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The evolution of Friedman models with arbitrary pressure p = p(e, H) in the phase
plane: Hubble funiction-energy density ¢ is presented. The conclusions are: critical points
of the phase plane and their stability depend on energy conditions but not on the actual
form of pressure; models with constant viscosity violate the condition e+p > 0; the weak
and the strong energy conditions are preserved if the viscosity coefficient is proportional
to £!/2,

Introduction

Friedman models filled with dust matter and without cosmological constant (A = 0)
are simply and naturally divided into two kinds:

1. closed models with limited life-time (they contain two singularities: the past one as the
beginning and the future one as the end of the evolution, and the interval of time between
them is finite),

2. open (k = 0, k = —1) models with unlimited life-time i.e., models containing one
singularity at ¢+ = 0 and a regular state at # > oo(t -+ — o0) in which R — o0, H = 0,
e — 0. (R, H, ¢ are respectively: the parameter of scale, the Hubble function and the
energy density).

In a general case there is no such simple connection between the sign of curvature,
the number of singular states and the limitation of time. For example, when A > O there
exist closed models with an unlimited life-time. These models asymptotically behave in far
future like a steady state universe. If the life-time is unlimited we will call physical and geo-
metrical features of the universe in the far future (the past) the future (past) asymptotic state.
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Since the realistic equation of state for cosmic matter of extremely high density is still
unknown [2, 6, 7] we will treat the Friedman equations as a system containing one
arbitrary function, p(e, H).

A reasonable assumption will be investigated: all possible evolutions of the universe
preserve &+ p == 0 for all times. We will notice the interesting fact, that in contrast to the
exact solutions, the existence and character of asymptotic states, as well as the existence
of singularities in Hawking’s, Penrose’s and Geroch’s works, depend on energy conditions
but not on the actual form of pressure.

1. Energy conditions

As shown by Hawking [2], Penrose and Geroch the energy conditions play an important
role in singularity theorems. A weak energy condition holds at point P if the energy density
is non-negative at P in all Lorentzian frames of reference (7§ > 0). A dominant energy
condition holds if the energy density dominates other components of energy momentum
tensor 79 = |T%| in all frames of reference. Strong energy condition requires that R > 0
in all frames of reference.

Let us consider the universe filled with matter described by energy momentum tensor

T, = diag (s, —p, —p, —Pp)
in a global comoving system of reference. Using elementary calculations one can prove
the following: if e+p == 0 then each of the following inequalities is Lorentz-invariant:
Tg >0, Ty >ITY, R§=>0.

This means that if e+p > 0 holds and if there is a frame of reference in which T§ > 0
(T$ = |T¥, R§ > 0) then Tg =0 (TS > |T%|, RJ > 0) holds in every frame of reference.

In a comoving system of reference energy conditions may be written in the following
way:

weak e=0
dominant ¢ = |p|
strong e+3p—-242=20

plus condition of Lorentz
invariability e+p > 0.

2. Friedman equations using the phase variable method

Using the Hubble function, H = R/R, one can transform Friedman equations:

R (R\* &k
2—+(—) +——A4=-p

RN k A ¢
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dx* .
to the dynamical form i.e., to the system of equations of the type = = F4x*) where f

is time-independent [1], [4].
H= —H*-1(s+3p—-24),

é = —3H(e+p). 2)
The first of these equations can be recognized as the simple form of the Raychaudhuri
equation for the congruence of the world lines of matter [2]. The second equation is equiva-
lent to the differential law of conservation of energy-momentum. ¢, H are chosen as phase
variables. p is the generally unknown function of &, H: p = p(e, H). Dependence of p on
H signifies the existence of viscosity [7]. The evolution of the universe is described by
a trajectory in the phase space and uniquely determined by the initial values of ¢ and H.

