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A comparison is made between QCD predictions and the moments of the structure
and fragmentation functions measured in lepton-nucleon scattering. The data are quantita-
tively consistent with the leading order theory, for g2 > 1 GeV2, The fits are not so good
when present calculations of next to leading order corrections are taken into account.
Moments of the structure and fragmentation functions of the gluons are in rough accord
with expectations.

Introduction

This report is not meant to be a comprehensive review of lepton-nucleon scattering
vis-a-vis QCD. I have concentrated on those topics with which I was familiar because
I had been working on them. Many of the experimental results, particularly on quark/gluon
fragmentation, are unpublished and very preliminary, and cannot be regarded as defini-
tive. They merely illustrate some of the interesting work — and problems — which lie
ahead in this field.

Comparisons of data from lepton-nucleon (eN, uN, vN) scattering with QCD predic-
tions fall under several headings. In decreasing order of experimental/theoretical credibility
these main topics are:

(i) Structure Function Moments. The most definite, unambiguous and quantitative
predictions of QCD are for the moments of the structure functions F, and xF; in inclusive
lepton-nucleon scattering. These moments have been evaluated in several experiments
and, at least in the ¢ range 1-100 GeV?, the data is in fair agreement with the leading order
theory. There are still problems with 2xF, or R = 6¢/oy, which is hard to measure; with
higher-order corrections, which seem to fit the data less well; and between experiments,
where there are serious discrepancies.

(i) Fragmentation Function Moments. So far, only preliminary data is available, all
from bubble chamber neutrino experiments. There are experimental problems, for example
from uncertainty on how to define those hadrons which are “current fragments”. The

* Presented at the XIX Cracow School of Theoretical Physics, Zakopane, June 3-17, 1979.
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theory is also on less solid ground — there are questions about factorization — but even
so, quantitative agreement with leading order QCD predictions is again apparent.

(iii) Transverse Hadron Distributions. Perturbative QCD predictions are available
for several hadronic quantities, for example the spherocity, thrust, mean pr of hadrons
and the angular distribution of energy flow in the current jet, all as a function of ¢2. Unfor-
tunately, at the values of g2 so far available, it is clear that non-perturbative (and uncalcu-
lable) effects dominate the situation, and despite a formidable amount of experimental
analysis, no real quantitative conclusions can be drawn.

(iv) Multi-jet Events. Clearly one of the most convincing demonstrations of the quark
+ gluon model would be to detect separate hadron jets, with appropriate quantum num-
bers, from fragmentation of quarks and gluons. There in no evidence at all for such effects
in any data I know of, and it seems likely that, as under (iii), the ¢* range available in
present experiments is insufficient.

In what follows, I shall discuss only structure and fragmentation function moments
and ignore (iii) and (iv) completely. Some of these topics will be discussed by Sachrajda
in his lecture. In this write-up, I have included a couple of graphs, one of a log moment
plot from the CDHS collaboration, the other of (n~/n*) fragmentation ratios, which I did
not include in the lecture.

PART I
Structure Function Moments

Details of the measurement and evaluation of the structure functions F,, xF; in electron,
muon and neutrino scattering can be found in the original papers to which reference is
made below. All the measurements of moments have involved combinations of data from
different experiments. The ABCLOS bubble chamber group [1] combined low energy-
data from v/v interactions in Gargamelle at the PS with high energy data from v/v inter-
actions in BEBC at the SPS. The E98 collaboration [2-4] combined their own data on pp
and pd scattering at FNAL with that of low energy ep and ed experiments by the SLAC-
~MIT group [5}. Finally, the CDHS counter group have combined their vjv SPS data
[6] (measuring F,™ and xF;™) with SLAC ed data (measuring F5") using the quark model
for relative normalization.

1.1. Non-Singlet Moments {(xF;, F}*-F}")

In leading order the strong coupling constant between quarks and gluons has the
form

12

N = 3 omy an 2145

(1

where m is the number of quark flavours, A is an arbitrary scale constant and In g3/4% > 1.
The moments of the structure functions have the general form

3
M(g®) = 3. Ai(in g*/4%)", @
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where the A; are arbitrary coefficients but the anomalous dimensions d, are provided by
the theory. The three terms in (2) correspond to the contributions from the (flavour non-
-singlet) valence quarks, and those from the (singlet) quark-antiquark sea and gluons.
For the valence quarks there is just the one term

M,(N, g°) = const/(In g*/A%)*™s, 3
where
N
4 2 1
s = 33 om) [1_ N z 7] ' @)
2

The only radiative correction to the non-singlet corresponds to diagram (a); other terms
such as the G — QQ in (b) are not involved. The anomalous dimension dyg corresponds
to the probability in (a) of finding a quark

in a quark [7]; the square bracket in (4) comes from the Williams-Weizsacker formula for
a fermion to radiate a massless vector boson (gluon).

Comparison of the prediction (3) is made with the Nachtmann moments of xFj, i.e.
instead of

1 .
M3(N, %) = [ x" 72 xF3(x, ¢*)dx (5)
0
one uses [9]

N+1

M3(Ns qz) = j‘ e XF3(X, qz)[

L+(N+1) V1 +4M2x2/q2} i ©

N+2

where
¢ 2x
1+ 1+4M?x%q?

)

is the Nachtmann [8] variable. The use of ¢ instead of x takes account of a kinematic correc-
tion M?/g* depending on the target (nucleon) mass.

Figs 1 and 2 show the results for the Nachtmann moments of the non-singlet xF3N
from the ABCLOS collaboration [1] and for the non-singlet (F}*~FY™) from the E98
experiment [4].
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Fig. 1. Nachtmann moments of the structure functions F}N and xF?N, as measured by Bosetti et al. [1}
(ABCLOS collaboration)
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Fig. 2. Nachtmann moments of the non-singlet function (F3P—F35") from electron and muon scattering
data on hydrogen and deuterium (E98 collaboration, Quirk [4]). On the right is a log-log moment plot, with
line indicating QCD prediction for the slope



43

0]_ T T T T I’ T T L2 T l T T T l',..
= /1.29 R
| A
V4
+ ]

Log of moment—
o
o
T I\\T T
z
\i 2
N
K
—hg
S
N\
<
!

K /+ / d A
0,01} M’m»f ‘F -
[ % ]
) /Mgﬁ) - +

Myl7) /
| ¥

| 7 me—
] 1 [T L ) | I | AR T
000 0.01 0. - a1 1.0

Log of moment —

Fig. 3. Log-log plot of various non-singlet moments, ABCLOS data (Bosetti et al. [1]). Lines indicate
QCD predicted slopes

T T T T TTIT T T T 1]
005+ e CDHS . 1

MG
+

+ BEBC/GGM 4

I.

