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INFRA-RED DIVERGENCES AND REGGE BEHAVIOUR IN QCD*

By T. JAROsZEWICZ
Institute of Nuclear Physics, Cracow**
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We analyze high energy behaviour of multi-gluon exchange amplitudes in the leading-
-In s approximation in perturbation theory. Working in the Coulomb gauge and employing
Ward identities we derive an integral equation for the #-gluon system in the exchange channel.
We find that the Regge behaviour is associated with exponentiation of leading infrared
divergences, and the position of the j-plane singularities is determined by the colour quantum
numbers of the exchanged system.

PACS numbers: 11.10.Np; 11.60.+¢

In high energy small momentum transfer interactions of hadrons the dominant feature
is certainly the Regge behaviour, in particular the Pomeron responsibie for diffraction.
A question arises whether these properties can be explained in the framework of Quantum
Chromodynamics (QCD), considered to be the leading candidate for the theory of strong
interactions. On the qualitative level, QCD can account for the main features of the elastic
scattering amplitudes: for instance, their approximate energy independence can be associ-
ated with the exchange of vector mesons (gluons), and the smallness of the real parts results
from the fact that the one gluon exchange between hadrons is forbidden by colour con-
servation. On the quantitative level the problem is far from solved, although much work
has been done in this field recently [1-8, 11, 12, 15]. These works concentrate on the per-
turbation theory in the weak coupling limit g — 0, g?In s = const, i.e. on the leading-
-logarithmic approximation (LLA), where all powers of g2 Ins are summed. First, the
vector-meson exchange channels have been studied; they are of course unphysical, but
can be considered building blocks in constructing the Pomeron. It was found that these
channels are governed by a Regge trajectory on which the vector meson lies, which means
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that the gauge vector meson reggeizes. In the vacuum channel another important fact
was established, namely, that in the LLA the Pomeron is a fixed branch point in the complex
angular momentum plane, with the intercept above unity.

Most of these results have been obtained by starting with a spontaneously broken
gauge theory in the unitary gauge, and then by either directly evaluating individual Feynman
diagrams [1, 2], or using unitarity and dispersion relations to calculate amplitudes in
successive perturbative orders [3, 4, 7]. The latter methods are not specific to gauge theories
and are applicable equally well to, say, the ¢3 theory. On the other hand, it was noted [8]
that choice of a suitable gauge may considerably simplify the structure of the relevant
Feynman diagrams {as in deep inelastic scattering in the axial gauge); then the leading
energy dependence can be extracted by using the Ward identities.

In the present note we simplify and generalize this approach and further exploit the
relationship between the high energy behaviour and the infra-red (IR) structure of gauge
theories. We start directly with the Coulomb gauge in the massless SU(¥) gauge theory
(dimensionally regularized, when necessary). We briefly discuss the properties of multi-
-gluon exchange amplitudes in this gauge. Then we sketch the derivation of integral equa-
tions governing the corresponding two-particle n-gluon vertices; our equations are general-
izations of those obtained in Refs [2, 4, 8, 11, 12]. Our derivation is based on a method
analogous to that used by Grammer and Yennie [9] in analyzing the IR divergences in
QED. Finally, we discuss the physical meaning and some properties of those equaticns,
and their approximate solutions. ’

We consider elastic scattering of two objects, 4 and B, moving along the positive
and negative z-axis, with momenta p, and pg respectively. We choose such a reference

1
frame that p¥, p; and s ~ 2p}py are large, and pi~p% ~0 (pi =p, = —:/—i—(poip3)).
We shall use the Coulomb gauge massless gluon propagators

[_ g V- 9) (N“q”+q"N“)—-N2q"q”:|
(N g)*—N’¢?

D*(q) =

q*+ie @)
with N, = (1, 0, 0, 0) in our reference frame.

