. Hassan et al. [3] have calculated the
properties of nuclear matter using this effective potential and it was found that BE/A
= —17.8 MeV and k¢ = 1.35 fm~'. Hassan and Ghazal [4] have performed single major
shell HF calculations for s—d shell nuclei using this potential. The first part of the calcula-
tions of this paper deals with an extension of this work in which the assumption of inert
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core is removed. Also, Hassan et al. [5] have studied even-even nuclei in the 2p-~I1f shell
assuming 4°Ca as an inert core. These calculations are extended to odd-A nuclei in the
second part of the present paper.

The general spirit of this work is to test the validity of the velocity dependent potential
of s-wave interaction through the comparison of the calculated quantities for the nuclei
considered with others as well as with the experimental data.

The method of calculation is given in Section 2, while Section 3 deals with the results
and the discussion.

2. Method of calculation

a) The effective two-body interaction

The effective two-body interaction is of the form [2]

-, - I - s - MR L .
Vee(r) = 3 {Vieal(r) €xp (—a - V) +exp (a - V)¥eal(r)fasr— i {(VE+V3(m)}, (D)
where the realistic potential V,.(r) is

Vreal(-;) = [at(zl : ?2)+a,,(31 . 52) (¥1 : ;2)] €xXp (_ rZ/rZ)a (2)

g, 1, are the spin and isotopic spin operators. The parameters a,, a,, and r, have been
determined from the problem of free two-nucleon system and are found to be equal to:

a, = 2096 MeV, a,, = 7.767MeV, r, = 2.18 fm. 3)

b) Calculations for even-even nuclei in the s-d shell

As a basis system we have the eigenfunctions of a harmonic oscillator with the oscil-

lator x = \/ mwih to fit the experimental root mean square radius of the nucleus. The
basis system was truncated to include up to the third major shell.

A c. m. correction is introduced by subtracting the kinetic energy of the c. m. motion
from the nuclear Hamiltonian and by minimizing the expectation value of this difference.
The effect of the strength n of the spin-orbit force [ -5 is also taken into consideration in
our calculations.

As an initial guess in the variational calculations we used generalized Nilsson wave
functions which were constructed to have the symmetries appropriate to our purpose.

The Coulomb effect is taken into consideration using the formula [2]:

E, = 0.71Z%/4",

The quadrupole moments are calculated according to the operator form:

) 4n T
Q}dl = [.2_)&;]] (er)" )’An(oa ¢)‘
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¢) Calculations for odd-A nuclei in the p-f shell

The method of taking *°Ca as an inert core and performing the HF variation on thé
particles outside “°Ca which was applied previously by Hassan et al. [S] for even-even
nuclei in the p-f shell is extended to odd-mass nuclei. The binding eneﬁgiesi are corrected
for Coulomb potential by adding a. Coulomb energy of a uniform charge density [6]
corresponding to the particles outside the core.

3. Results and discussion
a) Even-even nuclei in the s-d shell

For these nuclei, the parameter « is chosen to reproduce the experimental root mean
square radius of each nucleus, while 4 is adjusted to fit the experimental binding energy of
40Ca, this value of A is taken as a.constant for all nuclei and it is found-to be -—0.5 fm3.
It is desirable to compare our results with some others that have appeared in the literature
recently. The lowest energy HF solutions.are given in Table 1 together with other calculated
values. The values of the binding energy per particle as obtained in the present work
(PW) show reasonable agreement with experiment. In the case of deformed nuclei, the
deepest single-particle level is more. bound than in the other calculations except the Lee
and Cusson. (LC) value, which agrees with our results. The last filled level for spherical
nuclei is more bound than for.deformed nuclei. This behaviour is observed in all types of
calculation as can be seen from this table. The quality of agreement for the energy gap is
about the same for all calculations. In Table Il values of the charge quadrupole moment
are given. The lowest energy solutions for the nuclei '2C, 2°Ne, 2*Mg, ?°Si, S and: 36AT
give the same experimental shape ‘indicated by the charge quadrupole moments. However,
their numerical values are much less than the experimental ones which result from using
very small number of major shells, namely three major shells are considered. A remedy
for the truncation of the space is to use different oscillator constants [10].