0.01

Moments
o

(=]

n

T T TN
h I |

T
1

T T TT1T7

T W T | | 1
0.05 01 05
Moments

Fig. 4. Log-log plot of non-singlet moments, CDHS data (de Groot et al. [6]). (a) Cornwall~Norton
moments, (b) Nachtmann moments



44

The first test of the leading order (LO) QCD formula (3) is that the moments of
different N will be related by power laws

My(N', ¢°) = K - [M3(N, ¢)]" ™", &

where the index is the ratio of anomalous dimensions in the two cases, with the colour-
-flavour factor 4/(33-2m) cancelling. Figs 2, 3 and 4 show the log moment plots from the.
muon and neutrino experiments. Clearly, they are all consistent with the slopes expected
from QCD. Some actual numbers are shown in Table I. In the final column, the slope
for scalar gluons is given. While the ABCLOS results are close to the QCD prediction,.
the CDHS data fall half way between vector and scalar predictions.

TABLE 1
Anomalous dimension ratios (Nachtmann Moments)
Observed Slopes
QCD — Scalar
Moments Prediction ABCLOS (v, %) CDHS (v, %) Gluon
g? = 1-100 q* = 6.5-75
N =6, N=4 1.29 1.29+0.06 1.18+0.09 (1.06)
N =35 N=23 1.456 1.50+0.08 1.34+0.12 (1.12)
N =7 N=3 1.760 1.84+0.20 — (1.16)
N =6, N= 1.621 — 1.384+0.15 (1.14).
% F3 Moment ratios ---— LO acD
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Fig. 5. Plots from Bosetti et al. [1], showing ratios M (45/40/M;; of non-singlet moments against g%, which
are predicted to be constant by QCD in leading order. For g2 < 1, all ratios decrease. The curves take into
account next to leading order corrections
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Although the log moment plot has become a popular way of displaying the data,
it is not the best way to present the result. Fig. 5 shows a plot of the ratio of the two sides
in equation (8), which should be a constant independent of ¢>. The BEBC/GGM ratios
are indeed constant for g% > 1, but show substantial deviations at lower ¢?. The solid
.curves show the effect of second-order corrections, discussed later. Although these show
the same trend as the data, this is not support for the correction terms; individual moments
fail to fit the data for ¢ < 1, just as badly as the leading order formula.
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The second test of equation (3) is to demonstrate the In g dependence of the moments,

via the equation

[M3(N, ¢*)]" /% = const (In g* —In A?).

®

Figs 6 and 7 show that the quantity in (9) on the LHS is indeed linear with In g2
for g > 1. This linearity is a vital test of QCD, since only an asymptotically free gauge
theory contains such logarithmic dependence.

Examination of Figs 6 and 7 shows that there are severe discrepancies in the values
of the moments at the same g2 in the different experiments. The quantity M ~*/Ns is about
a factor 2 larger in the bubble chamber than in the counter neutrino experiment, for all
N values, and they differ greatly in the value of the extrapolation point, In A%. Table II

- Aw
08k
_},__

Lowest order fit to non-singlet moment
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Fig. 8. Scale parameter Ao calculated from leading order QCD fits to N = 3 non-singlet moment, in
different ranges of ¢* (ABCLOS data)

TABLE 11
Apo values (m = 3)*
. _ -7 Global
Experiment N=3 N=4 N=S5 N=6 N= (All N)
ABCLOS [1
;2 -1 i 0.70+0.08 0.76 £0.07 0.77+0.07 0.78 +0.08 0.75+0.07 0.75+0.05
E98 [4
:2 S I[ ] — 0.731+0.09 — 0.77+0.07 — 0.73+0.10
(R=0.2) [3]
g >3 — — — e — 0.70+0.07
CDHS [6
;;. > 6.5 (s 0.4140.13 0.42+0.12 0.38+0.10 0.33+0.10 — 0.39+0.08

* The value of A depends weakly on m: dd/dm = —0.05 GeV.
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shows results from the two neutrino experiments as well as that from muon scattering. An
obvious difference is that in the CDHS experiment, the minimum ¢ is large. However,
as shown in Fig. 8, there is no substantial dependence of A on ¢ in the ABCLOS data.

One point of difference is that the first two experiments in Table II included elastic
events (x = 1) in evaluating moments. While it is true that for g > 6 elastic events have
little effect for N = 3, this is not true for high N (see below).

A final point is that the CDHS and E98 analyses have used F, values from ep, ed
experiments, and these involve uncertainties in R, such that dA/dR=~ —1 GeV. The
ABCLOS data is unique in depending on xFyN only, a quantity which is independent of
assumptions about R [1]. I do not think however that any of these factors is going to
bring the CDHS result into agreement with the ABCLOS/E98 values. It is perhaps fair
to point out that, not using moments but only the v, v data covering part of the g2 range
at each x value, to parametrize the parton distributions in the form x*(1 —x)’, the CDHS
group [6] come out with bigger A values (~0.55 GeV).

1.2. Singlet moments

In QCD, the moments of F,(x, ¢g2), measurirg the momentum of quarks plus anti-
quarks, consists of three terms, as in (2). Thus one can write

M,(N, 4°) = Mys(N, g5) (Lo/LY"™s+M 4(N, 45) (Lo/L)"* + M _(N, qo) (Lo/L)*",  (10)

where the last 2 terms are the singlets, L = In g?/42, L, = In g}/ A%, and dys, d.. and d_ are
anomalous dimensions given in the Appendix. For neutrino scattering from an isoscalar
target, with 6 (Cabibbo) ~ 0, so that s, s contributions are neglected, the coefficients
Mys, M, and M_, for m = 3, can be simply expressed in terms of the moment M,(N, ¢3)
of quarks + antiquarks at g2, and that, Mg(N, ¢3) of the gluons:

Mys(q3) = 3 My(N, q9),
M+(‘1<2)) = 2[(1—A4x)M (N, ‘1(2))+BNMG(N’ qf,)],
M _(q2) = 2[AyM,(N, q3)— ByM(N, q5)], (11)

where the coefficients Ay, By are also given in the Appendix (see also Ref. [13]). The exact
formula is more complicated, but the neglected terms in s, s are extremely small (~ 102 if
we base our estimates of the s, s sea from antineutrino dimuon data and the GIM charm
model). Equations (10) and (11) allow Mg(N, g3) to be deduced from M,(N, ¢?), if A, and
hence Ly/L, is known.

