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OBSERVABILITY IN GENERAL RELATIVITY
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The observability of physical quantities in general relativity is discussed by means of
“‘operational observations”. Application is made to planetary motion.

The question of the observability of physical quantities in general relativity is not
necessarily unambiguous. Thus, for example, Einstein’s [1] formulation of Mach’s
principle predicted three observable effects:

1. An increase in inertial mass of a test particle when brought closer to a neighbouring
mass.

2. A force experienced by a test particle when a neighbouring mass is accelerated.

3. A “Coriolis field” generated in the interior of a rotating hollow body.

The first effect has been considered theoretically by Brans [2] and Dicke [3]. They
concluded that it was not observable, and ascribed its Machian result to the choice of
coordinates. Experimental measurements of sufficient sensitivity have also been carried
out with null results [4, 5].

It is our purpose to describe the measurement of physical quantities by means of what
may be termed “‘operational observations”. These, along with the equivalence principle,
were initially introduced and applied by Einstein [6]. We shall consider additional physical
quantities in this way and stress the distinction between local and distant observers. This
will enable us to comment further on the three Machian effects mentioned above. In addi-
tion, we shall examine planetary motion from this point of view.

1. Some results of operational observations

We now introduce some of the pertinent results of the Einstein approach. Consider
a gravitational source of mass M and observers S, and S,. Let S, be situated far distant
from M. It is convenient to make the gravitational potential at S, zero. Assume S, is situated
at a distance r, from M.
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Let S, generate a definite amount of energy E, by the use of a given means. This energy,
E, is transmitted from S, to S, in the form of radiation. S, then compares the energy re-
ceived, E, with the energy produced at S, by the identical means used by S,. This com-

parison results in
GM
E,=E,[1-—5—]. §))

cr,

Similarly, S, measures by means of his local clock the frequency v, of monochromatic
radiation which is transmitted to S,. Then S, measures the frequency of the received radia-
tion v, by means of an identical clock at S,. The result is

GM
v, =v,| - ) (2)
P

Finally, S, takes note of the time required by S, to send light along and back a given
length. Thus, S, calculates a velocity of light, c,, taking equation (2) into account. If c,
is the local velocity of light as determined by S, then

GM
Co=cp<1'—g>. (3)
p

It is implicit here that the travel path of the light is transverse to the radial direction from
the source M. Also implicit is that transverse length [7] is unaffected by position in the
gravitational field. Hence

Fo = Tp C))
However, radial length [7, 8] is affected by position in the field, with the result that
GM
i:a = Fp(l“ T)' (5)
c’r,

Here the bar indicates the radial direction. The corresponding radial velocity [7, 8] of light

It should be clear, however, that these variations of the velocity of light do not consti-
tute a violation of relativity. The local velocity of light ¢, as measured by S,, remains
constant regardless of his position in the field.

2. Application to inertial mass

We now examine the measurement of inertial mass. For this purpose, let S, give two
identical masses, m,, equal and opposite velocities. Let these suffer a completely inelastic
collision. The heat radiation thus generated is transmitted to S,. Then S, receives this heat
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radiation, F,, and compares with the heat radiation produced at S, by the identical scheme
used at S,. We can then write

3 2 o Epr (M

m, rp 2( t,\> E, ®
my - tp r,) E, '

If the motion is along the transverse direction, then we must use equations (1), (2)
and (4). This leads to the relation for the transverse mass

GM
m,=m,|1+ 2 ) 9

p

2 2
myv, / myvy,
= E

That is to say

If the motion is along the radial direction, then we must use equations (1), (2) and (5).
This leads to the relation for the radial mass [8]

_ _ GM
m, = lnp 1‘{“3 c_z;'; . (10)
Note, however, that
moﬁf/rﬁpﬁf, = movf/mpvﬁ. (1)

Hence the collision heat radiation is independent of the orientation of the colliding masses.

3. Discussion of the three Machian effects

It thus appears from equations (9) and (10) that the first Machian effect is confirmed
and, in addition, anisotropy of inertial mass is present. In fact, it was this possibility that
led Hughes et al. [4], and Drever [5] to conduct experiments which took advantage of the
non-spherical distribution of mass in our galaxy as suggested by Coccini and Salpeter [9].
As already mentioned, the experimental results were null.

However, we must emphasize that while there is indeed a change in inertial mass as
a result of the changed gravitational field, this is only how it appears to S, when far re-
moved from S,,. If S, were to approach S, this change in inertial mass would diminish
until finally, when they are together, no change would be apparent to S,. That is to say, in
agreement with Brans [2] and Dicke [3], it is not possible to locally observe any change in
inertial mass because of any change in the gravitational field.

