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THE ACCURACY OF HEAVY-ION OPTICAL MODEL
CALCULATIONS
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Heavy ion elastic scattering calculations lead to numerical difficulties in the regions
of energies and angles where the cross sections are small. Two different approximate methods
have been investigated in the case of 2°Ne + 2*Mg scattering at Epap = 100 MeV. The
emerging errors of calculations are traced in detail. It is shown, that the optical model calcu-
lations are critically sensitive to some details which are arbitrarily assumed in commonly
used approximate methods. The obtained results allow to perform similar calculations
with controlled accuracy and some ambiguities of optical model potentials can be removed.

PACS numbers: 29.80.—j, 24.10.Ht

1. Introduction

Well defined numerical accuracy of the optical model calculations appears as a trivial,
but in some sense crucial problem in all heavy ion elastic scattering analyses. Numerical
methods commonly used for solving the Schidinger equation contain some approxima-
tions. Due to these approximations the angular distributions are calculated with some
errors depending on the magnitude of angular momentum and on the angular region of
scattering. The resulting accuracy is limited by the available computer time and is deter-
mined for a given numerical method by values of some parameters of the program. The
values are set automatically by the code or should be chosen arbitrarily by the user. The
errors resulting from this procedure can be found by comparing the results obtained by
means of an optical model code with angular distributions calculated with a much higher
accuracy. Two such reference methods were recently proposed by Doering et al. [1] and
Dymarz and Malecki {2].
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The aim of this paper is to check errors of the optical model code when the Fox-
—~Goodwin method [3] is applied for heavy ion elastic scattering in the region of masses
A < 40 and energies of about 1 MeV per nucleon.

It is well known that the analysis of data of the elastic scattering of complex nuclei
yields optical model potentials which are ambiguous at the nuclear surface and meaning-
less in the nuclear interior. The ambiguity disappears only around the “sensitive radius”
distance [4], but does not favour any of the equivalent potentials [5]. It was also found
that the crossing point at the sensitive radius follows as a consequence of the conservation
of the volume integral at the surface of the real part of optical potential [6].

The physical properties of the potential like strong absorption, surface transparency
[7] or I-dependent absorption [8] are displayed best at the backward region of elastic scatter-
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Fig. 1. Equivalent fits to forward data of elastic scattering 2°Ne + 24Mg with strong absorptive potentials
EIA, EIB and F18M, surface transparent potentials STA and STB and potential with I-dependent absorp-
tion W(/)BF

ing angular distribution. In the case of ?°Ne+ 24Mg elastic scattering at 80 MeV [9] one
can see that most of the equivalent potentials fitting forward data could be ruled out by
the measurement of the backward data (see Fig. 1).

This example makes it clear that precise optical model calculations are necessary if
ambiguities are to be investigated. Besides the backward data, the results of fusion 2°Ne
+ 24Mg are desirable as a complementary bound for the optical model potentials [10].
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2. Sources of errors

For central forces the elastic scattering cross section is given by the following partial
wave expansion:
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The most evident, error of this expansion, g, is caused by truncation of the partial wave
sum after some L, (see Fig. 2). The optimum value of L,,,, can be found from the limiting
conditions assumed for the matrix element S;. In all calculations presented in this paper
we have fixed L, so large that Im .S} was equal to zero in the CDC CYBER 72, 64 bit word
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Fig. 2. Dependence of the cross section errors at fcym = 60°, 90° and 180° on truncation value Lp.x
of the partial wave expansion (1) and the dependence of the computer time consumption

representation. The resulting accuracy is indicated by arrows in Fig. 2. The additional
scale in Fig. 2 represents the central processor execution time, necessary to perform calcu-
lation with a given L,,,, value. As one can see it is simply proportional to L.

Another computing error arises from the wrong setting of the matching radius R,,.
This is a distance where the internal solution of the Schrddinger equation should be matched
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with the combination of the Coulomb regular and irregular functions. Melkanoff et al.
[11] have derived the approximate formula for the corresponding error of scattering
matrix for the Woods-Saxon shape of the potential:

Vka Ry—R
o] ()]

where V, R and g are the depth, radius and diffuseness of the potential well, and £ and k
are the energy and wave number of the projectile, respectively.

The third error g; of the § matrix is due to the fourth order termination of the Taylor
expansion of the wave function in the region of r close to zero.
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The round-off error g results from the use of a computer word of some final lenght
(e.g. 64 bits for the CYBER 72, in single precision). The magnitude of this error depends
on H, Ry in the following way:
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Inspection of Fig. 2 and formulas (2), (3), (4) shows that the accuracy of the optical
model calculations depends mainly on the matching radius Ry and the integration step
size H. The aim of our investigation was to find a domain in the By, — H space for which
the error of ¢(0) is stable and reasonably small compared with experimental errors-and the
computer time consumption. Due to its monotonic dependence, error & can be easily
avoided or limited to the desired magnitude by using a large enough L,,,, value.

Despite its importance we do not deal here with the Coulomb part of the optical model
calculation. For all our tests we have used the Coulomb subroutine RCWFN [12] well
examined elsewhere, which is believed to cause negligible errors by itself. We also used
the uniformly charged sphere as a simplified model of the charge distribution. Its radius
was assumed to be r, = 1.0. Incidentally, it is not critical for the optical model calcula-
tions [13]. It was not desirable in our case to introduce a more realistic charge distribution
[14], so to save computer time it was not included here.

3. Reference calculations

The errors described by formulas (2), (3), (4) are unnormalized and their simultaneous
influence on the resulting error must be calculated practically in absolute values. Then
it is necessary to compare the results of an investigated code with highly accurate results.
One of the possible ways to get the reference results is based on the Born approximation
[15]. This was successfully applied for the *H + $°Ni system by Doering et al. [1] at incident
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energy 70 MeV. However, even the second order Born approximation fails for low /-values
and higher orders are suppressed by rapidly increasing computer time consumption.