The main point is that M,(N, ¢g2) decreases as g increases on account of the radiative
correction to the non-singlet (the first term in (10)), but it falls less rapidly than M3(N, ¢°)
because of the process G — QQ which feeds the QQ sea — the By terms in (11). In practice
it is convenient to express the g2 dependence in terms of two free parameters; A and R,
= Mg(N, q2)/M(N, g?), the ratio of gluon to (Q+ Q) moments at g3, taken as 5 GeV?>
in the ABCLOS analysis. Fig. 9 shows the variation expected for N = 4, A? = 0.5 GeV?,
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and for R, = 0 and 1, together with the data. Obviously, it is hard to determine the gluon
moments without data of very high precision. Further, it is clear that one can trade off
a change in A against a change in R,; increasing A4 will make M,(N, ¢*) change more

N=4 Nachtmann moment of F}’N
Lowest order fits, A =07 Gev

-
G/M=<Gluon moment at g3 >

(Q+Q) moment at q?
0.2} %

—— = 6/M=0
— /M =1
0.1k

-]

. s GQYZ_
0.01 1 : [ L . L
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Fig. 9. Data points on F ‘z’N moment versus g2 (ABCLOS data). The curves show the variation expected
for Ao = 0.50 and for R, = 1 and 0, where R, = (gluon moment)/(F, moment) at g3 = 5 GeV?

rapidly with ¢2, while increasing R, will damp down the ¢* dependence. The fits therefore
give a relation between A and R,, as indicated in Fig. 10.

By feeding in the value of A from M,(N, ¢3), the value of Mg(N, g2) can be read off
(with a big error). The ABCLOS results [1] are given in Table III. In this table, we include
also the results of Anderson et al. [3] from ep, ed, pp and pd data at SLAC and FNAL;
they performed a simultaneous fit to the moments of u, d, s and ¢ quarks and antiquarks,
assuming some constraints e.g. G(N, ¢2) > 0, G(N, q%) > G(N+1, ¢3) etc. The CDHS
group {6] have also recently reporied results on gluon moments. Their data does not
cover all values of g2 at all x, so that they parametrize the parton distributions in the form
x*(1~x)? where «, f are linear functions of s = In (L,/L), following the method of Buras
and Gaemers [19]. They then compute moments and evaluate Mg(N, ¢2).

For N = 2, the gluon moment is known from momentum conservation; Mg(2, g%)
= 1—M,(2, g*); the corresponding values are given in brackets in Table III. Using this
information, the ABCLOS group gave an independent estimate for 4 = 0.68+0.06 GeV
from the F, analysis.

The main feature of Table III seems to be that, at g2 = 5, gluon and (Q + Q) moments
are comparable. Of course, at larger ¢2, the gluon moments must fall off much more rap-
idly than the quark moments especially at high N, because of the G - G+G coupling
of a non-Abelian field theory. A consistency check of the analysis can indeed be obtained
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by evaluating Mg(N, ¢2) at different values of g3. One can then compare this with the
predicted ¢ variation of M, as given by the second of the two singlet moment equations

Ms(q H=M os(g 3 [(Lo/L)** + Ax—RoBy) ((Lo/ LY~ —(Lo/L)'*)] (a),

2 2 d d - d
Mg(q") = Mgs(90) [Ro(Lo/L)** +(RoCx—Dy) ((Lo/L)* ™ —(Lo/L) )1 (b), (12)
Gluon moment: lowest -order analysis
10!
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Fig. 10. 1 standard deviation contour indicating the correlation between 4 and R,, obtained by fitting
the ¢* dependence of the 1."",’N moment. Upper graph; leading order calculation. Lower graph; including

next to leading order corrections

TABLE III
Gluon moments G(N, g2); g2 = 5 GeV?
ABCLOS [1] vyN E98 [3] CDHS {6}
N Valence Quark uN vN
G(N, q3) M(N, 43) G(N, g%y G(N, 93)
2 0.62+0.15 (0.45) 0.45+0.07 {0.43) ©0.51)
3 0.12+0.05 0.12+0.02 — 0.11+0.02
4 0.03+0.02 0.045+0.01 0.08 —
5 0.02+0.02 0.027 +£0.007 — —
6 _ 0.014+0.003 0.02 —
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where Ay, By, Cy, Dy are given in the Appendix. Anderson et al. [3] and de Groot et al. [6]
confirm that the values of Mg(N, g2), obtained from (11) or (12a), for different g2, satisfy
(12b).

In order to compare with the later gluon analysis in second order, a more illustrative
way of presenting the results is to assume various values of R, and thence fit A from the
F, moments. This procedure is shown in Fig. 11 for the ABCLOS data, where I have given

Gluon moment analysis

q2 > 1 Gev2

1.0k Leading order tits

+ A (Fp) R=t

{x ALo(x F3}
o R=0,R=2

L.R=1
0.4 Re (Gluon moment at g3=5
R=0 \Q+Q moment at q3=5
0.2 :
Ry =114
0 1 1 2 ! NT t
2 3 4 5 6

Second order fits, MS scheme

q2> 1 Gev2

R)=325

Fig. 11. Values of A as a function of N. Circles indicate the values obtained from fits to F, moments
assuming R, = 0, 1 or 2. Crosses indicate the fits to A from xFs moments. Upper graph; leading order
calculation. Lower graph; including second order corrections

A for Ry =0, 1 and 2 (at g2 = 5 GeV?) The A values from the non-singlet analysis are
shown by crosses. It is satisfactory that the A values for R, = 0 and 2 straddle those from
xFj;, and that F, and xF; give roughly equal A values for R, = 1 Of course, if the same
analysis were repeated for ¢2 = 50 GeV?, say, the indicated R, values would be less, espe-
cially at large N1.

1 Ro = lisindicated for N = 2 from the momentum sum rule. However, for higher N, R, is a priori
unknown. Values of R, ~ 1 or less seem likely however; it is difficult to believe that the gluon distribution,
would become harder than that of the quarks, at large N.
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1.3. Higher Order Corrections

The strong coupling constant has the simple form (1) only for In ¢2/42 > 1; in general
higher order terms are involved:
L2
(Ing*/4%) ~ (Ing*/A%* =

%) =
i

For a value of A% = 0.50 GeV?, for example, (In g2/ A2)~* varies from 1.44 at ¢*> = 1
to 0.33 at g2 = 10 and 0.19 at ¢ = 100. It is clear therefore that corrections of order
(In g%/ A%y are potentially important. Suppose we let A — A, = rd, then

A . B—Alnr? .

(Ing*/A7) ~ (In g*/4})?

as
(g% -
T

Clearly, if the coefficient of the -next to leading term is unknown, A is arbitrary;
changes in A just amount to re-definition of this coefficient. The only thing we know for
sure is that, in the LO fit, 4 and A, are chosen (by the data) so as to minimize the higher-
-order terms.