Volkov [15] has emphasized that a major factor causing the deformation of light
nuclei is the decrease in the kinetic energy as the system is deformed. The effective kinetic
energy gain is inversely proportional to the effective mass ratio m*/m. It has been shown
by Hassan et al. [3] that the effective mass ratio m*/m is small for the interaction under
consideration. This may explain why we obtained small values of the quadrupole moments.

The dependence of the binding energy and the energy gap, corresponding to the lowest
energy solution for 28Si-nucleus; on-n is shown in figure 1. From this figure we notice that
the binding energy increases with increasing # which agrees with previous calculations [8].
The energy gap is decreased by increasing 5. The increase or the decrease of the gap depends
on the nature of the lowest empty orbit which may change fromn one interaction to another.

As another test of the validity of the calculated radial functions obtained from this
type of effective interaction, one may. consider the density distribution of the *°Ca as an
example. Comparison of the resulting density distribution with that obtained using
different effective interactions: MDIK B1, LINEG is shown in figure 2. The central density
for Bl interaction’is much higher than all the other densities. This can be attributed to the
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TABLE 1I
Thé HF-charge quadrupole moments
Charge . quadrupole moments Q%(fm*)
Calcula- . ) . .
tions 12C zoNe 24Mg ZBSIP"‘ 28SIOb 3zspr 32STr 36A-r
PW —-9.9 4.8 12.5 - 20.0 -316 15.2 8.5 —-9.2
MDIK —~19.5 53.5 68.9 88.6 —71.5 53.5 —61.8 | —46.5
LINEG —204 49.8 68.6 90.9 —-72.2 —52.0
B1 —21.2 60.9‘ 66.5 94.5 —-71.6 —56.2
EXP.™ ~127£0.5 | 54£3 —55+2 53 54+6
EXP." —20.1 58+3 | 69+3
EXP.P —_ — 85+12 —63+18 70421 —39+21

The notations are the same as in Table 1, besides: ™ Reference [13],

Energy Gap [MeV1

228.0

-E£ [MeV]

227.0

n Reference [14], P Reference [15].

1 1.

I~ |

1

1 L

a

2 .‘-71

Fig. 1. The:dependence of the lowest energy solution of 28Sj on the spin-orbit strength # which is measﬁred
in the experimental units . [11]



851
smallness of the compressibility corresponding to such interaction namely 193 MeV.
The central density obtained in the present work is nearer to that of LINEG since the
compressibility of LINEG force is 313 MeV and in our case it is found to be 261 MeV.
The surface thickness is larger than i 11;1 all other cases. The value of the compressxblllty has
an effect on the surface thickness [16].

02

¢ Lim3

1 I I | e "
! 2 3 4 5

Fig. 2. The HF-density profiles for 4°Ca

b) Odd-A4 nuclei in the 2p-I1f shell

The results of even-odd nuclei are given in Tables ITIa, IVa. Inspection of these tables
shows that:

(7)) Titanium isotopes

The Ti isotopes have lowest energy solutions with axially prolate shape. 4°Ti and
3!Ti have two prolate solutions. The values of the HF-energies agree with SR results.
The intrinsic quadrupole moments are small which means that the deformation is small.
This result was obtained by Parikh [18] (JP1).

(i) Chromium isotopes

The Cr:isotopes have lowest energy solution with prolate shape. The HF energies
agree with JP1 results and both are nearer to the experimental binding energies than SR
calculations. The deformation of Cr isotopes are small as JP1 results in comparison with
SR ones.

