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METHOD OF MARKOV CHAINS SIMULATION IN
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A numerical solution of the Fredholm linear integral equation of the 2-nd kind by
the Monte-Carlo method, which is directly applicable to obtaining various functionals in
the theory of incoherent radiation and neutron transfer, is suggested. The method resembles
a well-known statistics quota sample redlized in a generalized space of variable dimension.
The necessary distribution of states according to a set of subspaces is achieved by means
of the Markov Chain Technique. The numerical calculation, made for the particular case
of breaking up into subspaces of photon scattering of various multiplicities, reveals the high
efficiency of the method in comparison with the known estimate by collisions for not very

large mean values of photon scattering, N, in the mediom.
PACS numbers: 02.60.+y, 02.70.+d

1. Introduction

The necessity to calculate radiation characteristics allowing for various nonequilibrium
processes is more often met nowadays in fields such as atrophysics, atmospheric optics,
low-temperature plasma, gasdynamic lasers and radiation gasdynamics. In many problems,
however, one has to take into account the radiating gas motion, spatial inhomogeneity
of gasdynamic fields, frequency redistribution, etc. In general case similar problems
compel a scientist to solve integro-differential equations with a complicated kernel under
the given velocity-, temperature- and pressure-fields.

The incoherent radiation resonance scattering by two-level atoms is the simplest
problem of this kind in physics [1, 2]. While considering real radiating particles for instance
such as diatomic molecules {3, 4], an equation for the vibrational energy density defining
the source function of the transfer -equation differs only in the kernel structure of the in-
tegro-differential equation as follows from {5, 6]. Problems of radiation transfer in scatter-
ing media [7] as well as the theory of neutron transport [8] are also solved by equations
of the same type.
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In what follows, we develop the method of numerical solution of Fredholm linear
integral equation of the 2-nd kind which can be applied directly to the above-mentioned
problems taking into consideration that in the stationary case the original integro-dif-
ferential equation reduces to an integral one through the Green function of the transfer
operator.

The basic difference between the proposed approach and classical Monte-Carlo
methods [8-10] is in the essential use of the uniform Markov chains theory. This method
is the development of the approach, introduced by the authors in the previous paper [11].
The whole calculation procedure becomes more simple and effective as the calculation
of the constant normalization of the obtainable state sequence {ag} is needless.

2. Calculation of functionals by the Markov chains method

Radiation characteristics such as radiation flux density, intensity, etc. are of consi-
derable interest. They are linear functionals defined by a Fredholm equation of the 2-nd
kind [11]:

- -,

e(r) = | K@, r)er)dr + o(r). (1)
v

Therefore, it is reasonable to formulate the direct calculation technique for linear function-
als F of the form:

F = ; f@Pe(r)dr, (2)

where f(r) is the arbitrary nonnegative function defining the sought after radiation character-
istic.

Bearing in mind that the kernel norm of Eq. (1) is below unity we may set down the
desired functional F as the Neumann series

o]

F=3

n=1
where K(r) =1, K(ry, ..., I
A, =VQVV® ...V for n
of non-crossing spaces A4,,:

=

£ FCR) (CR AT (AT 3)

= K(F,,72) ... K(Fa—y, 7). Introduce the set of spaces
1,2, ... each A, being presented in'the form of a union

e

An = U Anﬁ'
B
Let {as} be some sequence of points @ = (F1. Fs, ..., 7,), N(@) = n, satisfying the follow-

ing: The points age€ A4,; are distributed with some positive probability density =,4(a):

§ oo § g (Fys Py ooy T)AF(dF, .. dFy = 1, 4)
(Auﬁ)

at M — o, M,;/M — P,;, where P,; are the fixed non-zero probabilities ) P,; = I,
np

M, is the number of points dge 4,5, M = Y. M,,. To allow for these definitions on the
np
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basis of the law of large numbers an expression for the functional (3) with M large enough

takes the form:
f(as)K(as)
2 z nﬂnnﬂ(as) (aS)’ (5)

asEAnp
where
fla) = f(r), K@) =K@y, .ara)s  ¢la) = o(F,).