(i) Non-Singlet Higher Order Effects. Actual computations including the next to
leading terms in the moment expressions have been carried out by Bardeen et al. {10]
for the non-singlet. It is to be emphasized that, because third order terms are uncalculated,
there is still some arbitrariness in 4 — to be dumped into the third order. Obviously, one
only obtains the value of A from a calculation to all orders. The arbitrariness of choice of
A — or equivalently, the coupling constant at fixed g — corresponds to different choices
for the renormalization scheme used. Bardeen et al. consider several schemes. One, labelled
MS, uses the minimal subtraction scheme of t'Hooft, in which the non-singlet moment
expression has the form

const L+
(In g*/A59)™ | (In g°/A%s)

Mys(N. q%) = (A1~ A42(1+Inn qZ/A;S)]} (13)

as compared with

M. (N, o const
(N, q%) = (In qz/ALzo)st'

In Eq. (13), B = 3/(33-2m), A1 and A2 are functions of N given by Bardeen et al.
In the region of N considered here, 41 and 42 are approximately proportional to N, with
Al ~ 342 Thus, for large N, the correction term can become very big, irrespective of 2.
This stark fact is illustrated in Fig. 12,

Fig. 13 shows results of fits to Ayg and A in the ABCLOS data. The quality of the
fits. (i.e. the #* for ¢% > 1) is much the same In the two cases; there has been no significant
advantage in including the correction term. This 1s perhaps an unlucky accident of the
numbers involved. In (13) the result of the two equations will be physically identical if we
put

Apo = rdys,
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Fig. 12. Ratio of (next to leading order term)/(leading order term) in the MS renormalization scheme,
using the formula of Bardeen et al. [10]. For N = 2, the correction term falls below 109 for ¢* > 7, while
for N = 4, this occurs at g2 = 3000 GeV? and for N = 8, for g2 = 10° GeV?

i
A xF; moments m=3 q%221-100
o Ao lowest-order fit
10k o Aps second order fit,
minimal scheme
0.8 % } % :{) % %
0.6 % ;
R -1 f
0.2+
N._
g 4 1 L !
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Fig. 13. Value of Apo and Ayms versus N from ABCLOS data

where
In r = } BC(q*)/(dns+(1+dns)BC(g*)/(In ¢°[ARys))

with C(g?) equal to the content of the square bracket in (13). Fig. 14 shows the dependence
of r on g2 for 2 values of N. Roughly, r is a constant, of order 1.5-1.6, more or less inde-
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pendent of g2 or N. This explains how the x? of the fits is the same, and that the fitted

values
<AMS> == 0.45i0.05,

are related by a constant factor.

(Apod = 0.75+0.05,

2o T T T T
r=A /A
LO/ MS N=6
N=3
150 P .
1.0 T
q* Gev?
| 1 3 T L N S |
100

1

14)

Fig. 14. The ratio r = Ay o/Aus, as a function of N and g2, computed from the Bardeen et al. formulae.
Since for N = 3-7 and ¢® > 1, r is roughly constant, the LO and MS schemes give equally good fits on
non-singlet moments to the data and the fitted values of Apo and Apms are in a constant ratio

- Ay fits to xFy; moments
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Fig. 15. Values of Ay versus N from data of Bosetti et al. The curve shows the variation Ay = A exp (Bg'/yg)
predicted by Bardeen et al. for 4 = 0.50
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A second scheme, called the Ay scheme by Bardeen et al., seeks to absorb the expected
N dependence of the next to leading order correction into the A value. Fig. 15 shows the
resulting fits, together with the expected dependence

Ay = A exp (By/yo), (15)

where A is a constant, independent of N, and where By, yy are (complicated) functions
of N given by Bardeen et al. (in practice, Ay ~ 1.03 A ;). There is seen to be no experi-
mental support for this scheme.

In view of the discussion in the first part of this section, one naturally expects some N
dependence of the value of A obtained by fitting different moments, because the contribu-
tions from higher orders must in general be N dependent. The experiments so far are not
good enough to detect such effects. All the data seem to be consistent with the notion that
only the leading order term is important. Who knows, perhaps there are miraculous can-
cellations of the higher order effects!

(iiy Higher Twist Effects, Resonance Contributions. Everything so far has been under
the assumption that only twist 2 operators (in the 7-channel of the corresponding Compton

N EE xF3 moments —— Nys fit (q2>2)

—--= LO Contribution

0.00

0.001

Fig. 16. The non-singlet moments M3(N, ¢2) for N = 3 and N = 8 from the ABCLOS data. The curves
indicate (i) the fits using the MS scheme, (ii) the calculated contributions to the moments from the elastic
process VN — uN and from 4 (1238) production VN — p.A
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amplitude) enter the matrix elements for the inelastic cross-sections. Kinematic effects
associated with twist 2 operators — the target mass term M?/q?> — have been taken care
of by using the Nachtmann variable.

In the region x — 1 (high N, low ¢2) we expect effects from operators of twist 4 or
more. These will contribute additional factors to the moments, of order m?/q2, where m
is a typical scale parameter, presumably of order A. The OPE approach does not tell us
the precise form of these factors, but they could be of the form (1 + NA?/q?), for example.
It is fairly safe to say however that wherever the resonance region is important, twist
4 effects are potentially dangerous. We can avoid them only by going to small N and
large g2. On the other hand, very precise.experiments may, in the future, give us a handle
on them.

This brings me to the sore point of the inclusion of elastic and quasi-elastic contribu-
tions in the ABCLOS and E98 analysis. Fig. 16 shows the elastic and A contributions
to xF;, computed using standard dipole form-factors®. For N = 3, elastic and 4 contribu-
tions are dominant at g® = 1, falling below 109 for ¢* > 2. However, for N = 8, elastic
and 4 contributions extend to higher ¢?, falling below 109 only for ¢? > 7, i.e. they show
the N/g? dependence surmised above. Clearly higher mass resonances of greater spin
{threshold factors g*’) will be prominent at still higher ¢? values. That is how the total
cross-section 1s made up. Oue can see clearly from these graphs that the QCD fits fail
for g% < 1 and that the first (elastic) resonance contribution falls off in that region. Pre-
sumably, because of duality arguments, any region of g2 where several resonances contribute
may be appropriate for testing QCD. Within the errors of the presently available data
(10-159% on individual points) it is a fact that the fits are good for g% > 1 and for N < 7.
As experiments improve, deviations due to high twist (or other) effects will doubtless be
observed, but that has not happened yet.

