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Isotropic hypersurfaces admitting inner groups of motions are classified. Normal
forms for the inner metric are given, and its geometric properties are characterized by means
of differential invariants. The problem of embedding a given null hypersurface into empty
spacetime is studied locally.

PACS numbers: 04.20.—q, 04.90.+¢

1. Introduction

In a previous paper [1] the local geometry of a general light-like hypersurface was
studied with an intrinsic spin coefficient technique. The present paper discusses light-like
hypersurfaces which admit inner groups of motions. Special null hypersurfaces with
intrinsic symmetries have occured as ‘“horizons™ in black hole physics. This may justify
a separate discussion, which otherwise would be of academic interest only.

A null hypersurface represents an isotropic 3-space with an inner metric y;, (i and &
from 1 to 3) of matrix rank 2. It admits an inner isometry group if the Lie derivative of
the inner metrie vanishes with regard to a Killing field &(x). As well known (see, €.g.,
[2-4]), the Lie derivative is already defined on a differentiable manifold and therefore
independent of any affinity given additionally. 1t may be applied to degenerate metrics
such as that of a null hypersurface, where an affinity is not uniquely determined [1]:
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Using the class of affinities introduced in [1], the expression for the Lie derivative may
also be written

L.g’ik = IVt Vil + Vil @
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(V, is the covariant derivative associated with the affinity). With & = y,& and Vy,,
= y.hy+ i, the expression is transformed into a third form
Lyy = Vili+ Vil — 28y, (3)
)
with the Lie derivative of y, with regard to & given by

hy = 5 (Oxyu+ 8 — Oa)e, )
with ¢, denoting the ordinary derivative. & is the generator direction, defined by y,¢* = 0.

7: 1s a covariant vector field satisfying y,&* = 1. Thus the intrinsic Killing equation of a null
hypersurface can be written in the covariant form

Vili+ Vit = 2y, (5)
which differs from the usual covariant Killing equation by an additional term on the rhs.
There are two classes of solutions of (5). In the first case the trajectories of ¢* are
generators (light-like geodesics) of the null hypersurface. Here &'y, # Oand &; = y,&* = 0,
and from (3) follows #;, = 0. As shown in [1], this is equivalent to the vanishing of the
Ricci coefficients shear ¢ and rotation ¢ of the generator congruence. In [1] we have de-
noted this type of null hypersurfaces as “planar”, to distinguish it from “‘plane” null
hypersurfaces (where y; = const). Thus, a null hypersurface admits a motion with light-like
trajectories if and only if it is planar. Notice this Lie group represents an infinite Lie
group G, rather than a one-dimensional group, since with X = &9, every X’ = f(x)é*d,
is also a generator, f(x') # 0 being an otherwise arbitrary function of position.

The other possible type of solutions of (3) has space-like trajectories (any direction
in regular points on a null hypersurface is either light-like, hence coincident with the gener-
ator direction, or space-like). They may be classified by means of the well-known Bianchi
classification of real Lie groups G,, G; and G, according to nonisomorphic structures
(see Table II for G;). In Section 2 normal forms for the different types are derived. Their
geometrical properties may be studied using the appropriate differential invariants given
there. Section 3 discusses local embedding into four-dimensional Einstein space-times
and into flat space-times. In a subsequent paper spacetimes are considered, which satisfy
the Einstein vacuum field equations and admit the isometry groups — discussed here for
a single null hypersurface — on a family of null hypersurfaces.

In order to facilitate the comparison with the subsequent paper and with the work
by Petrov [5], we employ the tensor formulation, although the use of forms might appear
more elegant.