To derive formula (5) one should proceed in (3) from integration over age 4,; to
summation over as € 4,,, noting that at M — oo an average volume per single sequence
state ag€ A,, is equal to @,4(a) = (M,4m,5(@))~". Ar introduced breaking up of the set
of spaces 4, into 4,, resembles a well-known method of quota sample [9] and serves for
the decrease of dispersion. Consider now in detail the following case of the space 4, break-
ing up:

Ay = VsQVOV® ...QV, V=UV,.
— 8

Define 7,4(a) at N(a) = n as: |
K .. I
@) =TSO K@) = KolFon ) e Kol T ©
0B

where

Jola) = fo(;:l), Jog = ijo(;)d;a jKo(;, ;I)d" =
B 1 4
Correspondingly, Eq. (5) at sufficiently large M will take the form

fos f(as)K(as)
M., folas)Ko(as)

ng as € Ang
Thus in the limit M — oo.formula (7) gives an exact value of the functional F for the

specified sequence {ag}. Note, that for convenience fo(r) and Ko(F, ") should be chosen
such that

F =

P(as)- Q)

K@, 7)

T oo iy

fo(;) = f(;)a Ko(;; _':’) jK(r : )dr .

®

The form of Eq. (7) is especially simple when relations (8) are exact equalities. The remain-
ing arbitrariness in choice of probabilities P,; is used to decrease the dispersion of the
functional F.
It is known[9] that as M — oo the dispersion DF goes to zero when the sequence
{as} is distributed with density in proportion to the integrand in Eq. (3). Hence, it appears
that for the sake of dispersion decrease the following choice of P, is advisable:

— Jj Jf(rl)K(rl, oos F)Q(FR)AFy .. dFy: ®

Ve V
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Thus, one should construct the sequence {ag}, its subsequent @, € 4,; being distributed
with the probability density (6). As M — oo M,,/M tends to P,,, defined by formula (9).
For this purpose we can use the results of paper [11], describing the method of obtaining
the {as} sequence based on the theory of uniform Markov chains. By this method the
arbitrary distribution of the sequence {as} may be realized in the limit when the statistical
sample volume tends to infinity.

We define the probability density of the a-to-b-state transition W{(g, b), satisfying the
conditions of the fundamental limiting theorem [12] as well as the balance and normaliza-
tion equations, as

P(a)W(a, b) = P(b)W(b, a),
S [ Wy oy a3 Try oy FR)AF o dry = 1 (10)
m=1V | 4
By Eq. (3) the probability density P(q) is chosen as:

1
P(a) = — f(@)K(a)g(a). (11

By [11] the solution of a set of equations (10) general enough for further purposes is of the
form:

W(a, b) = A(a, b)rn(b)w(a, b), (12)
where at N(@) # 1, a # b
48 6) = 0w+ 3 a1+ s Ovianer s 3
and, correspondingly, at N(@) = 1, a # b
4@ D) = 2 5yt 2 sy (14)

Here, o is the free theoretical parameter 0 < ¢ < 1 which is often set equal to 1/3.
Oneay Ny 18 the Kroneker symbol. 7(a) is the probability density which is chosen propor-
tional to m,,(@) at a € 4,;:

_ Jo(a)Ko(a)

n(a) = o § n(F s s PPy . dFy = 1. (15)
1 4

Zfoﬁ ' [ 4
B

The conditional transition probability w(a, b) at the known final state b can be defined
either symmetrically
J(O)K(D)p(b)/] fo(b)K,(b)
f(@)K(a)p(a)] fo(@)K o(@) +S(BK(B)g(b)] fo(b)Ko(B)”

w(a, b) =
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or asymmetrically

1, Wap = 1,
wab =k B 16)
where
W(a, b) _JBOKD)g(b)  fo(a)Ko(a) an

fo(B)Ko(b)  fla)K(a)p(a)
Note, that an asymmetrical definition of the conditional transition probability is more
preferablc as in this case the transition frequency to new states is increased.