(iiiy The Gross Llewellyn-Smith Sumrule. For the case N = 1, the moment integral
of xF, is called the Gross Llewellyn-Smith sumrule, and has the form

2
My(1, ¢%) = 3[1~ GCIUN ] (16)

T

The appropriate Nachtmann moments are shown in Fig. 17 as a function of ¢2, [18].
These are lower limits, because the contributions to ijg,dx/x peak at small x and
Xmin = q%[2ME(max) where E(max) is the maximum beam energy. The curves show the
form (16) for 3 values of A. The data appears to indicate A < 0.5 GeV.

One great advantage of using the N = 1 moment is that higher-twist contributions
are expected to be very small.

(iv) Higher-Order Corrections to the Singlet Moments. Floratos et al. [11] have given
formulae and tables for computation of singlet moments including next to leading order
corrections, using the minimal subtraction (MS) scheme for renormalization. The results
of this analysis of the ABCLOS data are given in Figs 10 and 11. These show that, in contrast

2 [ am indebted to Dr. Bianca Conforto (Firenze) for kindly supplying me with the program for the
A (1238) structure functions, based on the Schreiner—Von Hippel parametrization of the Adler model.
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to the leading order analysis, the gluon moments for N = 4 and N = 6 seem to become
unphysical, i.e. require R, > 1. Furthermore, for these values of R, the yx2 of the fits is
unacceptably large. If we impose the condition R, < 1, weobtain values of A g from the
F, and xF, moments which are significantly different. This again implies the importance

T |[]I1T[ T II[IIII[ T T IIIIII]

-——— leading order only

4 including ag correction
ale__ GtSsumrule _

rey
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=
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Fig. 17. CERN/GGM data on j Fdx from Bosetti et al. The curves show the QCD corrections to the
0.02

GLS sumrule, for 3 values of A

of other terms, with different effects on the singlet and non-singlet moments. The other
feature of Figs 10 and 11 is that the sensitivity of the data to gluons — as measured by
the spread in the fitted 4 for R, = 0 and 2 respectively — is about a factor 3 smaller than
in the leading order fits. This also is a very strange result.

In short, the correction terms to the singlet moments, as computed in the MS scheme,
seem to give nonsensical results. This is very disappointing. In the non-singlet analysis,
we saw that the correction terms did not improve the fits; for the singlet, on the contrary,
they make everything worse.

PART II

Fragmentation Function Moments

2.1. Factorization, Fragmentation, Current and Target Fragments

The concept of the fragmentation of quarks into secondary hadrons is familiar from
the work of Feynman and Field [14] and others. In the naive parton model, deep inelastic

lepto-production of hadrons is viewed as a 2-stage process, and the cross-section has the
form:

Current
fragmets

Target
~w fragments
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d*c
dxdz
where Q(x, g%) describes the distribution of quarks in a hadron, and the fragmentation

function DM(z) the distribution of hadrons in the (struck) quark. The final hadrons have
an invariant mass

o xQ(x, 4)Dy(z, 47, (17

W? = M24+g%(1/x—-1)

and are divided into “current fragments” from the struck quark to which the above formula
refers, and “target fragments’ from the spectator quarks.

The important assumption in the above formula is that the cross-section factorizes
into a product of a quark distribution, depending only on x and ¢?, and a hadron
fragmentation function, depending on z and ¢2.

Whereas, in the process et e~ - hadrons, the quantities g and W? are identical, in
lepto-production the two variables are independent. Typical (unpublished) results from

T T T
N=3 Fragmentation function moments, 6<W<10GeV z> 0.2

1.0}~ o V Ne

Positive hadrons x VH

B oaitr d 8 it %

0l i

T Negative hadrons “

IR |

q? GeVZ—
I . 1 I
0 1 10 100

Fig. 18. N = 3 moments of fragmentation functions of positive and negative hadrons at fixed W, plotted
against g2. Data from vH, experiment (ABCMO collaboration) and vNe experiment (ABCLOS) are shown
separately

the ABCLOS and ABCMO neutrino experiments in BEBC, with Ne/H, and H, filling

respectively, are given in Fig. 18, showing the N = 3 moment of the fragmentation function

M(q®) = j"1 2" 71D*(z, ¢*)dz, (18)

Zmin
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where D(2) = (1/Nyen) (AN, racis/d2) is the multiplicity of secondaries, per event, per unit
z interval. The data are plotted as a function of ¢? at fixed W. The limit z;, = 0.2 was
imposed in order to select current fragments (see below).

It is clear from Fig. 18 that the moments M at fixed W depend very little on ¢*. Fig. 19
shows the N = 2 moments in the H, experiment as a function of x at fixed g% At low
values of g2 < 4 GeV?, there is a substantial x dependence, M increasing with x, thus

T ¥ 7 T
Positive hadron multiplicity vH, z>0.2

1 e g2=1-2
f D'(z)dz °.q2=2-4
0.2 x q2 =10-20

Fig. 19. N = 1 (= multiplicity) of positive hadrons as a function of x in 3 ranges of ¢%. Data from vH,
experiment (B. Saitta, private communication)

reflecting an overall dependence on W? ~ g2(1/x—1). At higher g*(10-20), on the other
hand, there is little x dependence. Thus the x dependence seems to be associated with the
low W region; at high ¢ and W2, the data are consistent with the hypothesis of factoriza-
tion. It is also clear, from consideration of contributions from the resonance region (x ~ 1,
z ~ 1) that at small W and g2, factorization cannot apply.

If factorization does not apply generally, it has been suggested that one should really
employ double moments [15]. The joint probability of observing a secondary H with
a fraction z of the total hadron energy, from a quark carrying a fraction x of the target
nucleon momentum, is denoted by a function F'(x, z, ¢?) so that the double moment is

11
M(M, N, ¢*) = | | x"zMF"(x, z, ¢*)dxdz/xz. (19)
60

Writing the moment of the quark distribution
My(N, ¢°) = | x¥7'Q(z, ¢*)dx
the effective fragmentation moment is then defined by

M:(M, g*) = M(M, N, ¢*)/M(N, ¢°), (20)
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where Mg should be independent of N. The point of all this is that, if D(z, g2) is x-dependent,
it is not defined correctly by the track multiplicity (1/N)(dN/dz) irrespective of event energy;
at small x and low g2, events can be found at all incident energies, while at small x and
high g2, they occur only at high energy. Thus F H(x, z, ¢?) in (19) has to be determined by
a proper integration over the incident neutrino spectrum. Today I am only reporting results
of a preliminary analysis based on the simplifying assumption of factorization — the full
double moment analysis has not yet been completed, but the differences are likely to be
small®.

