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No-Interaction Theorems in Relativistic Action-at-a-Distance Mechanics are revie-
wed. The most suggestive proofs are quoted and some of them are simplified. Physical
requirements which N-Particle Predictive Relativistic Dynamics should satisfy are formulated
and the existing examples are discussed. Some methods of constructing examples of Predic-
tive Relativistic Dynamics are proposed.
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1. Introduction

In relativistic mechanics we encounter a very interesting and yet unsolved problem:
is it possible to construct a Lorentz invariant dynamics of N-point particles without
field degrees of freedom? Such a dynamics would be the relativistic analogue of the non-
relativistic Newtonian dynamics. The Lorentz transformation of time causes serious
difficuities in constructing such a dynamics. There exist in literature theorems stating
that straightforward generalization of nonrelativistic dynamics leads to a theory describing
only noninteracting particles. These theorems are often called “No Interaction Theorems”
(NIT).

The common opinion is that the relativistic dynamics must contain field degrees of
freedom; one often says that there must exist a physical object which transfers interaction
with the velocity of light. Therefore one tends to believe that NIT’s are physically plausible.
There does not exist, however, a theorem completely excluding dynamics without field,
so called Action-at-a-Distance Mechanics — see the collection of papers by Kerner [1].
On the contrary, consistent models of this kind do exist; for instance the model of Wheeler
and Feynman [2], which is a particular case of a more general model given by Van Dam
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and Wigner [3, 37]. In these models the Lorentz invariant equations of motion are integro-
-differential equations, as in the case of the Wheeler and Feynman model. Unfortunately,
such models cannot be formulated in the Hamiltonian form.

The following question thus arises: can a system of N-particles in Action-at-a-Distance
Theory be described by Newtonian-like ordinary differential equations? Some special
examples of such dynamics do exist [5-7, 34-36]; Droz-Vincent [8] and Bel [9-11] devel-
oped a general mathematical formalism to deal with what they call the Predictive Relati-
vistic Dynamics (PRD). In this dynamics the motions of particles are described by a 6N-
-parameter family of trajectories which has the property that from a solution in one iner-
tial frame we can obtain a solution in another inertial frame by changing properly the
values of parameters. Thus the principle of relativity is satisfied, no inertial frame is dis-
tinguished, in each frame equations of motion have the same form. The requirements
of the principle of relativity are, however, very strong, so if other physical requirements
are added the dynamics may easily turn out to describe only free particles. Unfortunately,
we do not have examples satisfying all these requirements. We discuss this problem in
detail in the last section.

The aim of the first part of this paper is to give a review of the No-Interaction Theo-
rems. We think that it may be valuable to have such a review because there exist in the
literature many forms of these theorems, which use different assumptions and different
methods of proofs. It happens that the best ones are not given in separate papers [6, 12]
but constitute a small part in papers devoted to broader problems, so frequently they are
not known. The best known NIT — formulated by Currie, Jordan and Sudarshan — has
a very long proof and one can hardly see which assumptions are crucial in the theorem.
We hope that this part of the paper will be useful for those readers who do not know the
whole literature of the problem and want to have a general outlook.

The paper is organized as follows: in Section 2 we present the derivation of the Currie-
—Hill equations which guarantee the Lorentz invariance of Newtonian equations of mo-
tions. In Sections 3,4 and 5 we quote almost all NIT’s and give the most suggestive proofs.
Some of them we give in a version slightly simpler than the original one. In Section 6
we formulate the physical requirements which PRD should satisfy.

The whole paper is devoted to “‘instantaneous” form of Action-at-a-Distance Theory,
in which all physical quantities are taken at one instant of time in each inertial frame.
Obviously, in this case each inertial observer describes his own set of events, which com-
plicates the relations between physical variables but does not exclude interaction. In the
last section we give some information about noninstantaneous PRD.