Describe mow an explicit construction procedure of the sequence {ag} with simulta-
neous calculation of the unknown functional (7). Let a certain state g, of the sequence
{as} be known. Each additional state is generated from its immediate predecessor in the
following manmer. First, by Eqs. (13), (14) we select N(a;, ). At N(g) # | with proba-
bility o we set N(a,,,) = N(qy), with probability (1-06)/2 we set N(a,, ;) = N(ag)—1
and also with probability (1-6)/2 we set N(d,,,) = N(a,)+1. By analogy at N(a)) =1,
with probability (1+06)/2 we set N(a,,,) = N(g,) and with probability (1 —g)/2 we set
N(a.+,) = N(g)+1. Then we construct the state ¢, , itself with the probability density
n(a) (15). With the probability density fo(a)/ fop We select at first ¥4, then with the proba-

]

bility density Ko(r;, 7,) and the known r, we select 7,, etc. The process terminates at
n = N(a,,) and as a result we find a,,, = (ry, ..., r,)- Finally, we examine the realiza-
tion of the transition @, — a,,,. With that end in view the probability w(a,, g, ,) defined
by Eqgs. (16), (17) is computed and compared with the proper pseudorandom fraction ¢
(uniform on the interval (0, 1)). If the transition appears to be an .allowed one, (if
& < wia, a4 1)) then to find a,,, we repeat the procedure described starting from the
already known state a, ;. In the opposit: case (if £ > w(a,, a,,)) the state ¢, , is gener-
ated for the second time with the probability density m,4(@) where n = N(a,), f = B(a,)
and one finally gets @, ,. The transition to the next state, however, is carried out in this
case on the basis of the previous state ¢, i.e. asif g, ; = a,. If the next transition ¢, — ¢, ,
proves to be forbidden as well, then g, , is generated again with the deusity =,,(@) at
n = N(g,+), B = Bla,,,) resulting in 4, ,, the transition to g, ; being carried out from
the state a,: g, — @, 3, etc. As the initial state @, of the sequence {as} being generated
can be an arbitrary one, for the sake of convenience the density n(a) at N(a) = 1 may
be used.

The calculation of the functional F goes simultancously with the generation {ay}.
Therefore, it is advisable to have two memory cells for each pair of numbers (n, f). In
the process of {as} generation one serves for the M,; number storage, the other stores
the sum

f(as)K(ay)
o ¥as).
folas)Ko(a s),
as € Anp
When the generation of {ag} is ceased by Eq. (7). the functional F is obtained by
summation.
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Note also that in those cases when the transition appears to be forbidden the calculated
term f(ag)K(as) ¢(as)/fo(as)Kolas) in the forbidden state ag should be placed in additional
memory cells. Henceforth, they can be used instead of a supplementary generation if
forbidden tranmsitions occur.

The technique described is applied readily to the case when the function f() governs
some density either on a'line or a surface belonging to ¥, In this case similarly to [11]
in all the formulae instead of 7, the new variable S,, will be given, defined on the corres-
ponding null set. In other respects the calculation procedure for F remains unchanged.

3. The comparison of various methods. Numerical results

To investigate the comparative efficiency of the above method named for brevity
the MC (Markov Chains) method and other methods to be mentioned, consider the sim-
plest integral equation

g(1) = f R7* exp (—[r—1')e(z)dr + gq. (18)
0

The choice is explained by an oppcrtunity to find an analytical solution and to evaluate
strictly enough the accuracy of various methods. Note, that transition to multidimensional
spaces with V-volume any configuration and arbitrary complicated kernel X in the frame-
work of the methods considered causes no difficulties. Eq. (19) describes the vibrational
energy density distribution as diffusion approximation [6] in a homogeneous flat layer
of an efficient cptical depth 7, and the photon survival probability in an elementary scatter-
ing act R*. An average by layer density of the vibrational energy will be taken as the func-
tional

F = if&(r)dr. 19
To

In what follows, for the sake of simplicity the breaking up of 4, into subspaces A4,,
is not used.
Assuming by Eq. (8)

and

exp (—|7' —1()
k(1) ’

we come to the following representation of the functional (19)

Ko('t, T’) =

70
k() = [ exp (~|t—7dT,
0

maxn

#\n—1
F=go z Mt (%) z K(as), (20)

n=1 as € An
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where
a = (11,7 --s o)y K@) = K(T)K(T3) ... K(T4-1)-

