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ANALYTIC SOLUTION OF THE QCD EVOLUTION EQUATION
FOR THE NON-SINGLET STRUCTURE FUNCTIONS
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The solution of the leading log QCD evolution equation for the nonp-singlet evolution
function is given in the form of a convergent series. The convergence is rapid for small values
of x. An asymptotic expansion in powers of (1 —x) is also obtained. Its first few terms re-
produce within about one per cent all the moments of the evolution function in the kinema-
tical range of present and near future interest. Using simultaneously the two expansions
it is easy to calculate structure functions in all the region 0 < x < 1 with an accuracy of the
order of one per cent.

PACS numbers: 12.20.Hx, 11.10.Jj

1. Introduction

The Q2 evolution of nucleon structure functions is being both determined experimen-
" tally and calculated theoretically with increasing precision. In particular, the comparison
with experiment of the predicted corrections to the dominant leading log (LL) behaviour
of the structure functions has become an important testing ground for QCD. For recent
reviews cf. e.g. Refs. [1] and [2]. In order to study the corrections, it is necessary to know
well the leading LL term. One possibility, advocated for instance in Ref. [2], is to consider
moments of the structure functions only. For the @2 evolution of moments the LL approxi-
mation yields simple analytic formulae. Experimentally, however, one measures directly
not the moments, but the structure functions — often in a kinematical region too small
to calculate moments without a significant loss in accuracy. Therefore, approximate formu-
lae (cf. e.g. [3]) and numerical tables {4] have been provided to calculate the Q2 evolution
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of structure functions. Several numerical methods for such calculations have also been
published [4-8].

In this paper we give an analytic solution in form of a convergent series for the LL
evolution of the non-singlet structure functions. We also introduce an asymptotic expan-
sion, which should be useful for phenomenology, because of its simplicity and of the preci-
sion with which it reproduces al/ the moments of the structure functions in a Q2 range
sufficient to cover the present and near future experiments.

In the following section we introduce our notation and recall some formulae needed
for further work. In Section 3 the exact solution is given and discussed. Section 4 is devoted
to the asymptotic expansion. Our conclusions are summarized in Section §.

2. Integral representation for the non-singlet evolution function

The LL evolution with Q2 of an arbitrary non-singlet structure function f, can be
expressed in terms of a universal evolution function E, (cf. e.g. Ref. [4]) according to the
formula

1 1
fu(x, Q%) = g dy g dz8(x — y2)E(2, Of(», 03)- (PRY)
The cascade length ¢, which appears in this formula, is defined by
6
t = 33ylonlog (Q%/A%)[1og (@5/4%)), Q2

where fis the number of flavours and 4 is the characteristic scale of QCD. As seen from
relation (2.1), the evolution function may be interpreted as a structure fumction, which
would have evolved at 02, if at Q3 it had been 6(1—z). Therefore, it satisfies the LL evolu-
tion equation with particularly simple initial conditions. Here and in the following structure
functions normalized to the number of partons (and not to their energy) are used so that

i E(x, Hdx = 1. (2.3)

The LL evolution equation for the Mellin transform of the evolution function is easily
solved and one finds the famous result for moments

E(s) = i x*TIE(x, t) = exp [A(3/4+1/Q2s(s+ 1)) — w(s+ 1)—7)], 2.9)
0

where A = 81/3, y is the logarithmic derivative of the I'-function and y is Euler’s constant.

Inverting relation (2.4) one finds .
i

E(x,t) = -2—11;—1 I dse”E,(s), 2.5)

=i

1
where y = log — and the integration path leaves all the singular points s = 0, —1, -2, ...
x
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on its left-hand side. Integral (2.5) can be evaluated in the x — | and x — 0 limits. One
finds

eG4

Ir¢4)

E(x,1) = /4 \/% 1,(./24y) <1+o ( \/%)) QP

where 7, is the modified Bessel function. Formulae analogous to (2.5), (2.6) and (2.7),
curves obtained by a numerical integration of integral (2.5) and references to earlier work on
the subject may be found in Ref. [9].