2. The Lorentz transformation of positions and velocities in instantaneous relativistic dynamies
and Lorentz invariant Newtonian equations

We shall try to describe an N-body relativistic system in the instantaneous formalism
in which all variables in each inertial frame are taken at one instant.

Let the trajectory of the n-th particle in the inertial system S be described by the
functions x7(¢,),i = 1,2,3,n = 1,2, ..., N. The Loretnz transformations say that in the
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system moving with infinitesimal velocity ¢ < 1! directed along j axis, the trajectory is
described by the functions x;(#,) determined by the equations:

x;n(t;) = x?(tn)_aéijtm (1)
ly = t,—&x]. @
We put (2) into (1) and make the Taylor expansion around ¢, = f,. Thus we get

X" (1) ~&vi"(1)x] = X[(1,) = €d;jtys
X"
where —— = ¢". Since we neglect the terms quadratic in £ we can put in the last equation

n
n

" instead ;". Thus by putting 1, = ¢ we get
x"(1) = xj(0)+e[f(1)x7(t) = b;;t]. 3)

This is the desired relation between positions of all particles calculated at one instant
in both frames. We illustrate 1t in Fig. 1.

A

Fig. 1. Hlustration of instantaneous description of particle trajectories in different inertial systems

Differentiating the equation (3) with respect to time we get the velocity transforma-
tion formula:
u" = vf+e(aix+vivi—9;5), 4

where accelerations & are treated as given functions of the particle positions and veloci-
ties i.e. they are treated as ““forces”. Similarly, the next differentiaton gives:

do"  duvl .
—= = —— +te(aix]+2ajv+ afry), 5)
dt dt
where
Ja ol < J
daj da;
df = —— v+ —. as. 6
ox dvy
The Newtonian equations of motion are
dv}
ot N 1 N
—;iT=a’,-’(x s X5 U, L U )

! We use the system of units in which ¢ = 1.
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In order to guarantee translational and rotational invariance we require that & depend
on the relative positions of particles and form a vector with respect to rotations?,

If we assume that these equations constitute the fundamental law of the considered
dynamics, then we must require that they have the same form in the moving inertial frame
S’ i.e. we must have

dvy”

n sk N 7t N -
Tt = aj(x"", .., x",v, LU, (3
{

where a’s are the same functions of their arguments as in (7).

Since (8) ought to describe the same motion, we have to be able to derive (7) from (8)
by applying Eqs (3), (4), (5), (6) and making Taylor expansion of functions af(x’, ).
This will occur only if the “forces” 4 satisfy the following system of 9N quasi-linear partial
differential equations:

N 3
~n ~on
od; od;
myon n ¢ N me B m N amom 4
(X —=xXT) — +Lal(Xj—xT)+ 0= Ted) — -
OXy oy
m=1 s=1

+205ai+x7a =0, n=1,..,N, i=j=1273 )

These equations are frequently called Currie-Hill equations [17, 18]. Bel proved [9] that
these equations constitute the necessary and sufficient conditions which guarantee that
the dynamics is Lorentz invariant with respect to the finite Lorentz transformations.
Our consideration proves only that they are necessary conditions.

The problem of existence of physically meaningful solutions of these equations is
still open and we postpone its discussion to Section 6.

Equations (9) constitute certainly a very strong condition on possible “forces” a"
and we shall see in subsequent sections that one has to be careful about adding further
requirements.

3. Can the total kinematical momentum be a constant of motion in the relativistic dynamics?

We start our review with the simplest theorem given by Beard and Fong [15] and Van
Dam and Wigner [4] in the case of non-instantaneous dynamics.
Let us make the following assumptions:
a) the total kinematical four-momentum (13, E) of the two-body system is a Lorentz
four-vector and a constant of motion, i.e. we have:
P=p'+p% E=E+E+V, P _y aE _
di C dt

0;

2 4" must have the following form:

i = Y b —FM 4 Y et
5 b

n

where by, ¢, are functions of all possible scalars with respect to rotations.
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b) the individual particle momenta (pt, E?), (p?, E?) are four-vectors.
dp! dp?