Finally, the definition of current fragmentation region needs some comment. Of
course there is no unambiguous way to identify such hadrons; the approach is to try several
reasonable assumptions and see how much the final results differ. One possibility is to
define current fragments as those going forward in the CMS, i.e. require that x (Feynman)
> 0. The condition on z = E(hadron)/v is:

~— Q
T Q —
CMS
m m x 5 -
I> e R == for g >» M*x", 20
Véx—1+M: g2V 1-x

where m is the secondary hadron mass.
A second possibility is to choose particles travelling forward in the quark Breit frame,
for which the condition is

m e———— m
2> o N1+AM*P g x —  for g% > M2x2 (22)
/
\/qz \/qz
-p=-g? R4
N{ - =<
Q - p/2
i Q
Q

3 Since this report was prepared in December 1978, double moments have been calculated and first
results presented by W. G. Scott at the Cal. Tech. Conference on QCD in February 1979. The results given
here are effectively the double moments for N = 1 (i.e. weighted according to the quark momentum distri-
bution), but are not corrected for the neutrino spectrum shape. For N = 1, the difference between the
simple moment (18) and double moment (20) is however very small, since spectrum effects are important
only at high ¢2, and as shown in Fig. 19, the cross-section then factorizes.

We should emphasize that the gluon fragmentation analysis is also based on the assumption of
factorization, i.e. that the z distribution of gluon fragments does not depend on the x distribution of the
gluons.
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Since the Breit frame velocity in the lab. system is

Bar = vV +4

its use has no sense as g — 0, since then Bpr ~ 1 — nothing can go forwards.

Eq. (22) is derived in the naive parton model. In fact, the quarks must possess pri-
mordial transverse momentum pr, and in this case the above diagram is modified ; hadrons
travelling forwards with respect to the quark frame are not necessarily travelling forwards
in the current frame. Formula (22) becomes modified to

1+4M?*x*/q*
m \/ + x°/q 23)

Z > = .
J@ N 1=(1+4M>x%|¢*)p}/q

The quantity py should also include a contribution from the hadron relative to the frag-
menting quark. To summarize; the bulk of the secondary hadrons are pions, and for these,
one can either select those which are forward in the Breit-frame, or require the equivalent
condition g2 > 1 and z > 0.2; to avoid effects due to the intrinsic transverse momentum
of the quarks, the condition ¢2 > 1 is also required. These conditions do not guarantee
that one will exclude target fragments, or include all current fragments. The uncertainties
are largest for small ¥ moments, which depend on the behaviour at small z. For larger
values, they are unimportant.

The fragmentation moments quoted above do not include allowance for hadron mass
effects; really one should use Nachtmann rather than Cornwall-Norton moments, i.e.
replacing z by & = 2z/(1 +V1 +4MT222_/q_2) where My is the transverse mass VM2 +pi
of a hadron. Since for pions, My ~ 0.35 GeV this correction is small for g > 1 and has
also been neglected in the preliminary analysis reported here.

2.2. Non-Singlet Fragmentation Moments

QCD makes predictions about the hadronic fragmentation of the quarks by virtue
of the fact that the elementary quark and gluon constituents carry quantum numbers
(charge, isospin, strangeness etc.) which will propagate through to the hadrons. In parti-
cular, we have scen that the relative contributions of the quark and gluon components
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is g*-dependent. Since the fragmentation functions for quarks and gluons will in general
be different, it follows that the overall fragmentation function will depend on ¢2.

g 9
Q Q 6
G

Hard gluon bremmstrahlung cohtribution
to fragmentation function

The derivation of the structure function moments in QCD was based on the operator
product expansion (OPE). There is no equivalently rigorous treatment available for the
fragmentation moments. However, on the simple argument that whatever formalism
describes quarks in hadrons should equally describe hadrons in quarks, it is generally
assumed that the logarithmic ¢* dependences and anomalous dimensions describing the
structure functions will also apply to fragmentation [16, 17].

As in the case of structure functions, the most straightforward predictions about
fragmentation are for the non-singlet moments. The fragmentation function combination

H_ o H
/]

\\\

where / and j are two different quarks, is clearly a flavour non-singlet. The singlet terms,
corresponding to radiation by the quark of gluons (or QQ pairs) cancel in taking the differ-
ence. For 0;=u and Q; = u, and applying charge conjugation, one finds (D%* — D7)
as a non-singlet. In neutrino interactions, one is dealing with quark transitions involving
both valence and sea quarks. In the approximation 6, = 0 these are:
v+d = p+u,
v+u - p-+d.
If we take account of the fact that the bulk of the secondaries are pions, then by isospin
invariance
Dy =D; =D

and the difference of the fragmentation functions (D*— D-), is still a non-singlet. In any
case, antiquarks make a very small (< 10%) contribution in the g? range 1-100. Thus
we expect that, in leading order in QCD,

1

M(N, ¢*) = JZ”'I(D’L(Z, 4°)~D(z, ¢*))dz =

0

const

e
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In this equation, 4 = A;o is known from the moments of the structure function
xF;, so that the g* dependence of M is completely predicted, apart from one overall

normalization constant.
Figs. 20 and 21 show some preliminary and unpublished results from the ABCLOS

BEBC NB Ne/Hp

|
M(N,q2)

10
MNS(N,q2)=ij-‘(D‘(z,q2) -D7(z,q2)) dz
8.2

001

= q2 GeV2 —

1 1 ) I | 1 IS S |

1 10 100

Fig. 20. Preliminary data on N == 3 and N = 5 moments of non-singlet fragmentation functions from
Ne experiment. The curves indicate the QCD predictions for Afo = 0.50 (B. Saitta, private communication}
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Fig. 21. As in Fig. 20, but data from vH, experiment (ABCMO collaboration)
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Fig. 22. Log-log moment plot of non-singlet fragmentation functions from vNe experiment
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Fig. 23. As in Fig. 22, but from vH, experiment. (N. Schmitz (Munich), private communication)
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Ne/H, experiment, and from the ABCMO H, experiment*. The curves in each case show
the prediction (24) for A, = 0.5. In both cases, the agreement between theory and experi-
ment, for g% > 1, is satisfactory. Figs. 22 and 23 show the corresponding resuits for the log-
-log plots of the non-singlet moments. The numbers in Fig. 23 are taken from an analysis
of the ABCMO vH, data by the Munich group®. They used %, > 0 to define the current
fragments.