E/(x,t) = AL=-x*"11+0(1-x)) 2.6)

and

3. Convergent series expansion for the non-singlet evolution function

In order to find the evolution function, we evaluate integral (2.5). Since y is positive
and asymptotically for large |s|, |arg s] < n: y(s+1) ~ log s, the integration contour can
be deformed so that it starts at — oo just below the real axis, goes parallel to the real axis,

+ioe @

5
¢
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Fig. 1. Deformation of the integration contour leading from Eq. (2.5) to Eq. (3.1)

up to Re(s) = 0, circles counterclockwise around s'= 0 and just above the real axis returns
to —oo. The contributions from the integrals along the real axis between the singularities
at s =0, —1, ... cancel, and one is left with a sum of contributions: one from a small
circle around each of the singularities. Thus

Efx, 1) = Z % J‘ dse”E(s), O0<y<w (3.1)
k=0 x
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where ¢, denotes a small circle going anticlockwise around s = —k (cf. Fig. I). Using
the identity

k
wis+1) = p(s+k+1)— ,2 1/(s+j) 3.2
=1

and the fact that ¢(I+5) is holomorphic for |s| < 1 it is easy to show that for k large
enough

'i Jr dse”E(s)| = O(k*x"). (3.3)
2mi.

Ck

Thus series (3.1) converges for all |x| < 1. For each ¢, the integral can be written in the
form

-]

1 1
5 J dse”E(s) = x* Z—mj due™* ol 2 (A", 3.4
(=3

co n=0

where a, = a; = A[2 and a;, = A for all k > 2. The series in the integrand is convergent
for |u] < 1. Integrating term by term according to the formula

I , " —
5 | due™ T = (al) "t VL2 ay), (3:5)

where I, are modified Bessel functions, one obtains a convergent series for integral (3.4)
and substituting it into relation (3.1) a convergent series for E(x):

-+

E/(x,1) = kzo x* [..Zo Zin(A) (@)™, 4,2 Jay)] (3.6)
Note that an asymptotic expansion in inverse powers of /), as obtained by direct general-
ization of formula (2.7), includes only the k = 0 contribution, because all the others are
“exponentially small” in y. Since, however, they are exponentially small in a logarithm,
they are quite important for practical calculations. The formulae for the coefficients g;,(4)
are given in Appendix B.

For ¢t — 0 all the terms in expansion (3.6), valid for y # 0, tend to zero and the sum
rule (2.3) implies E,(x) = 6(1 —x), which is correct. It is of interest, however, to see what
happens for larger ¢. In Fig. 2 the results of a numerical calculation for ¢ = 0.45 are shown
and compared with results obtained in Ref. [4], where a Monte Carlo program was used.
It is seen that effects of the k 5 O singularities show up at the one per cent level for x ~ 0.01,
increase with increasing x and exceed 10 per cent at x 2 0.15. For x < 0.6 the effect
of the k = 3 singularity is below I.per cent. A comparable correction comes from putting
g2, = 0 for n > 6. For k < 2 we put g,, = 0 for n > 4, but these series converge better
and the corresponding error is smaller. To summarize: we think that our error at x = 0.6
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does not exceed 2 per cent and decreases with decreasing x. For x close to one the con-
vergence is poor and for this reason we studied an extension of approximation (2.6) as
discussed in the following section.

Ey (x.1)
t=045
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. ) 1 , )
Fig. 2. Evolution function E,,(y = log -—) for t = 0.45. The continuous curve and the dashed curve
X i .
were obtained from formula (3.6) including k = 0, 1, 2 in the first case and only & = 0 in the second. The
histogram is the corresponding Monte Carlo result from Ref. [4]
4. Asymptotic series for the non-singlet evolution function

An asymptotic expansion of the non-singlet evolution function in powers of (I —x):

eA3/4- =
E,,(x, t) = —F(Zj—- (1'—JC)A_1 <1+ Z A,,(l—-X)”) (4.1)
ne=1

can be obtained as follows (cf. e.g. Ref. [4]). One rewrites expression (2.5) in the form

i @

v [ i 2]
B ) = 251 J‘ wi\s) N\ L  Gen)]r  @P
i

—~{m n=%



760

where the asymptotic expansion
o0
(s+1) = log s+ ! ; Bz 4.3
s = s+ — = —=, ,
¥ g 25 J_y2ns*™ @3)

n=1
has been substituted. Since the Bernoulli numbers B,, satisfy the inequality
(=1D"*'B,, > 2(2n)Y/(2n)*", 4.9)

expansion (4.3) diverges for all finite s. Expanding formally in powers of s-! the second
exponential in the integrand of imtegral (4.2) and integrating term by term according
to the formula
1 88— —1+a
— %5 s = y IT(or) (4.5)
2ri
—iw