We have decided to explore another possibility based on the Dymarz~Matecki method
{2]. In contrast to the standard methods, they used the wave functions which are exact
solutions of the approximating potential, rather than approximate solutions of the exact
potential. They applied a sum of a large number of rectangular wells with the envelope
following the approximated potential. This allows to get an exact solution (combination
of spherical Hankel functions) of radial Schrédinger equation with approximated potential.

The method was found to be very suitable for the heavy ion problem, where rather
large k wave numbers are present. This advantage comes from the fact that the radial
dependence of the potential is much smoother then that of the wave function. This is
revealed by the rapid convergence of the solutions even for a relatively small number
of approximating rectangular wells. The stable values of ¢(8) for all angles § are available
begining from about 1500 divisions and any further splitting does not change the results
significantly up to 5000 divisions. The number of required divisions in numerical integra-
tion appears also practically independent of k, unlike in methods approximating the wave
function.

Basing on the above we assigned to the values o5(8) errors equal to zero according
to formula (5). Both the SQUAR code [16], based on the Dymarz—-Malecki method, and
the tested one, OPTY [17], contain the same Coulomb subroutines, which suppress any
additional relative discrepancies.

4. Results

As ¢y, e and g have the opposite dependence on Ry and H, it was necessary to make
a two-dimensional map of errors. Our research was performed on o(f) rather then on
S; because this is the experimentally measured value. However, it can be expected that
the follwing results are still valid for the cases where for instance the S; matrix elements
are to be modified by the Regge pole terms [18] and accuracy is most significant. The error

is defined by:
by = D=0 00, (5)

0s(0)

The o4o(0) values of the cross sections were obtained with the SQUAR code described
in the previous section. oopr(0) were calculated with the investigated optical model code.
Our tests were performed over the step size of integration H = 0.0094, 0.0187, 0.0375,
0.0750 fm (kr = 0.05, 0.1, 02, 0.4) and for matching radius Ry = 12, 14, 16, 18, 20, 22,
24, 25, 26, 27, 28 fm. These ranges implied that the number of steps varied from 160 to
3000. All calculations concerned 2°Ne+ 24Mg elastic scattering at 100 MeV and used
one of the best fit potentials [9]. According to Ry 80 to 150 partial waves were incorporated.
We did not get any smooth error function of ¢() because of the cancellation effects
in partial wave sums, but our results illustrate its overall behaviour. On Figs 3a, b, ¢, d the
errors of a(0) for Oy = 60°, 90° and 180° are plotted as a function of the matching radius
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Figs 4a, b, ¢, d. The errors of the cross section calculations at fcm = 60°, 90° and 180° against the step
size H for the constant values of matching radius Ry
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R,,;. Each plot concerns the fixed step size H. Figs 4a, b, c, d show the same errors against
the step size H when the matching radius Ry, is held constant.

it can be seen in all of Figs 3 that the matching radius error dependence of formula (2)
is well pronounced by the exponential decrease at small Ry. The strong dependence of
the error stabilizes from about 18 fm and becomes oscillating for some larger Ry values.
It was found that for reasonably small steps the error is insensitive to Ry for the forward
angles (Ocy = 60°) and for Ry -» 16 fm it is less than 0.39%. Figs 4a and 4b illustrate the
observation that for too small matching radii errors are almost constant when H is varied,
according to H independent formula (2). The magnitude of this errors damps completely
other possible contributions. This is not the case in Figs 4c and 4d, where it rises strongly
with increasing H-step like truncation error from formula (3). Its slope does not follow
the H* dependence, except for the error at 0, = 180°.

5. Conclusions

We have checked the sensitivity of optical model calculations of ¢(0) to the matching
radius and to the step size in the numerical integration of the Schrodinger equation. It
is shown that extreme care should be devoted to the far backward scattering cross sections.
The forward data, especially those of 0.y < 607, can be fitted with insignificant errors
whereas at backward region precise fits are imposible. Let us emphasize that it is necessary
to verify the numerical accuracy of calculations when a new heavy ion system is considered
or an unknown code applied. It was found that for 2°Ne + 2*Mg at 100 MeV the optimum
values of Ry and H are about 20 fm and 0.02 fm, respectively. At this matching radius
the nuclear potentials reach 102 of their central strength, thus stressing the great impor-
tance of the far tailing region of the nuclear potential {6]. The 10-2 rule, commonly used
for light projectiles, now fails completely (Ry = 12 fm), producing enormous errors.
It seems that the Hodgson rule [19] for the step size is still valid and predicts that each
unit of kr should be divided into ten steps approximately. In our case kr = 0.1 yields
H = 0.019.

In general, when the true value of the optical model cross section is unknown, the opti-
mum values of Ry and H can be chosen according to the behaviour of the errors of o(f).
So # = 180° is recommended for these tests as the most sensitive region. Then, for the
fixed Ry two calculations should be performed with H steps ranging over one decade.
Next, if the two values of ¢(6) differ approximately by four orders of magnitude it can be
claimed that this Ry is not too small. The weaker H-dependence of ¢(180°) (when a 64 bit
word is used) should be interpreted so that Ry, must be increased. The above recipe can
be invalid for calculations performed with a shorter computer word. The round-off error,
according to formula (4) can complicate the situation, producing a relatively deep minimum
in the Ry~ H space.

We still believe that although backward angles are connected with the biggest experi-
mental and numerical difficulties, they contain the most conclusive information on heavy
ion interaction available from elastic scattering.

I wish to thank Professor K. Grotowski for stimulating discussions.
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