The theorem states: =
dt

= 0, i.e. the particles do not interact.

Proof.
It is enough to use the fact that the transverse part of momentum is the same in all inertial
frames3. Let us consider the system S which is moving with respect to the system S’ with
the velocity ¢ < 1 along j-axis. Thus we have

pi"(ty) = pi(®), (10)
t, = t—exj, (11

forj#1i,j=123i=1223n=12
We put (11) into (10) and make the Taylor expansion around ¢, = ¢, thus we have

n

m n . dpl n - .
pi"(t) = pi()+ i X, Jj#EIL (12

Since (13, E)is a four-vector and a constant of motion, we have P, = P; for each rand i # j

. dp; dp?
PIO+ D) = PO+ PO+ (2 xi+ Pl ),
dt dt
Because, from df’/dt =0,
dp;  dp}
dt  dt
we have
dpl
f;? (x!=x) =0 for j#i (13)
which means that
dp;  dp}
dt  dt

The theorem obviously does not hold in the case of one dimensional motion (we have
then x} = xf = 0 for j # i and Eq. (13) is automatically satisfied). Beard and Fong
have shown that in that case the only possible motion results from the potential
V = const - |[x!—x2| which describes for instance the motion of two charged planes
moving along the lines of the electrid field. We may also have the canonical formalism
describing such motions as stated in Ref. [15] and [16, 38].

From this theorem the following conclusions follow: in the relativistic mechanics
the total kinematical momentum must contain a‘“potential”’. Only nonrelativistic mechanics

3 We give here a proof slightly simpler than the original one.
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allows an asymmetry between energy and momentum of the system which can be simply
the sum of individual particle momenta. We see also that conservation of the kinematical
momentum may hold only asymptotically in collision processes, if we require that the
“momentum potential” vanishes for large distances between particles. The value of the
total momentum in bound motions depends on dynamics while in the nonrelativistic
dynamics it depends only on the initial conditions.

4. Can the relativistic N-body system be described by the canonical formalism?

The assumptions of previous theorem were not made in the most famous NIT of
Currie, Jordan and Sudarshan {13] but they made other very strong ones: they assumed
that the Lorentz transformations written in the form (3), (4), translations and space rota-
tions are canonical symmetry transformations with generators satisfyining the Poincaré
group Poisson bracket relations. Furthermore, they assumed — and this appears to be
the crucial assumption — that the particle positions are canonical variables. In the proof
they used almost all Poincaré-group Poisson bracket relations and made several re-defini-
tions of particle canonical momenta which led to the free particle form of the two body
Hamiltonian. Leutwyler [14] generalized their result to the case of N-particles.

We make the following assumptions:

a) the particle positions are canonical variables, i.e.

[xi, x5]1 =0 (14

foreach n,m=1,2,..,N, s=1,2,3,
b) the Lorentz transformations of particle positions (3) are canonical transforma-

tions, i.e. there exist in the phase space three functions K,(x%, ..., x", p', ..., p", ) such
that
[X;’, K_I] = U?x;_aijt’ (15)
[, K;] = aixfj+viv—0d;;, (16)
where
v = [xi, HY, ai =[v}, H] (17)
and H = HKX', ...,x", p', ..., pV) is the Hamiltonian of the system,

¢) the mechanics is nondegenerate which means that the transition from xj, v} to
phase space variables x, p} is nonsingular i.e. det (dv}/dpT) # 0 or det (0>H/dp}dpy) # O.
This allows to make the transition from equations ¥; = [v], H] to 3N Newtonian equations

:n n,1 N 71 N
vi=dai(x, ..., X, 0, ...,

Theorem: The acceleration of n-th particle can be only a function of its velocity;

n n/n *n aa:' aa:l
a; = ay(x",v"), L -= Em’=0 for n # m

OXg s

i.e. the particles do not interact.
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Note: If we add the requirement that the accelarations satisfy the Currie-Hill equations
(9) one can easily verify that o must be zero, so the “self-acceleration” can be easily elimi-
nated by the postulate of Lorentz invariance of Newtonian equations of motion.