2. Classification of inner metrics

2.1. Groups G, with a space-like generator

Coordinate transformations may be taken to transform the inner metric into normal
forms. We may always reach
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with E, F and G as functions on the null hypersurface, and this form is preserved under
the transformations

Xy = X1(X1, X4), Xy = X(xp). (N

The Killing equation splits into

B =0, &y, +yAB,C£C+YAC§C,B+VBCéC,A = 0. (8)
Let us first assume space-like generators and consider a G,. We may choose coordinates

such that & = g%, say. In this coordinate system the metric is restricted by y,53 = O.
1

The coordinate transformations preserving this as well as the chosen normal form for

& constitute a subgroup of (7):
1

xp = f(x1, %5),  x3 = g(x;), X3 = x3+h(x;) ®
withf,g, # 0.
2.2. Groups G, with space-like generators
Taking & = &% as the first Killing field of an Abelian G,, the condition [X;, X,] = 0
1

or explicitly

-t

g =0 (10)
2

21
requires & = &(x,, x,). The Killing equation leads (writing &' = a(x,, X3), &2 = B(x,),
2 2 2 2
& = y(x,)) to
2
oE +BE ,+2Ef ,4+2Fy, = 0,

aF {+PBF +B,F+y,G =0,

%G, +pG, = 0. (11)

The functions «, §, y transform under (9) as

a’ = .f,la+.f,2ﬁ7
ﬁ, = ﬁg,Z’
y = vy+ph,. (12)

Two cases must be distinguished. Suppose first that f # 0. Then by means of (12), § = 1,

y = 0, o = 0 can be reached, that is, £ = 8%. This gives the first normal form for a metric
2

admitting an G, with space-like trajectories as shown in Table I. If, however, g =0,
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TABLE 1

Isotropic hypersurfaces admitting as isometry group G, with space-like generators
Normal forms for Normal form for Coordinate transfor-

No metric tensor generators mations leaving normal Remarks

components forms invariant

1 E = a(x,) X, =03 xl1 =f(x1),f1 #0 Abelian group G,,
F = b(x,) X, =20, X, = Xx;+const [X1, X2] =0
G = c(xy) x; = x3+const

2 E = k(xz)+x3/l(x2) X, =03 .x'l = x1—h,,l Abelian group G,
F=x X, = 0,408 X, = x;+const [X1, X21=0
G = Il(x3) where x; = x3+h(x;)

Y =y(x%2), V52 = —1/1

3 E = k(x,) X, = 0, x'1 =flx1), f1#0 non-Abelian group
F = m(x )e ™2 X, = 02+x30; X, = X+ go Ga,
G = I(x,)e~*2 X, = x3+hoe™ [Xy, X2] = X,

£o, ho = const

4 E=1 Xy =03 x'1 = x; non-Abelian group
F=e¢4, X, = 01+ x303 x/2 = Xx,-+const G,,
G = k(xy)e ¥t X, = x3 [X1, X2] = X,
admits a

G3 (see text)

we must suppose, that « # O (otherwise, ¢ would be equivalent to ¢, and no G, would
2 1

exist). (12) allows us to assume « = 1, and (11) can be written:

E,I +2F')),2 = 0,
F,1+G'y'2 = 0,
G, =0. (13)

Integrating (13) and again using (12), on obtains the second normal form given in Table I.
Thus far we have assumed an Abelian G,. For a non-Abelian G,, we may again
take &' = 0% as the first Killing vector. The second one is obtained from the relation

1
X1, X,] = X,

fi = (a[x;, x,], B[x2]: x3+7[x.]), (14)
where o, § and y now transform under (9) as
a’ = a./;1+ﬁj:25
ﬁ/ = ﬁg,Za
Y =y—h+ph,. (15)

If § # 0, we may obtain & = 0, § = 1, y = 0. Integration yields metric 3 in Table L.
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If, however, B = 0, we must assume o # O (otherwise, the resulting metric tensor
would not have rank 2). This allows us to put o = 1 as well as y = 0 because of (15). Inte-
gration of (8) yields metric 4 in Table I, if the remaining freedom of coordinate transfor-
mations

xll = Xy +f(x2)s
xIZ = g(XZ)s

X3 - X3, (16)
is used to eliminate two of the three integration functions of x, in the metric.

Apart from metric 4 in Table I, the other metrics do not admit in general a third inde-
pendent Killing field. The third Killing field of metric 4 is given by

fi = (2x3+€"B(x,), 0, x3), amn

and the commutator relations are
[X,, X,] = X, [X:,X3]=2X,, [X;X;]=X, (18)

Metric 4 therefore admits a three-parameter Lie group of Bianchi type VIII (cf. the normal
forms for generators given by Petrov [5], which differ from that of Table II here in the case
of type VIII metrics).