Let us now introduce the following notation: 4 — set of all points of the phase plane
at which Lorentz invariability of the energy conditions holds (e4+p > 0), S — set of all
points of the phase plane at which: ¢+3p~24 > 0. By simple calculations we obtain:
1. static (H = 0) critical points of system 2 are determined by the intersection of the s-axis

and the boundary, S, of the S set;
{static critical points} = {g-axis} n 05,
2. nonstatic critical points of system 2 are determined by the intersection of the trajectory
of the flat Friedman universe and the boundary of A:
{unstatic critical points} = {trajectory k = 0} n dA.
As we know from the theory of dynamical systems every critical point corresponds to an
asymptotic state of the universe.
Assumption 1: The phase space does not contain trajectories along which Lorentz in-
variability of the energy conditions is broken in a finite value of time.

In other words, according to the above assumption, there is no such situation that the
universe starts with very regular initial conditions (for example, it fulfills all energy condi-
tions — the energy density is non-negative, there is no heat transport faster than light,
one geodesic attracts another in all frames of reference) and then in finite time something
goes wrong and all these more or less realistic conditions are violated at a certain moment.
Assumption 1 is not satisfied within the class of cosmological models with constant bulk
viscosity [5].

From the theory of dynamical systems the above assumption is equivalent to the
requirement that dA forms a trajectory in the phase space. Since é = 0 on 84:

1. ¢4 forms a trajectory <> ¢ = const along 04;
2. dp/dH = 0 on the trajectory d4. Bulk viscosity is not important near 81.

To determine the stability character of the critical points we have to linearize the left
side of system 2
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where “0”’ denotes the value of the expression in the critical point. We obtain:

0
for det A = —3(e+p)o - | (e+3p—24),
static O¢ |o
points Tr A= % CO’
, 0
for det4 = 6H05-8 0(€+P),
nonstatic
; 0
points Tr4 = —H, [2+3— (s+p)], )
) 63 0
where A denotes the matrix of the linearised system 3, { denotes the coefficient of the bulk
iscosity: ¢ 1 op
ity: { = — — ——..
viscosity T 35

In this way we have shown the following: If assumption 1 holds and if det A # 0,
then the character of the critical points is predicted by the following rules:

STATIC POINTS:

saddle stable unstable
knot/spiral | knot/spiral

. 0
sign —| (e+3p—24) - - -
de o

sign {o - +

NONSTATIC POINTS:

saddle stable unstable
knot/spiral | knot/spiral

0
sign —| (¢+p) - + +
oe o

Sign Ho + -

The type of the critical points, if it is saddle or a knot (a spiral), depends on whether
the S and A conditions hold *““above” or “below” the boundary S and 94 respectively, on
the phase plane. The stability of the knots (the spirals) depends on expansion or viscosity.
Graphically this can be seen in Fig. 1.
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The distinction between knots and spirals is generally not important because of the
‘identity of the asymptotic states with which they correspond. However, one can easily
check the fact that according to assumption 1 noanstatic critical points cannot be spirals.
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2. Some applications

To illustrate now how the rules obtained in the previous section apply let us considexr
some particular examples.

2.1. The universe with non-vanishing cosmological constant filled with
dust matter

In case A > 0 (Fig. 2a) we can identify the critical points with the well known par-
ticular solutions of Einstein equations:

— the stable knot (¢ = 0, H = N :/—1/—3) — the expanding de Sitter model,

— the unstable knot (¢ = 0, H = - 2/—3) — the collapsing de Sitter model,

— the saddle point (¢ = 24, H = 0) — the static Einstein universe.

All solutions in the half-plane ¢ > 0 can be divided into four classes:

a) open models — with one regular and one singular end-point of the trajectory,

b) closed models satisfying strong energy conditions which have two singular end-points
(singular oscillating models),

c) closed models violating strong energy conditions with one singular and one regular
end-point,

d) closed non-singular models.
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In the case A = 0 (Fig. 2b) all critical points converge to the point (¢ = 0, H = 0).
Closed models are double-singular, those unclosed are single-singular. In the case A < 0
(Fig. 2¢) all models are double-singular. Critical points do not exist. All these results hold
for matter with positive pressure.

iy

Fig. 2a

Fig. 2b
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Fig. 2¢

2.2. Matter filled universe with the equation of state p = p(¢) where p is
generally non-positive and the vanishing cosmological constant

In this case the strong energy condition may be violated because of negative pressure.
If the condition e+p > O0holds for all values of ¢ > 0 some possible diagrams are
presented in Fig. 3.