The proof* consists in mulitiple usage of the relations [x{, xy'] = 0, Eq. (15), (16) and
the Jacobi identity. Let us first prove the following lemma:

[xi,a] =0, (18)
[}, a5] = 0, (19)

forntzmnm=1,2,..., N.
One can prove the following series of relations:

[xf, 7] = [x7, o] (20a)

[xf, o] = 0, (20b)

[, o] = [¥F, af] = —[xi, af'], (20¢)
[of, oF] =0, (20d)

[}, al'] = 0. (20¢)

Relations (20b)-(20e) are valid only for #n # m. Below we give the proof of (20a), (20b)
in detail, the next relations can be proved by using the same method and the previously
shown formulas, the order (20a)-(20e) is important in the proof

[x7, o] = 30 (9, HY] = —[H, [xi, x7T] =[5, [H, 5711 = [, 25
In order to show (20b) we rewrite equation (15) with interchanged indices m, s and n, j:
(x5, K] = vgx] —dg;t. 21)

The Poisson bracket of x} with both sides of Eq. (21) and the Poisson bracket of x{' with
both sides of Eq. (15) give

[xfs [x3 K11 = [xf o IxT + o9 25, (22)
and

x% [xf, K11 = [x3, ofIx+oilxs, ¥5) (23)
Subtracting Eq. (22) from Eq. (23), and using relations (14), (20a) and the Jacobi identity
one gets

(=) [, 7] = 0
which means that [x}, v7] = 0 for n # m.
Relations (20¢) follow directly from (20b) and Eq. (14). Formulas (20d), (20e) can

be deduced by evaluating the appropriate Poisson brackets of positions and velocities
with (13), (16) (and using all relations obtained earlier). Now, one can easily show that

4 The proof is based on Ref. [6].
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in the case of nondegenerate mechanics the relations (20b), (20c), (20d), (18) and (19)
give the theorem. Namely, from Eq. (20b) we deduce that

m
o

op}

ovy' ov! ov? ooy
det | — = det {¢ - det .. det # 0. (25)
api opi op? opf

u;> # 0 for each m = 1,2, ..., N. From (18) and (24) follows that:

3

dad(x, day(x,v) Ov;

Osz): f ) - for n # m.
op; ovf  opi

=0 form#n (24)

SO

0
Thus det
0

r=1

Finally, with the help of (24) one obtains

N oom

day
— =0 for n# m. (26)
ovly

Similarly, from (20), (23), (24) one gets

. vl aa:"(x, p) ot dal(x, p)
0= [vf, ] = cp? S opt ax‘,’_
3
B ovt daT(x,p) v} da(x, p)
a oxm opr opr Ox!

r=1

3 3
ay v dag(x, v} oy
[0, of] — vodai(x.v) %% 0 for n#m,
50? opy  Ox; apr ox’

r=1 r=1

Since the matrices dv}/dp; are nonsingular for each » # m, we obtain

day
— =0 for n # m.
0x

r

This proof is instructive as it suggests how to introduce an interaction into the cano-
nical formalism. The point is that one has to drop the requirement (14) which implies
that the positions of particles are canonical variables. This was for the first time proposed
by Kerner [16, 38], further considerations of this problem can be found in Ref. [6, 7, 10,
11, 20, 26).
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Other forms of this theorem can be found in the papers of Bel [10], written in the
language of modern differential geometry and in the paper of Kerner [19], whose proof
seems to be the most simple one.