TABLE 11

Commutator relations for Gi. Notice that Petrov [5] has used different operators X/ for the Bianchi
type VIIL. They are connected with the ones given above by X{ = —X;+ X3, X; = X;, X5 = —X,— Xs.
We prefer the choice given here since the groups VIII and 1X can be treated similarly

L [X1, X2] =0, [Xy, X5] = 0, [X2, X,;]=0.

IL. (X3, X2] =0, [X3, X3] = X, [Xq1, X3]=0.

Ill. [Xl, Xz] = 0, [Xz, X3] = 0, [X],Xg,] = .Xl.

V. [Xy, X2] = 0, [ X3, X351 = Xi 4+ X, [X1, Xl = X,

V. [XI,XZ] =0, [X2a X3] = X, [X1, Xa] = X;.

VL [X;, X,] = 0, [X2, X3] = gXa, [Xy, X3l = —Xi(g # 0,1).
VI. [X1, X2 = 0, [X2, X3] = —X,1+4¢X2, (X1, X3] = Xa(g* < 4).
VIIL. [Xl,Xz] = X3, [Xz, X3l = X, [Xs,X1] = —X,.

IX. (X, X.] = X, [X2, Xs] = X, [Xs, X1l = Xz

2.3. Groups G; with space-like generators

In the case of three-parameter Lie groups normal forms in Table I must be restricted
by further commutator conditions imposed by the third Killing vector (Table 1I). The final
normal forms can be obtained in the same manner as discussed above. The calculations
are lengthy but rather trivial, thus we omit all details and give only the results in Table IIL
Some comments should be made. For the Bianchi groups I through VII we can confine
the discussion to those cases in Table I, which admit an Abelian G, as subgroup. The
Bianchi groups VIII and IX have been treated separately, since we employ different group
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generators (cf. Table II). The results in Table III give a running number, the Bianchi type,
normal forms of the metric tensor, the corresponding normal forms for the three genera-
tors, coordinate transformations which leave invariant either normal forms, a class number
corresponding to a classification in terms of differential invariants (see Table VI), the
Ricci rotation coefficients for a suitable threeleg, and the differential invariants up to
second order (for the latter three entries see also the Appendix). The geometrical meaning
of the vanishing of certain invariants is to some extent described in [1].

We have not included in Table Il a metric of Bianchi type I. A third commuting
Killing vector added to those of metric 1 of Table I is essentially a light-like Killing field,
which is excluded in this section. On the other hand, metric 2 of Table I admits in fact
an infinite number of commuting space-like Killing fields of the type & = (~/(x,) o5, 0, a),
where a = a(x,) is an arbitrary function (the Killing fields listed in Table I are particular
cases). Rotation coefficients and invariants are given by

ilyz

o +2=N=o
TN R

Q=0> V=£O’, T =

4
W
The same metric admits for special choice of 2 and ! — apart from the Killing vectors
in Table I — a single third space-like Killing vector, corresponding to Bianchi types different
from 1. These particular metrics are also listed in Table III.

Most of the metrics listed in Table III admit groups G; which are simply transitive
on the whole nuil hypersurface. Exceptions are the metrics listed as No 10, 17 and 18:
No 10, type VI, (g = 0):

The two-dimensional transitivity surfaces are given by x, = const and represent
Euklidean planes.
No 17, type VIII:

The two-dimensional transitivity surfaces are again given by x, = const and repre-
sent pseudospheres.
No 18, type VIII:

The two-dimensional transitivity surfaces are the space-like surfaces

. dx,
x,et + - = const.
k(x3)

24. Groups G, with space-like generators

Since every G, contains a G5 as subgroup, we may take Table III as the starting point
for a discussion of metrics admitting a G, with space-like generators, using the classifica-
tion of G, groups provided by Petrov [5]. The result is Table IV,