. . . 1
one finds an expansion of the evolution function £,(x) in powers of y = log -—. For x small
x

y becomes large and the series is useless. A significant improvement is obtained by expanding
each y in powers of (I—x). Rearranging the resulting expansion of E,(x) one obtains
a series of the form (4.1). We show in Appendix A that this series is asymptotically conver-
gent. An explicit calculation gives for the first few terms:

Ay = A2—1, (4.6)

A, = (BA2—TA+1+11/(A+1))/24, 4.7

Ay = (AP — A2 =34+ 11 -11/(A+ 1), (4.8)
1 503 896 1053

Ay = —— | 304* +604% —170A4% +2404A4 + 1674~ - ) 4.9

. 11520( + +aatA A+1 T 472 T 473 (49)
1 1097 1053

As = —— | 64°+404* +304° - 1647 — 16024 + 632 —-—+—-—-). 4.10

3 23040( a0 62+ i YA ) ¢ )

Let us denote by N the highest # included in expansion (4.1). The curve obtained
using expansion (4.1) with N = 5 is shown in Fig. 3. From estimates of higher terms and
comparison with the Monte Carlo resuits from Ref. [4] we conclude that for x > 0.6
the curve is correct within two per cent. A standard method of estimating the goodness
for an approximation to a non-singlet structure function is to calculate its moments and
to compare them with the exact values, given in ‘our case by formula (2.4) (cf. e.g. [3], [4].
We calculated the first twenty moments for ¢ = 0.15 and for ¢ = 0.45. For s = 2, 3, ...
the agreement with the exact results improves, as expected, with increasing s and/or
decreasing ¢. The largest error was found for ¢ = 2 and ¢ = 0.45 (as usual the s = I mo-
ment (3.2) is not included), where we calcuiate 0.444, while the result exact to three digits
is 0.449. Since it is also seen from formula (4.1) that for ¢ — 0 the approximation yields
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the exact result 6(1 —x), it follows that the simple form (4.1) with N = 5 and the coefficients
(4.6)-(4.10) reproduces all the moments with an error not exceeding I per cent.
Approximation (4.1) does not satisfy the sum rule (2.3). The deviation of the integral
from one increases with 7. It is —0.008 at ¢ = 0.15 and —0.07 at ¢ = 0.45. The reason is
clear from Fig. 3. For x — 0 expansion (4.1) has a smooth behaviour, while the exact
structure function tends to infinity there. The discrepancy may be removed without spoiling
the predictions for moments by adding to the expansion a term ad(x), where a is a ¢-depen-

t E, {x,t)
151 t = 0.45

1.0
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Fig. 3. Evolution function E.(x) for ¢ = 0.45 calculated from formula (4.1) including #n < 5 and using
the coefficients (4.6)-(4.10). The histogram is the corresponding Monte Carlo result from Ref. [4]

dent constant determined from the sum rule (2.3). Our calculation of moments shows also
that at low s a slightly better agreement with the exact values is:obtained taking for ¢ = 0.15
N = 3 and for ¢+ = 0.45 N = 4 instead of the N = 5 used in the main calculation. The
reason is that extending the series (4.1) improves the curve E,(x) in the intermediate x
region more than in the low x region. Thus the cancellation of errors, which is partly
responsible for the excelent prediction of the low s moments, is spoiled. This, as well as
a direct inspection of Fig. 3, shows that very good moments do not necessarily mean a very
good approximation to the structure function.

5. Discussion

We have derived two expansions for the non-singlet evolution function. This is equi-
valent to two expansion for any non-singlet structure function because of identity (2.1),
but it is easier to discuss the evolution function. Expansion (3.6) converges for all x < 1
and its convergence improves with decreasing x. Expansion (4.1) is only asymptotic,
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but gives a good estimate of the evolution function for 1-x small. Both expansions yield
correctly E,(x) = 6(1—x) for ¢ tending to zero and deteriorate with increasing r. We
checked, however, that even for ¢ = 0.45, which is more than what is necessary for ahy
present day or‘near future experiments, the two expansions, when used simultaneously,
yield easily the evolution function in all the range 0 < x <{ | with an error not exceeding
two per cent. The asymptotic expansion reproduces almost perfectly all the moments of the
evolution function. Since it is also very simple and easy to convolute with other functions,
it may be useful for phenomenological analyses of the data. For practical applications,
however, it should be supplemented with a small 3(x) term to correct the poorly reproduced
very small x region and ensure the correct normalization (2.3).