Kerner considers motion of two particles in one dimension; the Lagrangian is
L(x, X!, %2), where x = x'—~x? and X*, x? are velocities (this is equivalent to the descrip-
tion of motion with the help of the Hamiltonian, if the mechanics is nondegenerate, i.e.
the assumption (c) is satisfied). In this case the assumption (a) is automatically fulfilled;
the Lorentz transformations (3) and (4) will be symmetry transformations if a function
G(x, %', x?) exists such that

d
L(x', %', %% = L(x, x', x})+ - G(x, ', x%), 27
a

where x, X!, X2 are given by Eqgs. (3) and (4), which in this case have the form
x" = x"4e(x"xX"—1), (28)
X" = x"e(x"X¥"+xX"x"=1), n=1,2. (29)

This requirement is so strong that (25), (26), and (27) allow only the following form
of the Lagrange function

L—cxx/l—x\-i-ﬂ\i—-xx +y1,\i (30)

where «, f§, y are constants.
This Lagrangian describes either free particles or the case of constant forces mentioned
in Section 3. Proof of this result is given in the Appendix.

5. Can the Lorentz invariant systems be described by a Hamiltonian?

This section is devoted to the theorem first formulated by Jordan [22] and later by
Bel [10]. The tollowing idea led to the formulation of this theorem: the requirement (b)
of the previous theorem which says that Lorentz transformations (3) and (4) are to be
canonical seems to be too strong, it would be sufficient to derive from the Hamiltonian
the Lorentz invariant Newtonian equations dvf/dt = d"(x*,....x", 0%, ...,0") where

= [¢], H] and particle momenta are expressed by particle positions and velocities.

The assumptions of this new NIT which is proved for the case of two particles only,
are the following:

(a) x; are canonical variables, n = 1, 2,

{b) rotations, space and time translation are canonical symmetry transformations,

(c) the generators J;, P; and H (it follows from the assumption (b) that they are con-
stants of motion) transform inertial frame like angular momentum and energy of a single
particle, i.e. the whole system behaves like a single particle with angular momentum J,
momentum P; and energy H°>.
Thesxs The partlcles do not interact.

5 This is only the physical meaning of assumption (c) details may be found in [10] and [22]
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The proof is rather tedious, it requires many calculations and therefore we shall not repeat
it here.

The general conclusion of this theorem may be stated as follows: if we try to describe
the two-body system with the help of a Hamiltonian H (x, p) or a Lagrangian L(x, x),
we are not allowed to identify the space-time translations generators with momentum
and energy and the rotations generators with the angular momentum of the system. We
shall see in Section 7 that despite these difficulties it may be convenient to use a Lagran-

gian to calculate the forces a".

6. Physical requirements which Predictive Relativistic Dynamics should satisfy

In previous Sections we have seen that formalisms used in nonrelativistic mechanics
are not able to describe relativistic systems. The following question arises: what is the
minimal set of physical requirements that a PR Dwith the forces a", fulfilling the Currie-Hill
equations should satisfy?

In our opinion it would be hard to resign from the following requirements:

L 4 =2, 0 other ¥™ being fixed i.e. 4f should tend to zero when the n-th particle
is far away from all other particles. It seems that the “forces” af should vanish at least
as fast as 1/|x"—x™|2:

_LEe -

II. o} “—— 0 rapidly enough to ensure the particles do not exceed the velocity
of light,

III. The Newtonian equations of motion d2x}/dt? = d} have the integrals of motion
H, P, 7 with the following properties:

(a) they should reduce to the free particle form of energy, momentum and angular
momentum when all relative distances between particles tend to infinity,

(b) they transform under Poincaré group of transformations like energy, momentum
and angular momentum of a single particle,

IV. The forces af should have appropriate symmetry properties with respect to inter-
change of variables of particles, i.e. they should satisfy the relations:

nev1 Tn - N T “n “m N
Al L X X" X, LU, e, e, My, ., )

Z1 Tm “n N 1 “m “n N
=qg;(x, .., x" X, X, e, 0, T ,1 e 0V My, L my)

for m > n.