2.5. Groups with a light-like generator

For an isotropic Killing field we have & = §! in the coordinate system (6). The Killing
1

equation (8) then requires y,5,; = 0. Any further Killing field must be spacelike and
has to satisfy
VAB,CfC+§C,AYCB+§C,BYCA = 0. 19
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TABLE 1V
Isotropic hypersurfaces admitting an isometry group G, with space-like generators
X Adn;'tted Rotation .
Metric Generators coor 1nat.e coefficients Invariants
transformations
G4 VII| E= ele, Xl = 827 xll = X1, e = _%’ j= —(1-k2)_1/2,
’ ik ;
F = qe™!, X33 = (te>2 X, = X2, G = %4— —_—, I, = =2k,
—Le%2)3, 2V 1=k
+ (&P e )2,
, —k
G=1 X4=83 ‘x3=x3+const V= ———, 12=0,
2V1-k?
T =0 J=0
GoaV | E=ae 1, | X, = 03, Xy = 5, x'1 = x{+const, o=1,0=0, noinvariants
F=0, X = 0+ x,0, x; = X,, y =0,
+x303,
G=ae®™ | Xi=2x30—x:05 | X, = X3 T=0
TABLE V
Metrics of isotropic hypersurfaces admitting — apart from an isotropic Killing field — a G with space-like
generators
|
No Metric ' Generators Rotation coefficients/invariants
1 E =1, Xo = @(xDoy, e=0=0,
F =0, X1 = 03, X2 = 0g,
G=1 X3 = X302—x,03 K=0
2 E = az/xg’ Xo = ‘P(xi)al, X = 03, e=0=0,
F=0, X = x20,+x303,
G=E X5 = 2x2%38,+ [x5—x312; K = —1/a® = const
3 E=a? D Xo = @(x)2,, Xy = 8, g=0=0,
F=0, X, = sin x3¢,+ctg x, COs X303,
G = a’*sin? x, X3 = €08 X380, —Ctg X 8in X303 K = 1/a® = const

Equation (19) is the Killing equation of a two-dimensional surface with a positive-definite
metric y,5. Here standard results apply. If a G; exists with a spacelike generator additio-
nally to the isotropic Killing field, we may choose the coordinates so that &€ = 65. From
(19) one obtains the rotation surface

ds? = dx2+f(x,)dx3. (20)

If the surface admits a G,, it also admits a G, and has constant Gaussian curvature, that
is, the Gaussian curvature X is independent of x, as well as of the two space-like directions
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corresponding to the coordinates x,, x3. The three possible types (K > 0, K = 0 and X < 0)
are listed in Table V. (Notice that (19) determines only the two components &4, and an
arbitrary component £* can be added. This reflects the existence of an infinite Lie group
G, the total group may be denoted by G, x G, or G;x G, respectively.) In the case
that the null hypersurface admits an isotropic Killing vector, but no G, or G, with space-
-like generators, the Gaussian curvature K exists as an invariant of the inner geometry
(it is, in fact, the only second-order invariant). More specifically, X is an invariant function
on the generator congruence, that is, X does not change along a given generator, but it
may change across the generators. Thus K depends in general on the location at the slices
x,; = const. An important example is the Kerr-Newman horizon with the inner metric

2 2ab? sin? 6 in® 0b*
ds? = ‘l} sin? 6d? — = ;‘"v_— dtd0+ 12467 + =

de?, 1)

with

I = r*+a%cos? 0,

r=M+M?*-Q*—a¥)1?,

b* = a*+r?,
which admits-—apart from the isotropic Killing field 6,—a G, with the space-like genera-
tor d5. With the Boyer-Lindquist [6] coordinates (21), the calculation of K cannot be
performed according to the simple rule given in the Appendix. A direct calculation gives,
however, apart from ¢ = ¢ = 0,

(a®+r%) (r*=3a* cos? 0)

K
(r*+a* cos® 0)*

(22)

As noted, the Gaussian curvature K represents the only local second-order invariant of
the inner geometry of the Kerr-Newman horizon.