The above MC method accuracy can be easily improved by increasing the number
of M, states in Eq. (20), the total number of trajectcries under generation remaining the
same. Aiming at this, we introduce an extended state sequence {ag} enclosing into ag€ 4,
the initial sections (t4, ..., 7,) of all the {as} sequence states for which N(as) > n. The
dispersion of F is likely to decrease due to an increase of M,. To calculate F using {ag}
it is sufficient to substitute ag into Eq. (20) for ag, M, denoting the number of states
age A,

For reasons of convenience the calculation of F based on the sequence {ag} is called
che Modified Markov Chains (MMC) method. In the following the accuracies of MC
and MMC methods are compared with the well-known estimator by collisions {8, 9, 10]
which is presented as the classical (Cl) method. The probability density of the photon
trajectory by the ClI method is taken as

n(a) = fo(t)S(T DK (T1, 12) ... S(Tp DK (Tim= 15 ) [1 - S(t)],
K (r,7) = exp (~a|t—r'|)/}oexp (—~ajt~1')dr’, «a = const,
1]

here S(1) is the probability of trajectory continuation in the point t (scattering), m is the
random number of the final trajectory point and a defines the difference of the mean free
path of the photon being modelled from the true one, which is 1. Note, that at o = 1
Ki(1, 1) = Ko(z, 7).

Tables I, IT give values of 6F(T):

SF(T)=F 'M™! % |F~F,

which is an average relative deviation for the counting time 7. The latter was set equal
30 minutes for all variants in the computer BESM-6. Here N is the theoretical value of

TABLE 1
Relative accuracy of F-functional calculation by C_] method as a function of S(r) and &; 1o = 6, R* = 0.999,
N = 6.97
S(v) i « o6F
S(r) = corkt = 0.95 i 4.10x 104
S(7) = 8§() 1 1.82x10-3
S(r) = const = 0.75 1 1.21 102
S(t) = const = 0.95 0.2 1.27 x 10-2
S(r) = Se(7) 0.2 2.32x 1072
S(7) = const = §; = 0.83 0.2 4.32x10-2
S(r) = const = 0.75 0.1 4.50x10-2
S(r) = §¢z) 0.05 ; 2.95x10-2

S(x) = 2—exp (—ar)—exp [~ a(to—7)) f 0.05 2.90x 10~}
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TABLE 1I

Relative accuracy of F-functional calculation by MC, MMC, Cl methods for various mean scattering
numbers of photon N

Tg=1 To=2 T =3 To =6 ‘[0=12 To = 24
Method 2 2 2 =2 2 2
eto N =158 N=1233 N =324 N = 6.97 N = 18.6 N =571
|
Cl 5.12x10~* | 6.40%x10~* | 1.60x10-3 | 1.82x10~3 | 1.22x10°3 1.40x 1072
MC 1.92x10* | 3.62x10~* | 5.08x10* | 1.30x10° | 1.20x10-> 1.40x10™*
MMC 6.20x10°% | 2.,70x10~* | 1.99%x10~* | 8.97x10~* | 1.10x10-2 | 1.35x10°!

an average photon scattering number in the medium for each variant of 7,, R* values.
Table I gives the behaviour of 6F calculated by the Cl method depending on various assign-
ments of S(z) and « at 1, = 6 and R* = 0.999. The true, S|(r) and the mean true, S, pro-
babilities of scattering are defined by

R* _ 1
S(x) = — (1), S, = "_J‘St(f)d’f-
2 To
0

Table IT presents values of 6F calculated by three methods Cl, MC, MMC according to
an optical thickness of the layer 7, at R* = 0.999, one of the best variants S(z) = S(7),
o = 1 being chosen in Cl method.

The results given in Table 1 indicate the importance of the proper choice of S(1), «
by all Moate-Carlo methods using trajectories with absorption. It is clear als. that an
understating or overstating of an average scattering probability with respect to S, as well
as the changing of an average free path with respect to the true one results as a rule in
a decrease in accuracy. It should be noted that in practice an evaluation of S(7) and the
true average free path is usually troublesome while in MC and MMC methods the problem
of summation of the Neumann series terms with various scattering multiplicity is solved
efficiently enough “automatically’.

Table II indicates that for not very large values of N 2 10 the MC and MMC methods
yield better resulls in comparison with the Cl method. The Cl method accuracy exceeds
that of MC and MMC methods only for large mean values of N.

The authors are grateful to A. A. Kurskov for stimulating discussions.
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