The properties of the Feynman diagrams in this gauge are best illustrated on the
example of gluon—gluon scattering in the order g* (Fig. 1). A straightforward calculation
shows that the energy dependence of these diagrams in the covariant (Feynman) gauge is:
(@) ~ g%, (b) ~ g%s, (c) ~ g*s(—In s+in), (d) ~ g*sIn s, whereas in our Coulomb gauge:
(@) ~ g*sInp}, (b) ~ g*slnpg, (c) ~ ing*s, (d) ~ 0. In the covariant gauge the Ins in
the box diagram comes from one of the horizontal lines being far off-mass-shell. This
contribution is suppressed in the Coulomb gauge; instead, the leading contribution comes
from the horizontal lines being both on the mass-shell (note that the box and the crossed
box diagrams are not simply related by the s <+ u crossing, because of additional dependence
on N*). On the other hand, diagrams (a) and (b) now acquire the energy dependence from
the N*-dependence of vertex corrections (N -p, ~ pi, N - pg~ pg). The sum (a)+(b)
in N*-independent because Inp} +1Inpg ~ Ins.
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This analysis can be extended to an arbitrary n-gluon exchange diagram. The cor-
responding amplitude is asymptotically equal (Fig. 2).

T, = —21s(_ )"(2 D) 20T ”JHd s Zé,—j’)

fo(pji—a 615 cers qn)fB(pE: qla vy qn): (2)

where ¢;’s are the transverse momenta of the exchanged gluons, and the colour indices are
suppressed. The quantities f* and f* are the integrals of multiple discontinuities (in the
mass variables) of the two-particle n-gluon vertex functions I, e.g.

mpat

fA(pA 5 619 R an) = _i(zni)—(n—l)(zp:)_" b‘ d0'1 do—n—l
XdiSCm discan—lr‘i...+(p.4; g1s s qn)s (3)

where ¢, = (p4—q1— ... —q)* =~ —2p3(g;1 + ... +4g; ), the indices “+” in I'* are the
Lorentz indices, and m is a mass scale (irrelevant in the LLA). The vertices * and f* are
analogous to the “impact factors” introduced by Cheng and Wu [10], except that they
depend on the momenta p} or pg.
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Fig. 1. Gluon-gluon scattering in the order g*

The crucial feature of Eq. (2) is that, in agreement with the discussion of Fig. 1, the
exchanged gluons do not give any logarithms of energy. Therefore, in the LLA, the contri-
buting diagrams are only those with the smallest number of the exchanged (wee) gluons,
allowed by the quantum numbers in the z-channel. The logarithms In p; and In p; come
exclusively from the integration over the longitudinal momenta of fast “right-movers”
and “left-movers” in the blobs f* and f%.

Note also that there are no crossed gluon lines in Fig. 2. Physically, this is so because
in the LLA the relevant component of the gluon propagator (1) can be approximated by

2

_+ ~ S ———
@ N -

i.e. by an instantaneous Coulomb interaction. Fig. 2 thus represents a sequence of instan-
tanecous Coulombic gluon exchanges.
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We are now ready to derive the leading-In p} equation for the vertex f4, or rather
for its Mellin transform

fA(E; al’ cers Zjn) = - _‘ dp:(p:)E_IfA(pj 5 _q.ls BT an):
where E is related to the angular momentum j by j = 1-E. (Analogous equation can of
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Fig. 2. General structure of the n-gluon exchange amplitude

course be derived for £®). Our starting point is the almost obvious recursion of Fig. 3, where
(a) is the lowest order inhomogeneous term, and the other terms represent all possible
ways of adding a gluon loop which can yield g2 In p}. The dots after (c) indicate all remain-
ing loop insertions with uncut gluon lines, and after (g) — all remaining insertions with
a cut gluon line joining two different “cells”. The logarithms In p} result from the k-
-integrations in the region |k| < k* < p}. It can be verified now that for the gluons in the
blob 4 the Coulomb gauge is equivalent (in the LLA) to the light-like axial gauge with
the gauge-defining vector »#* taken along p% (so that n -k = k*),