3. Embedding

One could expect that the requirement of local embedding of a given three-dimensional
null space into four-dimensional spacetime restrits the null space. Actually, this is in general
not true: There is no local restriction of the inner geometry. Embedding into empty four
dimensional spacetime means, however, that an affine parameter must be chosen in a suit-
able way. Within the “inner” geometry, all parameters

v = v'(r, x5, X3) (23)

with ¢v'/ér # O are on an equal footing. The “affine geometry” (defined in [1]) takes a cer-
tain subclass of these parameters, related by the linear transformation v’ = av+b (a # 0,
a and b constant along the ray), and calls them “affine’’. In general, this subclass can be
chosen in such a way, that the embedding requirements for empty spacetime are satisfied.
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(Note that a null hypersurface embedded in a spacetime has always a well-determined
affine geometry.) To see this notice that the relation

w = DQ—QZ_G&. = %Ruvpﬂpv (24)

for the rotation coefficients divergence ¢ and shear ¢ is the only restriction for these coeffi-
cients in a given spacetime. Thus, in an Einstein spacetime, w must be zero. However,
under a transformation (23), & changes as

w' = 2w+ giDy, (25)

where A = ¢r/ov’.

We may therefore always select by means of (25) that subclass of parameters, for
which ®’ becomes zero (or equal to any prescribed value in a non-empty spacetime),
provided only ¢ s O in the considered domain of the nullsurface. Thus — apart from
metrics with ¢ = 0 — the majority of metrics listed in Table III may be considered as
subspaces of a in general not uniquely determined vacuum field. The non-uniqueness
results from the fact that to solve the characteristic initial value problem ([7]-[9)) starting
from the given hypersurface as initial surface, we need in general a second initial hyper-
surface. This second hypersurface (on which also initial data must be given additionally
and in general independently) may also be taken as null and intersects the given one in
a two-dimensional space-like section. We may lift the non-uniqueness, for instance, by
demanding that not only a single null hypersurface, but a whole family of null hypersur-
faces admits the same symmetries as the given one. These spacetimes are discussed in a
subsequent paper.

Returning to the single hypersurface discussed here it is easily seen that an affine
parameter v, belonging to embedding into vacuum, is given in terms of any parameter v
by

Ve = | odvexp (= | o[1+]ol*/0*]dv). (26)
vo 3 vo

U,¢e is not uniquely determined by the inner geometry, because v, is arbitrary. The freedom
left is just given by the linear transformation v,y — av,+ b, with @ and b constant along
the ray. (26) represents an (integral) invariant of the inner geometry. Thus, if one starts
with any other parameter ¢’ = v'(v, w?), one arrives at the same class of affine parameters.
(26) holds as long as ¢ does not vanish in a three-dimensional region. If ¢ vanishes, ¢ must
be zero also, in order to admit embedding into Einstein spacetime. The null spaces admit-
ting 2 G; or G, belong to one of the following three types (constant means independence
of v):

(a) ¢ = const # 0, |o] = const,

Ld
—=—Inf, gl =09,

(b) ¢ I

(©) 0=0, |o] = const.
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Calculating the transformed divergence g, as a function of the affine parameter, the first
two cases (a), (b) — those which can be embedded without restrictions — both give

Qurr = V(1 =[1+77%] v,e0) @27

(j~' = 0 for class (b)). Hence g, encounters a singularity for a finite value v* of vy,
whereas — if one uses the original triad — g need not to have a singularity: The scale trans-
formation v — v, becomes singular at a certain value of v,,. Calculating also o,,, one
sees that in general this behaviour of o at the singularity is different from that necessary
at a regular vertex (where |o| — 0).

|Gatel = (U*[l“U*])l/z/’(U*—l’afr) (28)

Thus the singularities correspond to caustics. This illustrates a well-known properties
of null hypersurfaces in Einstein spaces: Caustics will necessarily develop, if the null
hypersurface does not admit a group of motions with light-like generators (embeddable
case {c)). The problem, whether the caustics can be embedded without true local singular-
ities in the four-dimensional spacetime, remains open.

We also mention shortly the problem of embedding into flat spacetime. The condi-
tions for embedding into empty spacetime are necessary conditions also here. But apart
from (25), we have to consider the transformation (23) also acting on the Penrose function

Y = Do—290+2ive, 29)

which gives
Y = A*Y¥+iDle. (30)
Thus a necessary local condition for embedding into Minkowski space-timeisg = ¢ = 0
for a suitable class of “affine” parameters ¢’. From (25) and (30), this is equivalent to
o¥ = ow. 31

Notice that (31) is an equation invariant with respect to (23). If both ¢ and || are different
from zero, (31) may also be written

I, =0, I,=1jj—]. (32)

(31) respective (32) is only a necessary condition for embedding into flat spacetime, because
we cannot rely here on the characteristic initial value problem as in the previous case.
The requirement that spacetime is flat everywhere restricts the initial data on the charac-
teristic hypersurfaces beyond condition (31). For instance, if ¢ = 0, we need — apart
from ¢ = 0 — also K = 0.