(iif} Iron isotopes

The lowest HF-solutions are with prolate shape for Fe isotopes. The values of the
HF-energies are nearer to the experimental data than JPI and SR results. The deforma-
tions are small with respect to SR results.
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TABLE Illa
Results for even-odd nuclei
—EpF —EurB BE
Nucleus Type E,
PW JP1 SR EXP. [20]
41T P 58.53 0.67 62.98 59.81 65.08
49T P! 78.11 0.66 83.18 79.23 84.88
P2 80.02
51T P1 100.58 0.66 101.78 97.24 102.18
P2 97.82
o) 99.10
S1Cr P1 95.88 2.63 99.38 96.97 102.28
P2 98.31
33Cr P 120.10 2.61 120.78 117.26 122.28
(0] 117.82
55Cr P 139.08 2.59 140.28 135.39 138.18
55Fe P1 136.49 5.82 137.98 131.91 138.98
P2 138.80
o] 136.24
37Fe P 162.92 5.77 159.88 153.20 157.68
S5Zn P 259.80 15.53 225.68 225.08
$7Zn P 286.71 15.42 248.88 243.18
JP1 — Reference [18], SR — Reference [19].
TABLE Iilb
Results for odd-even nuclei
—Enr —EnFs BE
Nucleus Type E,
PW Jp2 SR EXP. [20]
4y P1 74.95 1.50 81.2 77.44 83.4
P2 71.78
sy P 98.86 1.48 101.2 97.89 103.7
53y P 120.19 1.47 122.2 116.50 120.0
51Mn P1 90.75 4.11 96.9 90.33 98.2
P2 93.99
$3Mn P1 116.09 4.08 120.6 114.02 120.8
P2 119.15
55Mn Pl 139.26 4,04 143.0 135.03 140.1
P2 142.65
55Co P1 133.46 7.92 137.0 134.7
P2 136.24
$7Co P1 158.26 7.86 160.2 150.46 156.2
P2 162.62

JP2 —- Reference [21].
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TABLE IVa
The intrinsic quadrupole moments for even-odd nuclei
(Q20) HF (Q20) HFB
Nucleus Type
PW JP1 SR
47T P 0.46 0.29 0.96
49Ti P1 0.46 0.26 0.99
P2 0.39
51T Pl 0.37 0.25 0.93
P2 0.47
o —0.27
51Cr P1 0.73 0.32 1.47
P2 0.68
33Cr P 0.66 0.4 1.47
(o) —~0.35
55Cr P 0.41 0.44 1.34
55Fe Pi 0.72 0.28 1.81
P2 0.66
o —-0.30
57Fe P 0.57 0.42 1.60
65Zn P 0.57 0.45
$7Zn P 0.41 0.36
TABLE IVb
The intrinsic quadrupole moments for odd-even nuclei
(Q20) HF (Q20) HFB
Nucleus Type
PW P2 SR
Wy P1 0.58 0.32 1.22
P2 0.53
sty P 0.67 0.32 1.25
3y P 0.50 0.31 1.18
51Mn P1 0.72 0.40 1.63
P2 0.67
53Mn P1 0.81 0.36 1.66
P2 0.75
5SMn Pi1 0.64 1.6
P2 0.58 0.36
35Co P1 0.89 0.42
P2 0.82
37Co P1 0.82 0.37 1.76
P2 0.76
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{iv) Zinc isotopes
Zn isotopes have prolate shape. The energies of the HF -solutions are higher than the
experimental binding energies. The deformations are small as in the case of Fe isotopes.

Odd-even 'nucllei

The results for odd-even nuclei are shown in Tables IIIb, IVb; ithese tables show that
for:
(i) Vanadium isotopes

The lowest energy solution for V isotopes have prolate shape. The HF energies calcula-
ted by Parikh [21], (JP2) are in better agreement with experiment than ours. The values of
the quadrupole moments are larger than JP2’s values.
(i) Manganese isotopes

Mn isotopes have lowest energy solution with prolate shape. The quality of the
agreement of HF energies with the experimental data is nearly the same as that obtained
by JP2. The Mn isotopes are more deformed than V isotopes. The intrinsic quadrupole
moments are larger than those calculated by JP2.
(iii) Ccbalt isotopes

The solutions of Co isotopes are prolate. The quality of the agreement of the HF
energies compared to the experimental data is not much different from that obtained by
JP2. The Co isotopes are more deformed than Mn isotopes.

In general, the addition of more neutrons to the even-even nuclei [5] considered in
the p-f shell does not change the shape, except for Fe isotopes. The agreement of the
calculated HF energies with the experimental data is not much different from other HFB
calculations. The numerical values of the quadrupole moments are larger than HFB
calculations of Parikh and are less than HFB calculations of Sandhu and Rustgi while
the shape shows complete agreement.

In conclusion, reasonable results have been obtained compared to both experimental
values and other calculations. However, this does not exclude trying to refine these calcula-
tions by enlarging the configuration space and by‘adding a p-state term or/and a density
dependent term to the interaction.
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