APPENDIX A

Asymptotic convergence of series (4.1)

Let us deform the integration contour in integral (2.5) so that it goes from —iw to
—ily along the imaginary axis, then to +i/y along the semicircle |s| = 1/y in the Res >0
half plane and finally from +i/y to +ico (cf. Fig. 4). This contour will be denoted by C.

+ieo @

<l

<|=
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Fig. 4. Integration contour used in Appendix A to prove the asymptotic convergence of the asymptotic
series (4.1)

Let us denote further by ¢,(s) the difference between the second exponent in the integrand
of integral (4.2) and its formal expansion in powers of s~! up to and including s™". Since
the expansions of ¢(s), (s+1)~! and exp s—! in powers of s~! are all asymptotically con-
vergent for s — oo, there exists a constant C, > 0 such that

l@a(s)] < Cyls™ ] (A1)
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for sufficiently large |s|. Thus for sufficiently small y this inequality is satisfied all along
the integration path C. The difference between F,(x) and the sum of the first n+2 terms
of its expansion in powers of y obtained as described in the text is therefore

1 A
G/ i st ( s ) N )
c

1
< 84(3/4‘7)Cn+1‘2_1;j‘ldsl ls—A—n-—zl leys' (AZ)

An+1(y) =

The modulus €™ equals 1 along the imaginary axis and is less than e~! along the semicircle.
Thus

A+n+1

A,,+1<y)<c,.+1e“3"‘”( j AT T )=0(y“"“). (43)

Consequently,
4,(Y) < A1 () by y* T = 0T, (A9

where b, , is the modulus of the coefficient of y**4*! in the formal expansion of E,(x)

in powers of y, and the series in powers of y is asymptotically convergent, Since for |1 —x| < 1
1 . .

the function y = log— is holomorphic in (1 —x), substituting for each y its expansion
x

in powers of 1—x and rearranging the series, which yields expansion (4.1), we obtain
again an asymptotically convergent expansion q.e.d.

APPENDIX B

The general formula for the functions g,,(4), needed for expansion (3.6), will be given
here. It follows from Eq. (3.4) that g’s are defined by the expansion

et — Z glm(A)u", k=0,1,.., (B
n=0

where f;(«) are the regular (at u = 0) parts of the exponent (2.4) after substitution s = —k
+u. Expanding f,(u) we get

A = 3, i (32)

where the coefficients f;, are given in Table I. It is straightforward to express gk,,(A) by
the f,,. The general formula is

n

Am
gl 4) = A0 E Wl nz1

m!’
m=1

gro(4) = e, (B3)
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TABLE I

Coefficients fi, of the expansion of the regular parts of the exponent (2.4) in the variable u = +k+s. )

is the Riemann zeta function. For k& = 2 the sum k}:_‘: is defined to be zero
i=
N 0 “> 1
0 ps ——(_lz)m +(= DI+
i 1 -1 +(~DTr+1)

E : 1

>2 B —

4 2kk—1) k—j
N 2

k—1

-1 1
2 kr+1

1 z : 1
=y 2 W)

Jj=2

+(—1)¢r+1)

TABLE 1L
Coefficients W,"n" for the first twelve polynomials gx,(4) as defined in Eqs (3.4) and (B1-B4)
m
1 2 3 4 5 6

k l H

1 -1.145
0 2 0.702 1.311

3 —0.582 ~1.608 —~1.501

4 0.537 1.826 2.761 1.718

1 —2.145

2 0.702 4.601
1 3 ~1.582 ~3.012 —9.868

4 0.537 7.281 9.690 21.17

1 —2.270

2 0.640 5.153
2 3 ~1.614 -2.904 ~11.70

4 0.521 7.734 9.886 26.55

5 —1.525 -4.431 —-27.73 -29.92 —60.27

6 0.504 10.19 22.52 88.14 84.89 136.8

The coefficients W' of the polynomial in (B3) are given by

kn
W, =

fki;fkiz "'fki,,.' '

ijtiz+ ... +im=n
1121, ., im>=1

(B4)

It is seen from Eq. (B3) that up to an overall factor e/, g, (4) is an n-th order poly-
nontial in 4. In Table IT we give coefficients W of the first 12 polynomials (for k < 2,
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n < 6). Hi gher order terms do not change the result for £,(x) by more than 2 per cent
for x < 0. 6.

One of the authors (K. Z.) thanks Professor I. Birula-Biatynicki for a stimulating discus-
sion.
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