APPENDIX A

Differential invariants and rotation coefficients of isotropic hypersurfaces

The geometrical properties of lightlike hypersurfaces can be expressed in terms of
its differential invariants, as described in [1]. The differential invariants can be found
from the Ricci rotation coefficients g (divergence), o (shear) and 7, v, x and ¢ of the genera-
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TABLE V1

Classification of isotropic hypersurfaces in terms of inner differential invariants up to second order.
(See the Appendix for definition of the invariants)

i
. } Type First order Second order
Shear Divergence { number invariants invariants
| L | | |
@ !
jo] #0 0#0 | I3+[-40-/HP#0 1 |7 1L,J
L =0,I% = 41—j3 ‘ 2 \ j LM
. - .
=0 L =2 L3 j=0 N
iy # 2 | 4 | j=0 I, = Rel
- | | ~
lo] =0 1 0#0 ] | 5 no invariants no invariants
; 0=0 { ! 6 ) no invariants K

tor congruence. The invariants are uniquely determined by the metric y,,, whereas the rota-
tion coefficients are not. A possible choice for the rotation coefficients in terms of y,z
(in the coordinate system with y,, = 0) is listed below. A classification of null hypersur-
faces according to differential invariants is given in Table VI. For details we refer to [1}.
With y = |y we have

0= —7'[(4y)

i ¥ £
o = Y [(47)=733/(2y33)+ —= (V23 —723733/733)>

2.y

li

v = (33723 —V33723)/(2 /7 733)»

i i
T = == (¥33,3/V33 = 7,3/ + == (733,2F723733,3/733— 2723,3)»
2 \/2'}733 33,3//733 3 2 \/27}’33

1 =¢=0.

(The prime denotes the derivative with respect to x'.) Furthermore, the differential opera-
tors are given by

0
D = P

0xy

iV J—i
5oy Wimin)

VT 21
The differential invariants in Table VI are defined in terms of the rotation coefficients by
(notice ¢ = ¢/|o| and the abbreviations p = 2j—il,+1,, q = 2j—il, —1,)

j = ollal,

) i (Do Do 2v
1=11+zzzzr Sl IR
g\ ¢ o
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ls /2 o¢ o5 5Q _ -
J =¥ [(qq —4) (M - ﬂ> +(pg— 4)( - —) +2q(p—q)r]
e 6 0
+e ‘*"2[2@ q)(———+2 ]

K = —81—98%+211,

s 00 4 66 &
L = o's!2 [__ — __g _ZT—J +e-1s,/2_{:_[:_: _ _g _21]’

4 @

1o S ily, _.,,[0% dg
N = /2 [_ - = —41] +—te “’2[— - = +4r].
c o 2 c ]

Some remarks should be added. K, L, M and N are invariants only if certain conditions
are satisfied for the rotation coefficients. These conditions can be taken from Table VI.
E.g., N is an invariant if and only if |¢] # 0, ¢ = 0 and |I,| = 2. The listed invariants
are also invariant if an inversion takes place (i.e., a coordinate transformation with
i

det |[—| < 0), except of I;, which changes sign. Notice further that all invariants are

dimensionless quantities, with the exception of X, which has dimension (length)~2.

APPENDIX B
Application of REDUCE

To facilitate the calculations, the algebraic formula manipulating computer system
REDUCE 2 (Hearn 1973) was used. A procedure “NULLSURFACE” was written in
REDUCE, with the metric tensor components y,,, y23, 733 as input. NULLSURFACE
calculates the rotation coefficients, classifies isotropic hypersurfaces in terms of inner
differential invariants according to Table VI and calculates the differential invariants.
It was employed partly to check and partly to obtain the results in Table IIL. The calculations
were carried out on the ES 1040 computer of the Leipzig University Computer Center.
I am much indebted to Klaus-Peter Jann for processing the program.
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