V. The dynamics should have a nontrivial non relativistic limit, i.e. for velocities small
with respect to the velocity of light the constants of motion H, P, j, K should have the
form (in the case of two particles)

m, -, - 0y - - -
H = x'x'+ 2 222+ v(x),
2 2
i) = ;’1+;25

J =Xx"xp'+x*xp?

K =mXx"+m,x*~Pt and V #0.
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VI. The forces a" should, be continuous functions of variables v, s 8 X1 —=X2,
%1—%3, ... for all their physical values i.e. 0 <" <1, 0 < [x"—x"| < c0omm =1,
2, ... N

Unfortunately, an exact solution of equations (9) satisfying all these conditions does
not exist. There exist two simple solutions of Egs. (9) in the case of one dimensional
motion. In that case Egs (9) reduce to:

. da 1 aal a -1
(I-vv )~ - +(1—v*0* 4+ xa )v—A~ —v*x — +3v'a' =0,
o ox
, 2. Ca 2 da? da®
(1-v'v )4-~ +(1 =o't —Xd)w—l 'x — +3v%a® = 0. (31)
Cx

Their known solutions have the form (6), (7)
a = —a = - s (32)

and the other one

vt

v? =o' -
=(-d")y - —, df=(1=-vW0) - (33)
v°X v X
Both solutions do not satisfy the assumption I which is probably the main cause
that they do not satisfy the assumption Illa.
The solution (32) does not satisfy the condition II.
Hirondel [32] found a three dimensional counterpart of the example (33):

L @=ThH@ -y L, (-7 )@ -1
a = ) , a° = =1 .
XU X0

It does not satisfy the condition VI because of singularities for x perpendicular to velo-
cities.

Bel [33] found a complicated solution of Currie-Hill equation (9) which probably
does not satisfy the condition III, it seems to be difficult to find physical energy, momentum
and angular momentum for the dynamics described by this solution.

There exist solutions of Eqs. (9) obtained with the help of perturbation methods
[23, 18, 19] but the problem of convergence of the perturbation series for all values of
variables X, 2™ m = 1, 2, ..., N is not clear and seems to be difficult.

In our opinion the question of existence of nonzero *“forces” a" satisfying conditions
I-VI is very important in PRD; having no exact example of a PRD one may suspect that
it can describe free particles only. One can suspect also that giving up some of the condi-
tions I-III, one will have problems with the definitions of physical energy, momentum
and angular momentum of the whole system. The condition IIIb is probably not sufficient
to define these quantities uniquely.
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If we drop the condition VI we shall have, for given “forces” a", a dynamics in which
not all initial conditions are allowed, for instance

\/;35‘—3221
a® ~ — -1,
Iy

where /, — some constant. Driver [24] suggests that such a case may easily occur.

7. Is it possible to construct physical examples of PRD?

The following problem remains to be solved in Predictive Relativistic Dynamics:
do the No-Interaction Theorems result from the limitations imposed by canonical for-
malism or even the Newtonian-like dynamics cannot describe interacting relativistic par-
ticles? We hope that one can get an answer to this interesting question by trying to con-
struct an algorithm which would allow us to construct physical examples of PRD. We
propose two methods of constructing such examples.

The first method is based on the papers by Pauri and Prosperi [25, 26] who developed
the idea of Bakamjian and Thomas [27].