Example 1. The strong energy condition ¢+ 3p > 0 holds for all values of ¢ > 0.
Qualitatively diagram (Fig. 3a) appears like the diagram for a universe with positive
pressure.

el

Fig. 3a



Fig. 3b

Fig. 3¢

Example 2. A strong energy condition holds only for 0 < & < ¢, (Fig. 3b). Every
ainiverse violates the strong energy condition. Double-singular models may not exist.
Instead of this closed trajectories appear (cyclic non-singular closed models). ‘The critical
point represents the Einstein static universe like in a diagram for the dust matter, but from
a stability point of view it has different features. Near this point trajectories form circles.
‘The point itself may be understood as a stable point in the sense that the infinitesimal
-perturbations convert it into a circle trajectory.

Example 3. (Fig. 3c) The strong energy condition holds for ¢: 0 < ¢ < ¢, and &, < .
“The second critical point (saddle) is also the static Einstein universe. Among closed models
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single-singular and non-singular, non-cyclic models appear, but they form a subset of
measure zero.

Example 4. Suppose finally that e+p > 0 only for ey, < & < &40 (Fig. 4). On the
strength of assumption 1 our universe is described by one of the trajectories lying between
€min and .., and no trajectory intersects 94 in a finite value of time. Every model violates

Fig. 4

the strong energy condition. Other energy conditions may be satisfied at all times. Only
open models with the negative parameter of the curvature (k = —1) are singular, but in
the singular point the energy density is finite. Similar diagrams such as in the previous
examples (Fig. 3) can be obtained from the last one (Fig. 4) by changing &, = 0,

Emax —> 0.

2.3. The universe with pressure and viscosity

. . . . 1 ¢
Viscous matter is generally described by state equation, p = p(g, H) - ¢ = — — 4
is called the bulk viscosity coefficient. Assumption 1 implies that only the stability cha-
racter of the static Einstein universe depends on (. Closed trajectories change into spirals
which are stable for the negative viscosity and unstable for the positive viscosity. Viscous
models have been widely discussed by Klimek, Heller and Suszycki {7].

3. Strong energy condition in phase plane

As has been pointed out the violation of the strong energy condition may be possible
even in the case of realistic energy momentum tensor. A field of massive particles may
violate the strong energy condition when the curvature radius, R, is less than 10-!2 cm [2].
Hence, the requirement for fulfilling that condition during the entire evolution of the uni-
verse might be too strong. However, the strong energy condition plays an important role
in the singularity theorems and it is interesting to see what structure the phase space has,
when that condition holds.
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Assumption 2. a) Assumption 1 holds. b) Condition ¢+3p—24 > 0 cannot be violated

along any trajectory in a finite time.
Assumption 2b is equivalent to the requirement that 05 forms a trajectory in the phase

space. Since on 8S:
H=—-H? ¢= —=2+MH

the trajectory 65 must be described by the equation having the form:

e+ A = cH?,

where ¢ is an arbitrary constant.

Fig. 5

For A = 0Qassumption 2 implies a very simple structure of the phase plane (Fig. 5) with
one critical point at ¢ = 0, H = 0. One can find that along the trajectory, S, viscosity {
is proportional to the square root of the energy density: £ ~ \/e. Hence, the phase plane
(with A = 0), in which the strong energy condition holds, favours the viscosity function
of Bielinsky and Khalatnikov & ~ g™ where m = 1/2 [4].

I would like to thank Professors M. Demiariski and M. Heller for constructive critics

and discussions.
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