1 M 4k
.«[—g‘”+ 'LL"]. @

v — o
D*(ky k2 +ie n-k

This simplification is justified, provided we limit the integration regions to k= < |k| < k*.
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Fig. 3. Integral equation for the two-particle n-gluon vertex
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Using (4) the relevant product of propagators in the diagram (b) is found to be

1 1 k- (q,—k) .
7, N — +nonleading terms. %)
k+ie (q,—k)Y+ien-kn-(q,—k)

Duo(k)gQade(‘h - k) =

Now we are taking the crucial step, which is the replacement of »* by k*/k— . The justifica-
tion is as follows: The k~ loop integral can be thought of as an integral of the discontinuity
of n"nvl’;‘vm in the mass variable (p,—k)? ~ -2p;k~. Because of the Ward identities the
product k*n’I', = G reduces to the vertex function with the number of gluon legs less
by one, and obviously has no singularities in the variable (p ,—k)2. Instead, there is a (prin-
cipal-value) pole at k- = 0, whose residue is proportional to k*n'IT4, +k'n’T} =
at k— = 0. This quantity can be expressed by the dispersion relation in Kk~ in terms of its
discontinuity. Since (1/k~)disc H = —disc n*n'l ;’,.m (which follows from disc G = 0),
the dispersion integral reproduces the original one (in the LLA).

g
Fig. 4. Integral equation of Fig. 3 afier applying Ward identities

Hence, the replacement #* — k*/k—, and then the Ward identities, give, in the standard
graphical notation, the term (b) in Fig. 4, which involves the loop integral

E-(q,~k) [d~ 1 ] CdkT " k(g —k
k k™ k*+ig (g —k)*+ie k k*(q,—k)*

Then, Fig. 3(c) is reduced to Fig. 4(c) in two steps: first, using the propagator (4),
we apply Ward identities to the terms proportional to k* and k"; secondly, we replace n*
and #* by k'/k~ and k"/k~ and proceed as before. Diagrams (e), (f) and (g) are treated along
the same lines, except that some of the gluons are put on mass-shell, as indicated in the
figure. In the diagram (d) we approximate the corresponding product of propagators as
in Eq. (5).

Finally, the rules for Fig. 4 turn out to be:
1. for every internal single line: propagator 1/E2;
2. for double lines: propagator = 1;

! This is analogous to the method of Ref. [9], where one replaces the full photon propagator by an
expression involving factors &#, &%, such that it gives the same IR divergences as the original propagator.
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3. for a cut single line: additional factor —1;
. for each vertex: factor g and a group factor —iC,,_ with indices taken counter-clockwise;
5. for two internal single lines ky ks joining at one vertex or connected by a double line:
factor ic'. -1?2;
. for a diagram with any number of cut lines: overall factor 2;
7. overall integration —(2r)~3 § dk*/k* | d?k or, in the Mellin transform, E-1(2n)~3 | d2k.
Thus the equation of Fig. 4 reads (suppressing the group factors)

Ef*E; qy ..., 5,.) = "4y, -y 4y)

E~S

[=))

+g2(2n)'3fd2kl[ G- ]f"(E A Y
1(‘71 1)

E1 : Ez 2E1 ’ (61 “‘E1)

+g%2m) "2 | d*k d*k,0%(q 1+ Gy — Ky — K3) 2 -
1 2 1 2 1 2 k2k; ki(ql_kl)z

_ 21;2'(-9.2"%2) 2

2, -k)*  (d1—k)?