Let us consider the system of two particles described by some fictitious external
0, P and internal g, 7 canonical variables. If we do not require that there exists a canonical
transformation between Q, P, g, = and X!, X2, p*, p? variables, where x!,x2 are posi-
tions of particles and p!, p? their kinematical momenta, we can construct a Poincaré
invariant dynamics of this system simply with the help of the following generators:

T =P,
H = VP +Mg ),

where T is the translation generator, K the generator of Lorentz transformations and
M = N7 +mi+vat+mi+ UG, 7)
is the invariant mass of the system and U an arbitrary “potential” satisfying the condition
U(g, 1) Eizs
Now, the most difficult problem is to construct the physical positions of particles X"

= X"(Q, P, ¢, 7), n = 1,2, which would transform properly under a Poincaré group,
namely they should satisfy the following relations:

{xis P;] = i, (34)
[X?, J_]] = f;ijkxl':’ (35)
[x2 K] = x2[x, H]. (36)
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The first two relations are easily satisfied, the third constitutes a system of quasi linear
partial differential equations, whose solutions should coincide in the limit |g| — oo with
known functions x"(Q, B, g, n) for free particles [25, 26). If, for given U(g, 7) symmetric
with respect to the interchange of particles, it is possible to find the appropriately smooth
functions (0, P, 0, 7) and 3"(Q, P, ¢, 7) = [x", H] such that the mapping of §, P, ¢, 7
into X!, X2, 31, 92 is reversible in the whole phase space and its image covers all physically
possible values of variables XL, X2, 01,02 (i.e. 0 < |x"| < o0, [0"] < 1), then the condi-
tions I-VI would be automatically satisfied. It seems that this way of seeking physical
examples of PRD is simpler than looking for solutions of the Currie-Hill equations satisfy-
ing the conditions I-VI, since in the latter case, having forces a; we must solve very compli-
cated equations which guarentee the existence of energy, momentum and angular mo-
mentum [10, 11]. In Ref. [25] the authors found solutions of (34) —(36) with the help of
expansions in powers 1/¢2, which does not give a decisive answer to our question.

The second method of constructing physical examples of PRD may be based on the
Lagrange formalism, in which according to the theorem presented in Section 5 the La-
grangian cannot give physical energy, momentum and angular momentum in the usual
form.

For simplicity reason let us consider one dimensional motion. We know that the condi-
tions (27)—(29) from Section 4 lead to the case of free particles. We relax the condition
(27), assuming that

ool 22y el a2 ii_ Coel .2
L(x',x ', x )—L(A,x,x)+dtG+AL(A,x,x). (37

Both L(x', ', %) and L(x, x', Xx2) should give the same motion, hence
2

A A5 i d o _ 2y, -
e — = I N i L2
dt 05" ox" ms Nat o~ ox° (

s=1
where A4, (x, X!, x?) are such arbitrary functions that the matrix A, (x, X!, X2) is non-
singular.

L

o%"ox™
is nonsingular, we may calculate with the help of Euler-Lagrange equations the force
a" which would satisfy the Currie~Hill equations. One might hope that Eqs (38), being
linear partial-differential equations, will be easier to handle than the Currie-Hill equations.

If we find a Lagrangian satisfying equations (38) and such that the matrix

X
The simplest solution of (38) is L = E()'clicl—fczfcz) which leads just to the example

(32). Further investigation of these two methods will be presented in a separate paper.

8. Concluding remarks

We have considered the instantaneous form of PRD only. There exist covariant ver-
sions of PRD in which the canonical variables are four-vectors constrained by some
covariant relations [21, 28-31, 40] which appropriately reduce the 8 N parameter family



822

of trajectories (or even larger family [21]) to 6N parameter family. We shall mention only
one very simple example of non-instantaneous dynamics based on the Fokker action
principle, in which position four-vector lies on the upper part of the light come, whose
vertex coincides with one particle {5, 34-36]. Thus is a two-body electrodynamic problem,
in which one particle moves in the retarded field of the second particle, while the second
particle moves in the advanced field of the first particle. Obviously, such a dynamics is
not symmetric with respect to the interchange of particles and thus, if for this case instan-
taneous “forces” a” exist, they do not satisfy the symmetry condition IV. Staruszkiewicz
{5, 34-36] has shown that this dynamics admits the Hamiltonian form with the canoni-
cal positions of particles taken on the light cone; this example shows that No-Interaction
Theorem holds only in the case of instantaneous form of PRD. Unfortunately, this example
of PRD can describe only the two particle system, it is, in general, impossible to describe
in this way the three-particle system. (When the second particle lies on the light cone of
the first one and the third particle lies on the light cone of the second one, then the third
particle does not have to lie on the light cone of the first one.)