While the above is based on the equivalence principle in addition to other considera-
tions, one can also argue the non-observability of the first effect directly from the equi-
valence principle. Thus Nightingale and Ray [10] have pointed out that an observer
in free fall toward a source would find that a test particle in his frame would have inertial
properties independent of the strength of the accelerating source.
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Similarly, one can equally well argue that in such a system we may regard the source
as being accelerated toward the test particle. Again the observer would find that the behav-
ior of the test particle would be independent of the source strength and hence its accelera-
tion. That is to say, we must conclude that the second Machian effect is not observable
either.

The third Machian effect is not directly susceptible to such arguments but it seems not
unlikely that it too will not be observable in view of the above.

4. Application to the gravitational constant

We turn now to the influence of a gravitational field on the radial component of G
itself. Consider two identical masses m separated by a fixed distance d and lined up radially
in S,. If they are released and allowed to collide (inelastically) because of their mutual
gravitational attraction, we must have

G,m. | G,m.
e = E |E,. 12)
Using equations (1), (5) and (10) we obtain
~ ~ GM
Go = G, (1 ~8 ‘i“) . 13)
cr,

We note here that we can apply the same arguments that were used to indicate the
non-observability of the first Machian effect to the question of the observability of local
changes in G. We must conclude, contrary to the well known conjecture of Dirac [11],
that such changes cannot be observed.

We omit discussion of the corresponding transverse component of G since it is not
required in what follows.

5. Planetary motion

It might be of interest to discuss other physical quantities such as charge, Planck’s
constant, the fine structure constant, etc., but instead we shall consider planetary motion
in the light of the above development. Such motion can be put in perspicuous form by
subjecting the standard Schwarzschild metric to the transformation [12]

1+ GM * (14)
¥F—=>r .
2c%r
The result is the isotropic Schwarzschild metric
) GM
Iy 1 GM T )
ds® = ” o dt* - ?[1+ 2c2r] [dr? +r*(d6* +sin® 8do?)]. 15)

2¢%r
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Here the corresponding equation of planetary motion {12] is

d*u + GM 6GMu (16)
— té = —5 — 1.
do? H? c?
It yields the usual value for the advance of perihelion per revolution
GM \?
0 =6n . an
He

We can now examine the planetary motion as viewed by S, when situated on the planet
itself. If S, had no means of making measurements relative to another observer such as
S,, he might expect that his orbit would follow the classical equation of motion

d*u GM

W“}‘u:?. (18)

For the purpose of what follows, we shall assume that S, is in a nearly circular orbit.
From the point of view of S,, equation (5) indicates that unit radial distance in S, is

decreased when r, is decreased. At the same time, it appears to S, that unit radial distance

on S, is increased as r, is decreased. This is indicated by the inversion of equation (5)

o GM
rp==r0 1+;27). (19)
p

In view of the position of S,, S, concludes that his local measurement of radial distance
requires correction in order to properly plot his position in space. That is

GM
7", b d f‘, (1 + cz—r) . (20)
4

Note that this correction (20) is identical to the isotropic transformation {14) when equation
(14) is expanded to the first order in GM/c?r.
From equation (2) we see that §, must also correct his clock rate by setting

GM
v‘,-—»vp(1+ C'ZT) (21)
14

If now S, applies correction (20) to the left hand side of the equation of motion (18), he
will find that it is unchanged for two reasons. The first is the differential identity

d[r (1+ 931‘—4)] = dr. (22)
cr

The second is that ¢ is in effect a transverse quantity.
However, S, must correct G, and H,. For G, we obtain equation (13)

I GM
G, G, (1 +8 -i—») (23)
c rp
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d . . . . . .
For H = rzg? , only the time requires correction and so inserting correction (21) we get

148 M
GM GM ¢*r,) GM [ _GM
w7y emy TR\t .

Thus we see that when S, completes his corrections to equation (18), he is able to properly
plot his position in space: This corresponds to equation (16) for our limiting case of nearly
circular motion.

We note that throughout this discussion we have restricted ourselves to-the first order
in GM/c?r. This contradicts Eddington [13], who indicated that the second order of this
term was required in order to obtain the motion of perihelion. However, Synge [14] has
investigated this matter in some detail. His conclusion was that the motion of perihelion
was a first order effect and that it only appeared to be second order.

We therefore conclude that operational observations may be useful in some applica-
tions -of general relativity. The fundamental role played by radiation in the process of
making measurements should be evident.
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