]f‘(E; ki, k3, s, ..., ) (* group weight).
The transverse momentum integrals, whenever divergent, have to be understood here as

continued to d > 2 dimensions. Rearranging the terms sligtly and reintroducing the group
weights we obtain

Eff  olEiGus s Gn) = OXdy, s @)+ X N 0B Gas s 40)

+ Cu;rbgCaJcbjgz(zn)'s 1} dzkidzkjéz(ai"";j_z‘:i_i‘tj)

i<j
y [(Eﬁzi,-)z _ qt _ éj ]
KK ki@—k)® Kig—kp)
Xfa/:...b,...bj...a,,(EQ 51’ ces l—‘:i’ B Eja cees (;n) (6)
with
62
8q) = + g°Qm) > | d’k =
(9) = 3 g°(2m) f PG

In the case of n = 2 our equation reduces to the one of Refs [2, 3, 8] or Ref. [11],
depending on the quantum numbers in the t-channel. For n = 1 it coincides with the
equation of Ref. [8], and for n = 3 in the symmetric colour singlet channel in SU(3) with
the equation recently derived in Ref. [12].

In general, Eq. (6) can be interpreted as a Reggeon calculus equation for a system
of n reggeized gluons (cf. [13]). The factors Ne(q;) are then the Reggeon energies and the
terms in the sum over i, j represent 2 — 2 Reggeon vertices. Since the function f is not
the full amplitude but its multiple discontinuity, Eq. (6) refers to the unsignatured two-
-particle n-Reggeon amplitude.
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We shall discuss now some properties of the equation (6) and its solutions.

(i) IR finiteness in colour singlet exchange channels. It was noted in Ref. [6] that for
n = 2equation (6) has no IR divergences in the vacuum quantum number exchange channel,
when additionally the external particles are colour singlets. Here we make a more general
observation (cf. also Ref. [15]). In Eq. (6) the divergences in the Ei, k ;integrals come from
two regions:
(@) k; ~ g;. These divergences cancel with the divergences in the Reggeon energies
Ne(g,). This can be seen by using the identity

Z Cajcbjfa, cubyoan = 0
J

(valid when f, , transforms as a colour-singlet tensor), and writing

z Ns(ii,-)f;‘. alE3 61, ooy ?1.,) = Z Ca;cbgca;cbjgz(zn)_s 5 dzkidzkjéz(ai'*‘z].j_i"i“Ei)

i<j

1 a; . .)] 4 o=
i [(ZJZ—IE)Z K2+ (g kp)? T =D |Sar bty a B3 Q15 -0 4a)-

Now the sum of the integrand here and in Eq. (6) is regular at k; ~ q;. We can also see
that this is in fact due to the pairwise cancellation of virtual IR divergences in Fig. 3(b),
(c), ... with real divergences in Fig. 3(e), (f), (), ...; they cancel independently of whether
or not the external particles are colour singlets.
(B) k; ~ 0. To show the absence of these divergences we note that in the LLA we have
to consider only the minimum number of exchanged gluons, ie. n = 2 in the charge
conjugation C = +1, and n = 3 in the C = —1 colour singlet channels [12]. Then, if
the external particles 4 and 4’ are colour singlets, one can see that each gluon emission
from the blob f* necessarily changes the group representation to which the fast-moving
system belongs. Therefore the amplitude f* vanishes if any of the gluon momenta k; is
zero. This is in fact a property of the lowest order term @*, which propagates through the
integral equation (6).

(ii) Deep inelastic limit in the 2-gluon channel. This amounts to taking only the leading
In 42 (at zero total momentum transfer, 4 = 0). In this limit only the ladder diagrams,
generated by Fig. 3(d), survive. The other terms generate diagrams with more than two
gluons in the r-channel (i.e. two-particle-irreducible), which have no mass singularities [14].

(iii) IR-finite cross-sections with colour exchange. The simplest example is the one
gluon exchange with momentum transfer g, and with the initial system A being a colour
singlet. It is convenient here to transform to the reference frame where A has transverse
momentum ¢, so that the final momentum is directed along the z-axis. The IR-finite cross-
-section can then be defined by summing over final states containing an arbitrary number
of particles with transverse momenta less than a certain cut-off A. This “jet” cross-section,
or rather its Mellin transform, is proportional to the quantity F,(E, q) satisfying

EF,(E; q) = &(q)+2Ne(@F,(E; q)

2

_ A q N
+Ng?(2m) 3 | d*k0(/ — ik — —2 o s VFAE k).
g ( ) J‘ (A1 qi) I\Z(q—k)z AL )
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This equation is essentially Eq. (6) specialized to n = 2 in the vacuum channel, with the
integration over intermediate momenta restricted by the definition of our “jet”. Here the
divergences in &(q) are cancelled by those in the k-integral, as discussed in (ia) above.
The effective IR-finite Regge trajectory is then approximately j = 1— Ne,(q), with

2

e(q) ~ —9(q —i% In g*[i>.