In Section 6 we formulated the requirements which physical examples of relativistic
N-body dynamics should satisfy. We do not think that each such example must describe
real physical objects, but it may be physically interesting to know the whole class of solu-
tions of the Currie-Hill equations satisfying our requirements. We do not think that all
physically interesting examples of PRD must have their counterpart in the field theory.

It seems that the non-instantaneous versions may be helpful in solving the formulated
questions, but the presence of nonholonomic constraints in the formalism complicates
the problem.

The authors are greatly indebted to Dr Z. Chylinski for the eucouragement, discussions
and for the critical reading of the manuscript. The discussions with Drs A. Staruszkiewicz
and A. Burzynski have been very helpful and valuable.

APPENDIX

Kerner’s proof of the No-Interaction Theorem

We give here a proof of the statement, that the Lagrangian satisfying Eqs (27), (28)
and (29) must have the form

L=oa1=x"3'+8v1-52%2 +yx.

Let us make the Taylor expansion in the left-hand side of Eq. (27) using Eq. (28)

and (29). We obtain
2

oL .\ 2.2 oL ., oL ., oG G |
— (XX =x"xT)+ — (X" D)+ ——x"X" | = — X"+ x". (39)
0x 0x" ox" ox" ox"
n=1
In this equation the terms with acceleration X" occur lineary, so we must have
oL oG d oL , 0G (40)
X = —- an — X = e,
oxt T ! ot T o
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The function G(x1, x2, X1, x2) exists only if

’L , oL
A2 X T Atiaea Xt
ox 0x ox 0%
so the Lagrangian must satisfy the equation
oL 41
oxtoxr @
which means that L has the form
L = A(%Y, x)+ D(x%, x), (42)
where A(x!, x), D(x?, x) are arbitrary functions and from (32) we deduce that
(43)

G = A", x)x"+D(E%, x)x* +h(x', x%),
where A(x?, x?) is an arbitrary function. Now we put (42) and (43) into Eq. (39). This

gives the following equation
0 04 oD
211 (562)'62~1)—(—§§2' (2 t'x 2
ox Ox
oh oh
—%'A—%*D el x! E;xz = 0. (44)
i .
——3 we find

Applying to this equation the operator

o4 + oD 0 (45)
X —})=0.
oxox'  Oxox*
From (45) it follows that
04 ) o°D Cox 46
axoxt ~ g T T o
where C(x) is arbitrary function. Thus 4 and B must have the form
AT, x) = AGH+C)R + g(x),
(47)

D(%%, x) = D(x")— C(x)%* +f(x).

We do not loose generality by taking C(x) = 0, beacause the term C(x) (x!'—%2) in the

Lagrangian is a total derivative.
Finally, after putting (47) into (44) we have
dA(x! dD d oh(x", x* .
o) P40 g DD [ Ty D
dx dx O0x
. d oh
+x2[ E o= 25 -0 | =0 (48)
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This equation is equivalent to the following set of equations:

N g _ o _
(— —g(x)— —=C;, x-°- —f—— =C,,
Yax BT T M dx o2 2

.1
@0 U0 e -] = ¢

dp
(x2%*=1) i +x*[C,— D] = C,,

where Cy, C,, C;3, C, are arbitrary constants satisfying the relation C;+C, = 0.
It is an easy matter to check that this system of equations allows only the following
form of the Lagrangian

L=av1—%"%'+BvV1—-32%% +9yx,

or

L=ov1—%'%"+pv1—x2%2+y]x|,

if one requires the invariance with respect to space reflections; «, B, 7 are constants and
the terms which are a total derivative have been dropped.
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