Finally, Fig. 24 shows the results for the fitted A, values, from the Munich analysis
of the H, fragmentation data, and from the analysis of the non-singlet structure function
xF; in the Ne/H, experiment described early on. I want to emphasize that the fragmenta-

V,VNe — § xF3 moments, q2 =1-100 (q2=1-22 for N=2)
VH  —3$ (D*-D") moments, q2=1-25 {Munich analysis}
= Ao
0.8} { { { [
06
04 1 i 1 1 1 1
2 3 4 5 6 7
N.——

Fig. 24. Values of Ay o from analysis of non-singlet moments of xF; from v, yNe data on structure functions
(shown by crosses), and of (D+— D) fragmentation functions in vH, data (shown by circles)

tion data are very preliminary and at this point ought not to be taken as definitive. The
fact that, from two completely different methods of analysis of two independent experi-
ments, the two estimates for 4, agree within 5%, is undoubtedly coincidence. However,
that they should agree within 309 is already something of a miracle; when I plotted this
graph I really began to believe — for the first time — that there might be something in
QCD after all. Hopefully, the result will stand after further analysis and cleaning up
of the data.

2.3. Gluon Fragmentation — The Singlet Moments

In exactly the same way that the moments of the F, structure function allowed us to
extract something on gluon structure functions, we expect to get information on gluon
fragmentation from the singlet combinations of hadrons. Following Uematsu {17} one

41 am indebted to Dr. B. Saitta (Oxford) for kindly supplying this data.

& v -~
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can write the singlet quark fragmentation function as
DYs = D+ DI+ Dy +D;+ D]+ DI+ ... (25)
and for the non-singlet
Dgns = Di —DF(= Di—DZ etc.). (26)

If we assume m = 3 quark flavours and SU3 symmetry, and the case where secondary
pions are dominant, the “valence” (¥') and “sea” (S) pion contributions can be written as

Dy = V+S(= Dy = D] = D)), 27
Dy = S(= Dy = D7 = DI = DY). (28)
Hence
Dgs = 2V+6S, Dns =7V,
V4S8 = (Dos+4Dgns)/6, S = (Dgs—2Dons)/6 (29)
and

D, S (Dqs/Dons)—2

D_: T V+S (DQS/DQNS)+4'

(30)

The last equation expresses the m—/n* ratio in neutrino scattering in terms of the sin-
glet/non-singlet functions, for which predictions are available from the leading order
QCD formalism. The corresponding quark moments are:

MQNS(Na q2) = MQNS(N’ q(z)) (LO/L)sta (313)
Ms(N, %) = Mos(N, q3) [An(Lo/L)*" +(1— Ax) (Lo/L)"*]
—Mos(N, 43) [Hi((Lo/L)*~ —(Lo/L)'*)] (31b)

and for the gluon moments
Mgs(N, ¢°) = Mas(N, q5) [An(Lo/L)"* +(1 = Ay) (Lo/L)"]

—Mos(N, g5) [Fx((Lo/L)"~ = (Lo/L)" )], (31¢)

where the quantities Ay, Fy and Hy, depending on N and m, as well as the anomalous
dimensions dys, d+, d_ are given in the Appendix. M; is the gluon fragmentation moment,
and L, = In g3/4%, L = In g2/ A2, where g{ is the reference value of g2. Given the value
of A, (30) and (31) together can be used to express the ratio of n~ to 7+ moments in neutrino
scattering at any g2 in terms of the measured ratio at g3, and the ratio of gluon to quark
singlet moments at that point. The point of choosing the ©=/n* ratio — rather than the sum
(nt+7~) — is that it is particularly sensitive to the gluon moments, and not strongly
dependent on A.
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Preliminary results for M—/M+ and for N = 2 and N = 6, are shown in Fig. 25. The
curves are given for different assumed values of

Py = 6ME(N, q3)/ME(N, q?). (32)

T v Ty T Ty

. Negative 7 positive fragmentation momenis ; v l-iz

secondaries forward in Breit frame
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Fig. 25. Preliminary BEBC data on ratio of moments of negative and positive hadron fragmentation

functions, from vH, experiment, versus ¢2, for N = 2 and N = 6. The curves are QCD predictions, for

different values of P, = (gluon fragmentation moment)/(singlet quark fragmentation moment) at g3. Solid
curves, g2 = 5 GeVZ2; broken curves, g2 = 20 GeV?

For the N = 2 moment, energy-momentum conservation implies that, if we sum over all
secondaries, neutral and charged, then
H 2m 1t

H
Y Mg =Y ;1 gzbg,(z)dz = 2m(= 6),

iMcs = i j'lzDg(z)dz = 1. (33)
0

In the VH, experiment, only charged secondaries are measured, as implied in (32).
Nevertheless, we might expect P, =~ 1, the same as the value if we included neutrals. The
N = 2 results are indeed consistent with P, ~ 1. What is very satisfactory is that this is true
for both g5 = 5 GeV? and ¢} = 20 GeV? — as indeed it should be, since (33) is valid at
all g2

The data for N = 6 show, on the contrary, different values of P, depending on the
choice of g3. For g3 = 5, P =~ 2, while for g2 = 20, P, ~ 1. Thus, relative to the (singlet)
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quark moment Mg, the N = 6 gluon moment Mg falls off more rapidly with g2. This
is precisely what is found from Eq. (3lc), predicting a factor 1.8, and arises, as pointed
out in the discussion on structure functions, from the G - G+ G diagram.

When the quark and gluon fragmentation moments have been fully evaluated, an
obvious application would be to predictions for the process ete~ — hadrons, on and off
resonance. Off resonance, the *“2 quark jet” annihilation

ete” — i(Qﬁ- Q;) - hadrons (34)

is described by Dgs (weighted however by the quark charges, squared). At prominent
resonances ¢, Y... the dominant process is proposed to be

e*¢e~ - Y — 3G — hadrons (35)

and is described by Dgs.

As ¢? increases, Dgg peaks to low z more rapidly than does the function Dy for the
quarks. Hence, high mass 1~ resonances (bb, tt ...) decaying via the 3-gluon channel,
should exhibit higher multiplicities and softer z distributions than the off-resonance quark-
-antiquark jets.

Let me emphasize that I have discussed partial and preliminary data from the Aachen-
Bonn-CERN-Munich-Oxford BEBC wideband vH, experiment. They serve mainly to
illustrate the sort of physics that one can get out. In the future, better statistics, including,
hopefully, information on d-quark decays from antineutrino runs, will be forthcoming.

2.4. Quark Charges

As a final application of ideas on fragmentation one can consider the N = 1 moments
of the non-singlet fragmentation function, which should measure the quark charges, i.e.