IR-finite cross-sections can be similarly defined for exchange of gluon systems in higher
representations.

(iv) n-gluon exchange amplitudes. In the LLA we can only consider such f-channel
quantum numbers, for which n is a minimum number of the exchanged gluons. For the
SU(2) gauge group (“isospin”) such is the case of isospin I = n exchange. For SU(3)
the corresponding representations are {8}, {27}, {64}, ... for n = 1, 2, 3, .... For SU(N)
they are denoted by D(n, 0, ..., 0, n); note that any subsystem of r gluons must then belong
to the representation D(r, 0, ..., 0, r).

In such a channel the vertex f4(E, q,, ..., 4,) obeys Eq. (6) with no summation over
colour indices and with C,,.;, C, ., replaced by — 1. We shall now evaluate the correspond-
ing amplitude T, for large momentum transfer in the leading logarithms In A2 (cf. analogous
calculation for n = 2 in Ref. [13]). To this end it is sufficient to solve the equation for f*
with the strong ordering of its arguments, say 42 ~ > > g% > ... > g2, summing the
leading logarithms of g7. The integral in Eq.(6) then becomes approximately (for g7 > ¢?)

d*k; qi+k3 - -
2, -3 J 7 A -
g%(2n) j»-?« [1 ——}f (E;qy o ki oy Ky ooy @)
5 (q;—k;* ' !
2

g . . .
~ _Eﬁln a3 NE; 15 s 4n)- (7

The logarithmic divergence from k ; = g; will eventually cancel in an appropriately defined
cross-section, as discussed in (iif) above; it is in this sense that the In Ejf in Eq. (7) and below
should be understood. With Eq. (7) the solution for A s

. 2 -1
J'A(E;él,'.',(},,)w"(éip-.',a,,){ﬁ—Z(N 2420) o mq,} .

i=1

The n-gluon exchange amplitude 7, becomes then proportional to

Xp-1 n

N . o i 2
T, ~ szdx,é(xl—ln Az)j dx, ... J dx, exp{— z (N— 2+21) 5 X;In 5} 8
O 0 i

i=1

where x; = In g2, and the lower cut-off in g2 is provided by vanishing of ®* and &® (for
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the same reasons as discussed in (if)). In an IR-finite cross-section we will therefore find
a family of n logarithmic-type branch points in the j-plane at

j=j,=1=rr+N-1e4), r=12,..,n )

"The singularity at j, is generated by a system of r gluons, each carrying transverse mo-
mentum of order A, while the remaining ones have much smaller momentum. The factor
in frout of ¢, in Eq. (9) can be recognized as the quadratic Casimir operator (C,) eigenvalue
for the group representation D(r, 0, ..., 0, r). This means that the considered system acts
coherently as a single object. In terms of the Reggeon calculus, the Reggeon-Reggeon
interactions are important: for non-interacting Reggeons we would get branch points at
j = 1—rNz,(4).

To summarize, we have described a simple and general method of deriving integral
equations governing the behaviour of multigluon exchange amplitudes in the leading
—Ins approximation. The derivation is based directly on the gauge invariance of the
theory (convenient choice of gauge and the Ward identities). It also makes apparent the
IR structure of contributing Feynman diagrams, in particular cancellations of virtual and
real IR divergences. The solutions of the derived equations exhibit Regge behaviour due
to exponentiation (see Eq.(8)) of the leading IR divergences associated with the exchange
of colour quantum numbers.

The author is indebted to Jan Kwieciiski for many helpful discussions.
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