1
{ (DY —DJ)dz = -5,
0

1
[ (D§ —Dg)dz = ~§-56, (36)
0
where 6 ~ 0.06 is a small correction applied by Feynman and Field [14] to take account
of SU3 symmetry breaking (i.e. ssfuu < 1 for the quark-antiquark sea). We can, in
principle, measure the quantities in (36) using neutrino and antineutrino reactions

v4d = p+u, v4u- pt4d
if we keep to the region x > 0.1 so as to exclude, as far as possible, the diluting effects
of the sea quarks. Actually there are competing demands with respect to the appropriate

x region to use. In order to separate the wanted current fragments from the unwanted target
fragments, we need to keep the rapidity interval between the two as large as possible

Target region Q Current region f

!

' «InW?-Ing*— i —Ing*—> l Rapidity
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Thus we need (In W2 —In ¢2) large i.e. x fairly small, while the need to separate valence
from sea quarks requires x not too small. The choice x > 0.1, W > 4 GeV is a compro-
mise — not necessarily the best. Because of the confusion between target and current
fragments one cannot expect very reliable estimates of the charge. The situation is different
from that for the higher N moments, where the target region is killed off by the zV ™!
factor.

Fig. 26 shows the results obtained by Scott [I8] using the BEBC Ne/Hzf data
from neutrinos and autineutrinos. The charge per event per interval of Inz is plotted

T ¥ T T ! T
Quark charge sumrule
® Forward in current Breit- frame

*x Forward in CMS

x>0.1 W>4GeV <@ g =0.55%.06
Z BF = TRV

[~ u quarks /"r_k«»c'ﬁ: 067:.07) |
?/* \ 7]

KQge=-012¢.13 ]
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Fig. 26. Contribution to the N = 1 non-singlet moments of the fragmentation functions as a function

of z, for vNe (top) and vNe (bottom) reactions. The integral of the distributions should measure the quark

charges <Qy in the upper graph and <Qq) in the lower. The curves are from the Feynman-Field prediction

{14]. The current fragments are defined as hadrons forward in the CMS (crosses) or forward in the quark
Breit-frame (circles) (After W. G. Scott [18])

against z, measured either in the Breit frame or centre-of-mass frame (zzp = ZpEF/\/ 57,
Zems = 2peMS/ W and both are close to the lab. system value z = E"/v). The plot in terms
of In z was chosen to facilitate comparison with Feynman and Field. The results of the
integration (35) are given in the table below:

TABLE 1V
Quark charges [18] v, vNe (ABCLOS)

{Qw {Qa>
Breit-frame +0.55+0.06 —0.12+0.13
CMS +0.67+0.07 —0.1940.17

Feynman-Field +0.60 -0.39
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The large erros on Q, are directly due to the very small number (~270) of antineutrino
events available. This shortcoming will be made good with more data which have been
taken in the last month or so.

Clearly, these results do not prove that the quarks have the fractional charges +2/3
and —1/3 that we know and love so well, but they are consistent with such assignments.

Summary and Conclusions

The most important experimental result on this subject over the last year is that all
experiments on lepton-nucleon scattering now see significant deviations from Bjorken
scaling, whether one uses the Bjorken x or the Nachtmann variable £&.

Most of the experiments see rather gentle dependence of the structure functions on ¢2,
qualitatively similar to the logarithmic dependence expected from the asymptotically free
gauge theory of quarks and gluons (QCD). There 1s one experiment on muon-Fe scattering
at FNAL, by Chen, which I did not mention, which reports very much stronger ¢* depen-
dence at high ¢*(¢> > 50). No other experiments see this, but they have limited data in
this region. Even the gentler ¢g* dependences may be due to other things (thresholds, new
phenomena) than QCD effects — but since my brief was comparison with QCD, that
is what I concentrated on.

For the structure functions, there is data from one muon scattering exgeriment (E98)
in H, and D,, and from two neutrino experiments (CDHS and BEBC ABCLOS) using
isoscalar targets. They all find non-singlet moments of different orders which are related
by power laws with indices more or less consistent with QCD (vector gluons). Furthermore,
the N = 1 moment sumrule (GLS) is in good shape. The scale parameter 4 (measured
in QCD leading order) is ~0.7 GeV in 2 experiments and much smaller (~0.4 GeV)
in a third. So, more work needs to be done! The analyses of the gluon moments also lead
to sensible results, with the lower moments comparable with those of the quarks.

Calculations have also been made, for both singlets and non-singlets, with inclusion
of terms in next to leading order. The results are disappointing; none of the fits are better
than those in leading order, and some are much worse.

A considerable amount of progress is being made right now in the analysis of frag-
mentation functions. The non-singlet moments seem to come out with the same anomalous
dimensions and A values as was found for the structure functions, and this result, if con-
firmed, will be a real triumph for the theory. The N = 1 moments are consistent with the
fractional quark charge assignments. The singlet moment analysis leads to estimates for
gluon fragmentation moments, from which the actual fragmentation functions can, eventu-
ally, be derived. An important cross-check of these findings will be to processes like
ete” - Y - 3G — hadrons.

My feeling is that most of the easy experimental measurements, and the qualitative or
semi-quantitative comparison with QCD, have now been done. It will be clearly a very
much harder task to reduce the experimental errors by even a modest (~3) factor and to
match this improved precision by more detailed theoretical calculations, involving higher-
-order corrections. Neutrino experiments, if done with bubble chambers, are of very limited
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statistical precision and can hardly contribute very much more on this subject; counter
experiments have enormously better statistical precision but the present generation of
calorimeters, plus solid magnetized iron toroids for muon momentum analysis, are strongly
limited by their relatively poor resolution and by other sources of systematic error. Perhaps
the best hope lies in high statistics, high precision muon scattering experiments, and I hope
for great things from the CERN EMC experimental programme. But it all looks like being
quite hard and personally I feel this may be a good time to get out and do other things.

APPENDIX

The parameters Ay, By, Cy, Dy, Fy, Hy, dys, d:. and d. quoted in equations (11)
and (31) have the following values (using the Hinchliffe-Llewellyn-Smith notation [13]):

dy = % [st"'dGGi\/(dNS‘dGG)2+4dQGdGQ]s

9 [ 4 4 NOL
GG—(33—2m)|:9 STNN-D)  (N+D(N+2) T Z]]
2
_ —83(N’+N+2) _ —6m(N*+N+2)
T (B3-2mN(N*-1)" ¥  (BB3-2m)N(N+D)(N+2)’

N

4 2 1
dys = (33—2m) I:l—.N(N+1) +4Z 7], Ay = (dy—dys)(d—d.),
2

By = dQG/(d+‘d-)s Cy = (d+"‘dGG)/(d+—d~) = (I_AN)a

Dy = dgo/(d+—d-), Fy = AyCy[(2mDy), Hy = 2mDy,.
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